Properties

Label 3042.2.a.r.1.1
Level 30423042
Weight 22
Character 3042.1
Self dual yes
Analytic conductor 24.29024.290
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3042.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,-2,0,0,-2,0,2,-4,0,0,0,0,2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.290492294924.2904922949
Analytic rank: 11
Dimension: 22
Coefficient field: Q(10)\Q(\sqrt{10})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x210 x^{2} - 10 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 234)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 3.16228-3.16228 of defining polynomial
Character χ\chi == 3042.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q44.16228q5+3.16228q71.00000q8+4.16228q10+1.16228q113.16228q14+1.00000q16+3.00000q175.16228q194.16228q201.16228q227.16228q23+12.3246q25+3.16228q28+1.83772q296.32456q311.00000q323.00000q3413.1623q35+3.83772q37+5.16228q38+4.16228q403.00000q41+9.16228q43+1.16228q44+7.16228q464.83772q47+3.00000q4912.3246q50+12.4868q534.83772q553.16228q561.83772q58+2.32456q59+0.162278q61+6.32456q62+1.00000q642.83772q67+3.00000q68+13.1623q70+7.16228q711.00000q733.83772q745.16228q76+3.67544q774.00000q794.16228q80+3.00000q82+3.48683q8312.4868q859.16228q861.16228q8812.0000q897.16228q92+4.83772q94+21.4868q954.00000q973.00000q98+O(q100)q-1.00000 q^{2} +1.00000 q^{4} -4.16228 q^{5} +3.16228 q^{7} -1.00000 q^{8} +4.16228 q^{10} +1.16228 q^{11} -3.16228 q^{14} +1.00000 q^{16} +3.00000 q^{17} -5.16228 q^{19} -4.16228 q^{20} -1.16228 q^{22} -7.16228 q^{23} +12.3246 q^{25} +3.16228 q^{28} +1.83772 q^{29} -6.32456 q^{31} -1.00000 q^{32} -3.00000 q^{34} -13.1623 q^{35} +3.83772 q^{37} +5.16228 q^{38} +4.16228 q^{40} -3.00000 q^{41} +9.16228 q^{43} +1.16228 q^{44} +7.16228 q^{46} -4.83772 q^{47} +3.00000 q^{49} -12.3246 q^{50} +12.4868 q^{53} -4.83772 q^{55} -3.16228 q^{56} -1.83772 q^{58} +2.32456 q^{59} +0.162278 q^{61} +6.32456 q^{62} +1.00000 q^{64} -2.83772 q^{67} +3.00000 q^{68} +13.1623 q^{70} +7.16228 q^{71} -1.00000 q^{73} -3.83772 q^{74} -5.16228 q^{76} +3.67544 q^{77} -4.00000 q^{79} -4.16228 q^{80} +3.00000 q^{82} +3.48683 q^{83} -12.4868 q^{85} -9.16228 q^{86} -1.16228 q^{88} -12.0000 q^{89} -7.16228 q^{92} +4.83772 q^{94} +21.4868 q^{95} -4.00000 q^{97} -3.00000 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q2+2q42q52q8+2q104q11+2q16+6q174q192q20+4q228q23+12q25+10q292q326q3420q35+14q37+6q98+O(q100) 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{8} + 2 q^{10} - 4 q^{11} + 2 q^{16} + 6 q^{17} - 4 q^{19} - 2 q^{20} + 4 q^{22} - 8 q^{23} + 12 q^{25} + 10 q^{29} - 2 q^{32} - 6 q^{34} - 20 q^{35} + 14 q^{37}+ \cdots - 6 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 0 0
44 1.00000 0.500000
55 −4.16228 −1.86143 −0.930714 0.365749i 0.880813π-0.880813\pi
−0.930714 + 0.365749i 0.880813π0.880813\pi
66 0 0
77 3.16228 1.19523 0.597614 0.801784i 0.296115π-0.296115\pi
0.597614 + 0.801784i 0.296115π0.296115\pi
88 −1.00000 −0.353553
99 0 0
1010 4.16228 1.31623
1111 1.16228 0.350440 0.175220 0.984529i 0.443936π-0.443936\pi
0.175220 + 0.984529i 0.443936π0.443936\pi
1212 0 0
1313 0 0
1414 −3.16228 −0.845154
1515 0 0
1616 1.00000 0.250000
1717 3.00000 0.727607 0.363803 0.931476i 0.381478π-0.381478\pi
0.363803 + 0.931476i 0.381478π0.381478\pi
1818 0 0
1919 −5.16228 −1.18431 −0.592154 0.805825i 0.701722π-0.701722\pi
−0.592154 + 0.805825i 0.701722π0.701722\pi
2020 −4.16228 −0.930714
2121 0 0
2222 −1.16228 −0.247798
2323 −7.16228 −1.49344 −0.746719 0.665140i 0.768372π-0.768372\pi
−0.746719 + 0.665140i 0.768372π0.768372\pi
2424 0 0
2525 12.3246 2.46491
2626 0 0
2727 0 0
2828 3.16228 0.597614
2929 1.83772 0.341256 0.170628 0.985335i 0.445420π-0.445420\pi
0.170628 + 0.985335i 0.445420π0.445420\pi
3030 0 0
3131 −6.32456 −1.13592 −0.567962 0.823055i 0.692268π-0.692268\pi
−0.567962 + 0.823055i 0.692268π0.692268\pi
3232 −1.00000 −0.176777
3333 0 0
3434 −3.00000 −0.514496
3535 −13.1623 −2.22483
3636 0 0
3737 3.83772 0.630918 0.315459 0.948939i 0.397842π-0.397842\pi
0.315459 + 0.948939i 0.397842π0.397842\pi
3838 5.16228 0.837432
3939 0 0
4040 4.16228 0.658114
4141 −3.00000 −0.468521 −0.234261 0.972174i 0.575267π-0.575267\pi
−0.234261 + 0.972174i 0.575267π0.575267\pi
4242 0 0
4343 9.16228 1.39723 0.698617 0.715496i 0.253799π-0.253799\pi
0.698617 + 0.715496i 0.253799π0.253799\pi
4444 1.16228 0.175220
4545 0 0
4646 7.16228 1.05602
4747 −4.83772 −0.705654 −0.352827 0.935689i 0.614780π-0.614780\pi
−0.352827 + 0.935689i 0.614780π0.614780\pi
4848 0 0
4949 3.00000 0.428571
5050 −12.3246 −1.74296
5151 0 0
5252 0 0
5353 12.4868 1.71520 0.857599 0.514319i 0.171955π-0.171955\pi
0.857599 + 0.514319i 0.171955π0.171955\pi
5454 0 0
5555 −4.83772 −0.652318
5656 −3.16228 −0.422577
5757 0 0
5858 −1.83772 −0.241305
5959 2.32456 0.302631 0.151316 0.988485i 0.451649π-0.451649\pi
0.151316 + 0.988485i 0.451649π0.451649\pi
6060 0 0
6161 0.162278 0.0207775 0.0103888 0.999946i 0.496693π-0.496693\pi
0.0103888 + 0.999946i 0.496693π0.496693\pi
6262 6.32456 0.803219
6363 0 0
6464 1.00000 0.125000
6565 0 0
6666 0 0
6767 −2.83772 −0.346683 −0.173341 0.984862i 0.555456π-0.555456\pi
−0.173341 + 0.984862i 0.555456π0.555456\pi
6868 3.00000 0.363803
6969 0 0
7070 13.1623 1.57319
7171 7.16228 0.850006 0.425003 0.905192i 0.360273π-0.360273\pi
0.425003 + 0.905192i 0.360273π0.360273\pi
7272 0 0
7373 −1.00000 −0.117041 −0.0585206 0.998286i 0.518638π-0.518638\pi
−0.0585206 + 0.998286i 0.518638π0.518638\pi
7474 −3.83772 −0.446126
7575 0 0
7676 −5.16228 −0.592154
7777 3.67544 0.418856
7878 0 0
7979 −4.00000 −0.450035 −0.225018 0.974355i 0.572244π-0.572244\pi
−0.225018 + 0.974355i 0.572244π0.572244\pi
8080 −4.16228 −0.465357
8181 0 0
8282 3.00000 0.331295
8383 3.48683 0.382730 0.191365 0.981519i 0.438709π-0.438709\pi
0.191365 + 0.981519i 0.438709π0.438709\pi
8484 0 0
8585 −12.4868 −1.35439
8686 −9.16228 −0.987994
8787 0 0
8888 −1.16228 −0.123899
8989 −12.0000 −1.27200 −0.635999 0.771690i 0.719412π-0.719412\pi
−0.635999 + 0.771690i 0.719412π0.719412\pi
9090 0 0
9191 0 0
9292 −7.16228 −0.746719
9393 0 0
9494 4.83772 0.498973
9595 21.4868 2.20450
9696 0 0
9797 −4.00000 −0.406138 −0.203069 0.979164i 0.565092π-0.565092\pi
−0.203069 + 0.979164i 0.565092π0.565092\pi
9898 −3.00000 −0.303046
9999 0 0
100100 12.3246 1.23246
101101 −7.83772 −0.779883 −0.389941 0.920840i 0.627505π-0.627505\pi
−0.389941 + 0.920840i 0.627505π0.627505\pi
102102 0 0
103103 −15.8114 −1.55794 −0.778971 0.627060i 0.784258π-0.784258\pi
−0.778971 + 0.627060i 0.784258π0.784258\pi
104104 0 0
105105 0 0
106106 −12.4868 −1.21283
107107 17.8114 1.72189 0.860946 0.508696i 0.169872π-0.169872\pi
0.860946 + 0.508696i 0.169872π0.169872\pi
108108 0 0
109109 6.64911 0.636869 0.318435 0.947945i 0.396843π-0.396843\pi
0.318435 + 0.947945i 0.396843π0.396843\pi
110110 4.83772 0.461259
111111 0 0
112112 3.16228 0.298807
113113 −6.67544 −0.627973 −0.313987 0.949427i 0.601665π-0.601665\pi
−0.313987 + 0.949427i 0.601665π0.601665\pi
114114 0 0
115115 29.8114 2.77993
116116 1.83772 0.170628
117117 0 0
118118 −2.32456 −0.213993
119119 9.48683 0.869657
120120 0 0
121121 −9.64911 −0.877192
122122 −0.162278 −0.0146919
123123 0 0
124124 −6.32456 −0.567962
125125 −30.4868 −2.72683
126126 0 0
127127 −18.3246 −1.62604 −0.813021 0.582235i 0.802178π-0.802178\pi
−0.813021 + 0.582235i 0.802178π0.802178\pi
128128 −1.00000 −0.0883883
129129 0 0
130130 0 0
131131 −16.6491 −1.45464 −0.727320 0.686299i 0.759234π-0.759234\pi
−0.727320 + 0.686299i 0.759234π0.759234\pi
132132 0 0
133133 −16.3246 −1.41552
134134 2.83772 0.245142
135135 0 0
136136 −3.00000 −0.257248
137137 3.00000 0.256307 0.128154 0.991754i 0.459095π-0.459095\pi
0.128154 + 0.991754i 0.459095π0.459095\pi
138138 0 0
139139 −6.32456 −0.536442 −0.268221 0.963357i 0.586436π-0.586436\pi
−0.268221 + 0.963357i 0.586436π0.586436\pi
140140 −13.1623 −1.11242
141141 0 0
142142 −7.16228 −0.601045
143143 0 0
144144 0 0
145145 −7.64911 −0.635224
146146 1.00000 0.0827606
147147 0 0
148148 3.83772 0.315459
149149 −0.486833 −0.0398829 −0.0199415 0.999801i 0.506348π-0.506348\pi
−0.0199415 + 0.999801i 0.506348π0.506348\pi
150150 0 0
151151 0.837722 0.0681729 0.0340864 0.999419i 0.489148π-0.489148\pi
0.0340864 + 0.999419i 0.489148π0.489148\pi
152152 5.16228 0.418716
153153 0 0
154154 −3.67544 −0.296176
155155 26.3246 2.11444
156156 0 0
157157 −10.4868 −0.836940 −0.418470 0.908231i 0.637434π-0.637434\pi
−0.418470 + 0.908231i 0.637434π0.637434\pi
158158 4.00000 0.318223
159159 0 0
160160 4.16228 0.329057
161161 −22.6491 −1.78500
162162 0 0
163163 −16.0000 −1.25322 −0.626608 0.779334i 0.715557π-0.715557\pi
−0.626608 + 0.779334i 0.715557π0.715557\pi
164164 −3.00000 −0.234261
165165 0 0
166166 −3.48683 −0.270631
167167 −12.0000 −0.928588 −0.464294 0.885681i 0.653692π-0.653692\pi
−0.464294 + 0.885681i 0.653692π0.653692\pi
168168 0 0
169169 0 0
170170 12.4868 0.957696
171171 0 0
172172 9.16228 0.698617
173173 −22.6491 −1.72198 −0.860990 0.508622i 0.830155π-0.830155\pi
−0.860990 + 0.508622i 0.830155π0.830155\pi
174174 0 0
175175 38.9737 2.94613
176176 1.16228 0.0876100
177177 0 0
178178 12.0000 0.899438
179179 −15.4868 −1.15754 −0.578770 0.815491i 0.696467π-0.696467\pi
−0.578770 + 0.815491i 0.696467π0.696467\pi
180180 0 0
181181 3.83772 0.285256 0.142628 0.989776i 0.454445π-0.454445\pi
0.142628 + 0.989776i 0.454445π0.454445\pi
182182 0 0
183183 0 0
184184 7.16228 0.528010
185185 −15.9737 −1.17441
186186 0 0
187187 3.48683 0.254982
188188 −4.83772 −0.352827
189189 0 0
190190 −21.4868 −1.55882
191191 −14.3246 −1.03649 −0.518244 0.855233i 0.673414π-0.673414\pi
−0.518244 + 0.855233i 0.673414π0.673414\pi
192192 0 0
193193 −19.9737 −1.43774 −0.718868 0.695147i 0.755339π-0.755339\pi
−0.718868 + 0.695147i 0.755339π0.755339\pi
194194 4.00000 0.287183
195195 0 0
196196 3.00000 0.214286
197197 −18.9737 −1.35182 −0.675909 0.736985i 0.736249π-0.736249\pi
−0.675909 + 0.736985i 0.736249π0.736249\pi
198198 0 0
199199 −6.51317 −0.461706 −0.230853 0.972989i 0.574152π-0.574152\pi
−0.230853 + 0.972989i 0.574152π0.574152\pi
200200 −12.3246 −0.871478
201201 0 0
202202 7.83772 0.551460
203203 5.81139 0.407879
204204 0 0
205205 12.4868 0.872118
206206 15.8114 1.10163
207207 0 0
208208 0 0
209209 −6.00000 −0.415029
210210 0 0
211211 −4.00000 −0.275371 −0.137686 0.990476i 0.543966π-0.543966\pi
−0.137686 + 0.990476i 0.543966π0.543966\pi
212212 12.4868 0.857599
213213 0 0
214214 −17.8114 −1.21756
215215 −38.1359 −2.60085
216216 0 0
217217 −20.0000 −1.35769
218218 −6.64911 −0.450335
219219 0 0
220220 −4.83772 −0.326159
221221 0 0
222222 0 0
223223 −1.67544 −0.112196 −0.0560980 0.998425i 0.517866π-0.517866\pi
−0.0560980 + 0.998425i 0.517866π0.517866\pi
224224 −3.16228 −0.211289
225225 0 0
226226 6.67544 0.444044
227227 15.4868 1.02790 0.513949 0.857821i 0.328182π-0.328182\pi
0.513949 + 0.857821i 0.328182π0.328182\pi
228228 0 0
229229 22.3246 1.47525 0.737624 0.675212i 0.235948π-0.235948\pi
0.737624 + 0.675212i 0.235948π0.235948\pi
230230 −29.8114 −1.96570
231231 0 0
232232 −1.83772 −0.120652
233233 16.6491 1.09072 0.545360 0.838202i 0.316393π-0.316393\pi
0.545360 + 0.838202i 0.316393π0.316393\pi
234234 0 0
235235 20.1359 1.31352
236236 2.32456 0.151316
237237 0 0
238238 −9.48683 −0.614940
239239 21.4868 1.38987 0.694934 0.719074i 0.255434π-0.255434\pi
0.694934 + 0.719074i 0.255434π0.255434\pi
240240 0 0
241241 13.3246 0.858310 0.429155 0.903231i 0.358811π-0.358811\pi
0.429155 + 0.903231i 0.358811π0.358811\pi
242242 9.64911 0.620268
243243 0 0
244244 0.162278 0.0103888
245245 −12.4868 −0.797754
246246 0 0
247247 0 0
248248 6.32456 0.401610
249249 0 0
250250 30.4868 1.92816
251251 12.0000 0.757433 0.378717 0.925513i 0.376365π-0.376365\pi
0.378717 + 0.925513i 0.376365π0.376365\pi
252252 0 0
253253 −8.32456 −0.523360
254254 18.3246 1.14978
255255 0 0
256256 1.00000 0.0625000
257257 21.9737 1.37068 0.685340 0.728223i 0.259654π-0.259654\pi
0.685340 + 0.728223i 0.259654π0.259654\pi
258258 0 0
259259 12.1359 0.754091
260260 0 0
261261 0 0
262262 16.6491 1.02859
263263 2.51317 0.154969 0.0774843 0.996994i 0.475311π-0.475311\pi
0.0774843 + 0.996994i 0.475311π0.475311\pi
264264 0 0
265265 −51.9737 −3.19272
266266 16.3246 1.00092
267267 0 0
268268 −2.83772 −0.173341
269269 −6.00000 −0.365826 −0.182913 0.983129i 0.558553π-0.558553\pi
−0.182913 + 0.983129i 0.558553π0.558553\pi
270270 0 0
271271 −6.32456 −0.384189 −0.192095 0.981376i 0.561528π-0.561528\pi
−0.192095 + 0.981376i 0.561528π0.561528\pi
272272 3.00000 0.181902
273273 0 0
274274 −3.00000 −0.181237
275275 14.3246 0.863803
276276 0 0
277277 10.8114 0.649593 0.324797 0.945784i 0.394704π-0.394704\pi
0.324797 + 0.945784i 0.394704π0.394704\pi
278278 6.32456 0.379322
279279 0 0
280280 13.1623 0.786597
281281 0.675445 0.0402937 0.0201468 0.999797i 0.493587π-0.493587\pi
0.0201468 + 0.999797i 0.493587π0.493587\pi
282282 0 0
283283 −2.83772 −0.168685 −0.0843425 0.996437i 0.526879π-0.526879\pi
−0.0843425 + 0.996437i 0.526879π0.526879\pi
284284 7.16228 0.425003
285285 0 0
286286 0 0
287287 −9.48683 −0.559990
288288 0 0
289289 −8.00000 −0.470588
290290 7.64911 0.449171
291291 0 0
292292 −1.00000 −0.0585206
293293 −1.83772 −0.107361 −0.0536804 0.998558i 0.517095π-0.517095\pi
−0.0536804 + 0.998558i 0.517095π0.517095\pi
294294 0 0
295295 −9.67544 −0.563326
296296 −3.83772 −0.223063
297297 0 0
298298 0.486833 0.0282015
299299 0 0
300300 0 0
301301 28.9737 1.67001
302302 −0.837722 −0.0482055
303303 0 0
304304 −5.16228 −0.296077
305305 −0.675445 −0.0386758
306306 0 0
307307 11.4868 0.655588 0.327794 0.944749i 0.393695π-0.393695\pi
0.327794 + 0.944749i 0.393695π0.393695\pi
308308 3.67544 0.209428
309309 0 0
310310 −26.3246 −1.49513
311311 −21.4868 −1.21841 −0.609203 0.793014i 0.708511π-0.708511\pi
−0.609203 + 0.793014i 0.708511π0.708511\pi
312312 0 0
313313 −4.00000 −0.226093 −0.113047 0.993590i 0.536061π-0.536061\pi
−0.113047 + 0.993590i 0.536061π0.536061\pi
314314 10.4868 0.591806
315315 0 0
316316 −4.00000 −0.225018
317317 −12.4868 −0.701330 −0.350665 0.936501i 0.614044π-0.614044\pi
−0.350665 + 0.936501i 0.614044π0.614044\pi
318318 0 0
319319 2.13594 0.119590
320320 −4.16228 −0.232678
321321 0 0
322322 22.6491 1.26219
323323 −15.4868 −0.861710
324324 0 0
325325 0 0
326326 16.0000 0.886158
327327 0 0
328328 3.00000 0.165647
329329 −15.2982 −0.843418
330330 0 0
331331 −10.9737 −0.603167 −0.301584 0.953440i 0.597515π-0.597515\pi
−0.301584 + 0.953440i 0.597515π0.597515\pi
332332 3.48683 0.191365
333333 0 0
334334 12.0000 0.656611
335335 11.8114 0.645325
336336 0 0
337337 11.0000 0.599208 0.299604 0.954064i 0.403145π-0.403145\pi
0.299604 + 0.954064i 0.403145π0.403145\pi
338338 0 0
339339 0 0
340340 −12.4868 −0.677194
341341 −7.35089 −0.398073
342342 0 0
343343 −12.6491 −0.682988
344344 −9.16228 −0.493997
345345 0 0
346346 22.6491 1.21762
347347 15.4868 0.831377 0.415688 0.909507i 0.363541π-0.363541\pi
0.415688 + 0.909507i 0.363541π0.363541\pi
348348 0 0
349349 −5.35089 −0.286427 −0.143213 0.989692i 0.545743π-0.545743\pi
−0.143213 + 0.989692i 0.545743π0.545743\pi
350350 −38.9737 −2.08323
351351 0 0
352352 −1.16228 −0.0619496
353353 −29.3246 −1.56079 −0.780394 0.625288i 0.784982π-0.784982\pi
−0.780394 + 0.625288i 0.784982π0.784982\pi
354354 0 0
355355 −29.8114 −1.58222
356356 −12.0000 −0.635999
357357 0 0
358358 15.4868 0.818505
359359 −28.4605 −1.50209 −0.751044 0.660252i 0.770449π-0.770449\pi
−0.751044 + 0.660252i 0.770449π0.770449\pi
360360 0 0
361361 7.64911 0.402585
362362 −3.83772 −0.201706
363363 0 0
364364 0 0
365365 4.16228 0.217864
366366 0 0
367367 −25.4868 −1.33040 −0.665201 0.746664i 0.731654π-0.731654\pi
−0.665201 + 0.746664i 0.731654π0.731654\pi
368368 −7.16228 −0.373360
369369 0 0
370370 15.9737 0.830431
371371 39.4868 2.05005
372372 0 0
373373 −16.4868 −0.853656 −0.426828 0.904333i 0.640369π-0.640369\pi
−0.426828 + 0.904333i 0.640369π0.640369\pi
374374 −3.48683 −0.180300
375375 0 0
376376 4.83772 0.249486
377377 0 0
378378 0 0
379379 17.6754 0.907927 0.453963 0.891020i 0.350010π-0.350010\pi
0.453963 + 0.891020i 0.350010π0.350010\pi
380380 21.4868 1.10225
381381 0 0
382382 14.3246 0.732908
383383 −30.9737 −1.58268 −0.791340 0.611376i 0.790616π-0.790616\pi
−0.791340 + 0.611376i 0.790616π0.790616\pi
384384 0 0
385385 −15.2982 −0.779670
386386 19.9737 1.01663
387387 0 0
388388 −4.00000 −0.203069
389389 −12.4868 −0.633108 −0.316554 0.948575i 0.602526π-0.602526\pi
−0.316554 + 0.948575i 0.602526π0.602526\pi
390390 0 0
391391 −21.4868 −1.08664
392392 −3.00000 −0.151523
393393 0 0
394394 18.9737 0.955879
395395 16.6491 0.837708
396396 0 0
397397 26.0000 1.30490 0.652451 0.757831i 0.273741π-0.273741\pi
0.652451 + 0.757831i 0.273741π0.273741\pi
398398 6.51317 0.326476
399399 0 0
400400 12.3246 0.616228
401401 15.0000 0.749064 0.374532 0.927214i 0.377803π-0.377803\pi
0.374532 + 0.927214i 0.377803π0.377803\pi
402402 0 0
403403 0 0
404404 −7.83772 −0.389941
405405 0 0
406406 −5.81139 −0.288414
407407 4.46050 0.221099
408408 0 0
409409 14.6754 0.725654 0.362827 0.931857i 0.381812π-0.381812\pi
0.362827 + 0.931857i 0.381812π0.381812\pi
410410 −12.4868 −0.616681
411411 0 0
412412 −15.8114 −0.778971
413413 7.35089 0.361714
414414 0 0
415415 −14.5132 −0.712423
416416 0 0
417417 0 0
418418 6.00000 0.293470
419419 30.9737 1.51316 0.756581 0.653900i 0.226868π-0.226868\pi
0.756581 + 0.653900i 0.226868π0.226868\pi
420420 0 0
421421 −23.8377 −1.16178 −0.580890 0.813982i 0.697295π-0.697295\pi
−0.580890 + 0.813982i 0.697295π0.697295\pi
422422 4.00000 0.194717
423423 0 0
424424 −12.4868 −0.606414
425425 36.9737 1.79349
426426 0 0
427427 0.513167 0.0248339
428428 17.8114 0.860946
429429 0 0
430430 38.1359 1.83908
431431 9.48683 0.456965 0.228482 0.973548i 0.426624π-0.426624\pi
0.228482 + 0.973548i 0.426624π0.426624\pi
432432 0 0
433433 −9.32456 −0.448110 −0.224055 0.974577i 0.571929π-0.571929\pi
−0.224055 + 0.974577i 0.571929π0.571929\pi
434434 20.0000 0.960031
435435 0 0
436436 6.64911 0.318435
437437 36.9737 1.76869
438438 0 0
439439 −25.4868 −1.21642 −0.608210 0.793776i 0.708112π-0.708112\pi
−0.608210 + 0.793776i 0.708112π0.708112\pi
440440 4.83772 0.230629
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 49.9473 2.36773
446446 1.67544 0.0793346
447447 0 0
448448 3.16228 0.149404
449449 −7.35089 −0.346910 −0.173455 0.984842i 0.555493π-0.555493\pi
−0.173455 + 0.984842i 0.555493π0.555493\pi
450450 0 0
451451 −3.48683 −0.164189
452452 −6.67544 −0.313987
453453 0 0
454454 −15.4868 −0.726833
455455 0 0
456456 0 0
457457 −3.32456 −0.155516 −0.0777581 0.996972i 0.524776π-0.524776\pi
−0.0777581 + 0.996972i 0.524776π0.524776\pi
458458 −22.3246 −1.04316
459459 0 0
460460 29.8114 1.38996
461461 −18.4868 −0.861018 −0.430509 0.902586i 0.641666π-0.641666\pi
−0.430509 + 0.902586i 0.641666π0.641666\pi
462462 0 0
463463 15.1623 0.704651 0.352325 0.935878i 0.385391π-0.385391\pi
0.352325 + 0.935878i 0.385391π0.385391\pi
464464 1.83772 0.0853141
465465 0 0
466466 −16.6491 −0.771255
467467 −6.18861 −0.286375 −0.143187 0.989696i 0.545735π-0.545735\pi
−0.143187 + 0.989696i 0.545735π0.545735\pi
468468 0 0
469469 −8.97367 −0.414365
470470 −20.1359 −0.928802
471471 0 0
472472 −2.32456 −0.106996
473473 10.6491 0.489647
474474 0 0
475475 −63.6228 −2.91921
476476 9.48683 0.434828
477477 0 0
478478 −21.4868 −0.982785
479479 24.0000 1.09659 0.548294 0.836286i 0.315277π-0.315277\pi
0.548294 + 0.836286i 0.315277π0.315277\pi
480480 0 0
481481 0 0
482482 −13.3246 −0.606917
483483 0 0
484484 −9.64911 −0.438596
485485 16.6491 0.755997
486486 0 0
487487 −13.4868 −0.611147 −0.305573 0.952169i 0.598848π-0.598848\pi
−0.305573 + 0.952169i 0.598848π0.598848\pi
488488 −0.162278 −0.00734596
489489 0 0
490490 12.4868 0.564098
491491 −5.81139 −0.262264 −0.131132 0.991365i 0.541861π-0.541861\pi
−0.131132 + 0.991365i 0.541861π0.541861\pi
492492 0 0
493493 5.51317 0.248301
494494 0 0
495495 0 0
496496 −6.32456 −0.283981
497497 22.6491 1.01595
498498 0 0
499499 12.6491 0.566252 0.283126 0.959083i 0.408629π-0.408629\pi
0.283126 + 0.959083i 0.408629π0.408629\pi
500500 −30.4868 −1.36341
501501 0 0
502502 −12.0000 −0.535586
503503 0.188612 0.00840978 0.00420489 0.999991i 0.498662π-0.498662\pi
0.00420489 + 0.999991i 0.498662π0.498662\pi
504504 0 0
505505 32.6228 1.45169
506506 8.32456 0.370072
507507 0 0
508508 −18.3246 −0.813021
509509 28.1623 1.24827 0.624136 0.781316i 0.285451π-0.285451\pi
0.624136 + 0.781316i 0.285451π0.285451\pi
510510 0 0
511511 −3.16228 −0.139891
512512 −1.00000 −0.0441942
513513 0 0
514514 −21.9737 −0.969217
515515 65.8114 2.90000
516516 0 0
517517 −5.62278 −0.247289
518518 −12.1359 −0.533223
519519 0 0
520520 0 0
521521 27.0000 1.18289 0.591446 0.806345i 0.298557π-0.298557\pi
0.591446 + 0.806345i 0.298557π0.298557\pi
522522 0 0
523523 −5.16228 −0.225731 −0.112865 0.993610i 0.536003π-0.536003\pi
−0.112865 + 0.993610i 0.536003π0.536003\pi
524524 −16.6491 −0.727320
525525 0 0
526526 −2.51317 −0.109579
527527 −18.9737 −0.826506
528528 0 0
529529 28.2982 1.23036
530530 51.9737 2.25759
531531 0 0
532532 −16.3246 −0.707759
533533 0 0
534534 0 0
535535 −74.1359 −3.20518
536536 2.83772 0.122571
537537 0 0
538538 6.00000 0.258678
539539 3.48683 0.150189
540540 0 0
541541 −15.5132 −0.666963 −0.333482 0.942757i 0.608223π-0.608223\pi
−0.333482 + 0.942757i 0.608223π0.608223\pi
542542 6.32456 0.271663
543543 0 0
544544 −3.00000 −0.128624
545545 −27.6754 −1.18549
546546 0 0
547547 −33.8114 −1.44567 −0.722835 0.691020i 0.757161π-0.757161\pi
−0.722835 + 0.691020i 0.757161π0.757161\pi
548548 3.00000 0.128154
549549 0 0
550550 −14.3246 −0.610801
551551 −9.48683 −0.404153
552552 0 0
553553 −12.6491 −0.537895
554554 −10.8114 −0.459332
555555 0 0
556556 −6.32456 −0.268221
557557 18.4868 0.783312 0.391656 0.920112i 0.371902π-0.371902\pi
0.391656 + 0.920112i 0.371902π0.371902\pi
558558 0 0
559559 0 0
560560 −13.1623 −0.556208
561561 0 0
562562 −0.675445 −0.0284919
563563 −40.6491 −1.71316 −0.856578 0.516018i 0.827414π-0.827414\pi
−0.856578 + 0.516018i 0.827414π0.827414\pi
564564 0 0
565565 27.7851 1.16893
566566 2.83772 0.119278
567567 0 0
568568 −7.16228 −0.300522
569569 −27.2982 −1.14440 −0.572200 0.820114i 0.693910π-0.693910\pi
−0.572200 + 0.820114i 0.693910π0.693910\pi
570570 0 0
571571 −36.1359 −1.51224 −0.756121 0.654432i 0.772908π-0.772908\pi
−0.756121 + 0.654432i 0.772908π0.772908\pi
572572 0 0
573573 0 0
574574 9.48683 0.395973
575575 −88.2719 −3.68119
576576 0 0
577577 0.350889 0.0146077 0.00730386 0.999973i 0.497675π-0.497675\pi
0.00730386 + 0.999973i 0.497675π0.497675\pi
578578 8.00000 0.332756
579579 0 0
580580 −7.64911 −0.317612
581581 11.0263 0.457449
582582 0 0
583583 14.5132 0.601074
584584 1.00000 0.0413803
585585 0 0
586586 1.83772 0.0759156
587587 −28.6491 −1.18248 −0.591238 0.806497i 0.701360π-0.701360\pi
−0.591238 + 0.806497i 0.701360π0.701360\pi
588588 0 0
589589 32.6491 1.34528
590590 9.67544 0.398332
591591 0 0
592592 3.83772 0.157729
593593 −0.675445 −0.0277372 −0.0138686 0.999904i 0.504415π-0.504415\pi
−0.0138686 + 0.999904i 0.504415π0.504415\pi
594594 0 0
595595 −39.4868 −1.61880
596596 −0.486833 −0.0199415
597597 0 0
598598 0 0
599599 23.6228 0.965200 0.482600 0.875841i 0.339692π-0.339692\pi
0.482600 + 0.875841i 0.339692π0.339692\pi
600600 0 0
601601 −34.2982 −1.39905 −0.699527 0.714606i 0.746606π-0.746606\pi
−0.699527 + 0.714606i 0.746606π0.746606\pi
602602 −28.9737 −1.18088
603603 0 0
604604 0.837722 0.0340864
605605 40.1623 1.63283
606606 0 0
607607 17.2982 0.702113 0.351057 0.936354i 0.385822π-0.385822\pi
0.351057 + 0.936354i 0.385822π0.385822\pi
608608 5.16228 0.209358
609609 0 0
610610 0.675445 0.0273480
611611 0 0
612612 0 0
613613 20.4868 0.827455 0.413728 0.910401i 0.364227π-0.364227\pi
0.413728 + 0.910401i 0.364227π0.364227\pi
614614 −11.4868 −0.463571
615615 0 0
616616 −3.67544 −0.148088
617617 26.6228 1.07179 0.535896 0.844284i 0.319974π-0.319974\pi
0.535896 + 0.844284i 0.319974π0.319974\pi
618618 0 0
619619 24.6491 0.990731 0.495366 0.868685i 0.335034π-0.335034\pi
0.495366 + 0.868685i 0.335034π0.335034\pi
620620 26.3246 1.05722
621621 0 0
622622 21.4868 0.861544
623623 −37.9473 −1.52033
624624 0 0
625625 65.2719 2.61088
626626 4.00000 0.159872
627627 0 0
628628 −10.4868 −0.418470
629629 11.5132 0.459060
630630 0 0
631631 −25.2982 −1.00711 −0.503553 0.863964i 0.667974π-0.667974\pi
−0.503553 + 0.863964i 0.667974π0.667974\pi
632632 4.00000 0.159111
633633 0 0
634634 12.4868 0.495915
635635 76.2719 3.02676
636636 0 0
637637 0 0
638638 −2.13594 −0.0845628
639639 0 0
640640 4.16228 0.164528
641641 −16.3509 −0.645821 −0.322911 0.946429i 0.604661π-0.604661\pi
−0.322911 + 0.946429i 0.604661π0.604661\pi
642642 0 0
643643 20.0000 0.788723 0.394362 0.918955i 0.370966π-0.370966\pi
0.394362 + 0.918955i 0.370966π0.370966\pi
644644 −22.6491 −0.892500
645645 0 0
646646 15.4868 0.609321
647647 40.6491 1.59808 0.799041 0.601277i 0.205341π-0.205341\pi
0.799041 + 0.601277i 0.205341π0.205341\pi
648648 0 0
649649 2.70178 0.106054
650650 0 0
651651 0 0
652652 −16.0000 −0.626608
653653 −30.0000 −1.17399 −0.586995 0.809590i 0.699689π-0.699689\pi
−0.586995 + 0.809590i 0.699689π0.699689\pi
654654 0 0
655655 69.2982 2.70771
656656 −3.00000 −0.117130
657657 0 0
658658 15.2982 0.596387
659659 5.02633 0.195798 0.0978991 0.995196i 0.468788π-0.468788\pi
0.0978991 + 0.995196i 0.468788π0.468788\pi
660660 0 0
661661 26.4868 1.03022 0.515109 0.857125i 0.327751π-0.327751\pi
0.515109 + 0.857125i 0.327751π0.327751\pi
662662 10.9737 0.426504
663663 0 0
664664 −3.48683 −0.135315
665665 67.9473 2.63488
666666 0 0
667667 −13.1623 −0.509645
668668 −12.0000 −0.464294
669669 0 0
670670 −11.8114 −0.456314
671671 0.188612 0.00728127
672672 0 0
673673 14.6754 0.565697 0.282848 0.959165i 0.408721π-0.408721\pi
0.282848 + 0.959165i 0.408721π0.408721\pi
674674 −11.0000 −0.423704
675675 0 0
676676 0 0
677677 −18.0000 −0.691796 −0.345898 0.938272i 0.612426π-0.612426\pi
−0.345898 + 0.938272i 0.612426π0.612426\pi
678678 0 0
679679 −12.6491 −0.485428
680680 12.4868 0.478848
681681 0 0
682682 7.35089 0.281480
683683 35.6228 1.36307 0.681534 0.731787i 0.261313π-0.261313\pi
0.681534 + 0.731787i 0.261313π0.261313\pi
684684 0 0
685685 −12.4868 −0.477097
686686 12.6491 0.482945
687687 0 0
688688 9.16228 0.349309
689689 0 0
690690 0 0
691691 9.16228 0.348549 0.174275 0.984697i 0.444242π-0.444242\pi
0.174275 + 0.984697i 0.444242π0.444242\pi
692692 −22.6491 −0.860990
693693 0 0
694694 −15.4868 −0.587872
695695 26.3246 0.998547
696696 0 0
697697 −9.00000 −0.340899
698698 5.35089 0.202534
699699 0 0
700700 38.9737 1.47307
701701 −18.0000 −0.679851 −0.339925 0.940452i 0.610402π-0.610402\pi
−0.339925 + 0.940452i 0.610402π0.610402\pi
702702 0 0
703703 −19.8114 −0.747201
704704 1.16228 0.0438050
705705 0 0
706706 29.3246 1.10364
707707 −24.7851 −0.932138
708708 0 0
709709 45.4605 1.70730 0.853652 0.520843i 0.174382π-0.174382\pi
0.853652 + 0.520843i 0.174382π0.174382\pi
710710 29.8114 1.11880
711711 0 0
712712 12.0000 0.449719
713713 45.2982 1.69643
714714 0 0
715715 0 0
716716 −15.4868 −0.578770
717717 0 0
718718 28.4605 1.06214
719719 38.3246 1.42926 0.714632 0.699500i 0.246594π-0.246594\pi
0.714632 + 0.699500i 0.246594π0.246594\pi
720720 0 0
721721 −50.0000 −1.86210
722722 −7.64911 −0.284670
723723 0 0
724724 3.83772 0.142628
725725 22.6491 0.841167
726726 0 0
727727 −8.83772 −0.327773 −0.163886 0.986479i 0.552403π-0.552403\pi
−0.163886 + 0.986479i 0.552403π0.552403\pi
728728 0 0
729729 0 0
730730 −4.16228 −0.154053
731731 27.4868 1.01664
732732 0 0
733733 21.4605 0.792662 0.396331 0.918108i 0.370283π-0.370283\pi
0.396331 + 0.918108i 0.370283π0.370283\pi
734734 25.4868 0.940736
735735 0 0
736736 7.16228 0.264005
737737 −3.29822 −0.121492
738738 0 0
739739 −39.6228 −1.45755 −0.728774 0.684755i 0.759909π-0.759909\pi
−0.728774 + 0.684755i 0.759909π0.759909\pi
740740 −15.9737 −0.587204
741741 0 0
742742 −39.4868 −1.44961
743743 −2.32456 −0.0852797 −0.0426398 0.999091i 0.513577π-0.513577\pi
−0.0426398 + 0.999091i 0.513577π0.513577\pi
744744 0 0
745745 2.02633 0.0742391
746746 16.4868 0.603626
747747 0 0
748748 3.48683 0.127491
749749 56.3246 2.05805
750750 0 0
751751 38.7851 1.41529 0.707643 0.706570i 0.249758π-0.249758\pi
0.707643 + 0.706570i 0.249758π0.249758\pi
752752 −4.83772 −0.176414
753753 0 0
754754 0 0
755755 −3.48683 −0.126899
756756 0 0
757757 −26.6491 −0.968578 −0.484289 0.874908i 0.660922π-0.660922\pi
−0.484289 + 0.874908i 0.660922π0.660922\pi
758758 −17.6754 −0.642001
759759 0 0
760760 −21.4868 −0.779409
761761 12.0000 0.435000 0.217500 0.976060i 0.430210π-0.430210\pi
0.217500 + 0.976060i 0.430210π0.430210\pi
762762 0 0
763763 21.0263 0.761204
764764 −14.3246 −0.518244
765765 0 0
766766 30.9737 1.11912
767767 0 0
768768 0 0
769769 3.35089 0.120836 0.0604181 0.998173i 0.480757π-0.480757\pi
0.0604181 + 0.998173i 0.480757π0.480757\pi
770770 15.2982 0.551310
771771 0 0
772772 −19.9737 −0.718868
773773 −22.6491 −0.814632 −0.407316 0.913287i 0.633535π-0.633535\pi
−0.407316 + 0.913287i 0.633535π0.633535\pi
774774 0 0
775775 −77.9473 −2.79995
776776 4.00000 0.143592
777777 0 0
778778 12.4868 0.447675
779779 15.4868 0.554873
780780 0 0
781781 8.32456 0.297876
782782 21.4868 0.768368
783783 0 0
784784 3.00000 0.107143
785785 43.6491 1.55790
786786 0 0
787787 −9.02633 −0.321754 −0.160877 0.986974i 0.551432π-0.551432\pi
−0.160877 + 0.986974i 0.551432π0.551432\pi
788788 −18.9737 −0.675909
789789 0 0
790790 −16.6491 −0.592349
791791 −21.1096 −0.750571
792792 0 0
793793 0 0
794794 −26.0000 −0.922705
795795 0 0
796796 −6.51317 −0.230853
797797 18.9737 0.672082 0.336041 0.941847i 0.390912π-0.390912\pi
0.336041 + 0.941847i 0.390912π0.390912\pi
798798 0 0
799799 −14.5132 −0.513439
800800 −12.3246 −0.435739
801801 0 0
802802 −15.0000 −0.529668
803803 −1.16228 −0.0410159
804804 0 0
805805 94.2719 3.32265
806806 0 0
807807 0 0
808808 7.83772 0.275730
809809 −3.00000 −0.105474 −0.0527372 0.998608i 0.516795π-0.516795\pi
−0.0527372 + 0.998608i 0.516795π0.516795\pi
810810 0 0
811811 1.02633 0.0360395 0.0180197 0.999838i 0.494264π-0.494264\pi
0.0180197 + 0.999838i 0.494264π0.494264\pi
812812 5.81139 0.203940
813813 0 0
814814 −4.46050 −0.156340
815815 66.5964 2.33277
816816 0 0
817817 −47.2982 −1.65476
818818 −14.6754 −0.513115
819819 0 0
820820 12.4868 0.436059
821821 −10.6491 −0.371657 −0.185828 0.982582i 0.559497π-0.559497\pi
−0.185828 + 0.982582i 0.559497π0.559497\pi
822822 0 0
823823 53.2982 1.85786 0.928930 0.370256i 0.120730π-0.120730\pi
0.928930 + 0.370256i 0.120730π0.120730\pi
824824 15.8114 0.550816
825825 0 0
826826 −7.35089 −0.255770
827827 6.97367 0.242498 0.121249 0.992622i 0.461310π-0.461310\pi
0.121249 + 0.992622i 0.461310π0.461310\pi
828828 0 0
829829 12.1623 0.422413 0.211207 0.977441i 0.432261π-0.432261\pi
0.211207 + 0.977441i 0.432261π0.432261\pi
830830 14.5132 0.503759
831831 0 0
832832 0 0
833833 9.00000 0.311832
834834 0 0
835835 49.9473 1.72850
836836 −6.00000 −0.207514
837837 0 0
838838 −30.9737 −1.06997
839839 −4.64911 −0.160505 −0.0802526 0.996775i 0.525573π-0.525573\pi
−0.0802526 + 0.996775i 0.525573π0.525573\pi
840840 0 0
841841 −25.6228 −0.883544
842842 23.8377 0.821502
843843 0 0
844844 −4.00000 −0.137686
845845 0 0
846846 0 0
847847 −30.5132 −1.04844
848848 12.4868 0.428800
849849 0 0
850850 −36.9737 −1.26819
851851 −27.4868 −0.942236
852852 0 0
853853 55.1359 1.88782 0.943909 0.330205i 0.107118π-0.107118\pi
0.943909 + 0.330205i 0.107118π0.107118\pi
854854 −0.513167 −0.0175602
855855 0 0
856856 −17.8114 −0.608781
857857 25.6491 0.876157 0.438078 0.898937i 0.355659π-0.355659\pi
0.438078 + 0.898937i 0.355659π0.355659\pi
858858 0 0
859859 28.5132 0.972857 0.486428 0.873720i 0.338299π-0.338299\pi
0.486428 + 0.873720i 0.338299π0.338299\pi
860860 −38.1359 −1.30042
861861 0 0
862862 −9.48683 −0.323123
863863 −47.8114 −1.62752 −0.813759 0.581202i 0.802583π-0.802583\pi
−0.813759 + 0.581202i 0.802583π0.802583\pi
864864 0 0
865865 94.2719 3.20534
866866 9.32456 0.316861
867867 0 0
868868 −20.0000 −0.678844
869869 −4.64911 −0.157710
870870 0 0
871871 0 0
872872 −6.64911 −0.225167
873873 0 0
874874 −36.9737 −1.25065
875875 −96.4078 −3.25918
876876 0 0
877877 −45.1359 −1.52413 −0.762066 0.647499i 0.775815π-0.775815\pi
−0.762066 + 0.647499i 0.775815π0.775815\pi
878878 25.4868 0.860139
879879 0 0
880880 −4.83772 −0.163080
881881 −9.97367 −0.336021 −0.168011 0.985785i 0.553734π-0.553734\pi
−0.168011 + 0.985785i 0.553734π0.553734\pi
882882 0 0
883883 −11.3509 −0.381988 −0.190994 0.981591i 0.561171π-0.561171\pi
−0.190994 + 0.981591i 0.561171π0.561171\pi
884884 0 0
885885 0 0
886886 0 0
887887 −38.3246 −1.28681 −0.643406 0.765525i 0.722479π-0.722479\pi
−0.643406 + 0.765525i 0.722479π0.722479\pi
888888 0 0
889889 −57.9473 −1.94349
890890 −49.9473 −1.67424
891891 0 0
892892 −1.67544 −0.0560980
893893 24.9737 0.835712
894894 0 0
895895 64.4605 2.15468
896896 −3.16228 −0.105644
897897 0 0
898898 7.35089 0.245302
899899 −11.6228 −0.387641
900900 0 0
901901 37.4605 1.24799
902902 3.48683 0.116099
903903 0 0
904904 6.67544 0.222022
905905 −15.9737 −0.530983
906906 0 0
907907 36.2719 1.20439 0.602194 0.798350i 0.294293π-0.294293\pi
0.602194 + 0.798350i 0.294293π0.294293\pi
908908 15.4868 0.513949
909909 0 0
910910 0 0
911911 49.9473 1.65483 0.827414 0.561592i 0.189811π-0.189811\pi
0.827414 + 0.561592i 0.189811π0.189811\pi
912912 0 0
913913 4.05267 0.134124
914914 3.32456 0.109967
915915 0 0
916916 22.3246 0.737624
917917 −52.6491 −1.73863
918918 0 0
919919 3.35089 0.110536 0.0552678 0.998472i 0.482399π-0.482399\pi
0.0552678 + 0.998472i 0.482399π0.482399\pi
920920 −29.8114 −0.982852
921921 0 0
922922 18.4868 0.608831
923923 0 0
924924 0 0
925925 47.2982 1.55516
926926 −15.1623 −0.498263
927927 0 0
928928 −1.83772 −0.0603262
929929 −28.9473 −0.949731 −0.474866 0.880058i 0.657503π-0.657503\pi
−0.474866 + 0.880058i 0.657503π0.657503\pi
930930 0 0
931931 −15.4868 −0.507560
932932 16.6491 0.545360
933933 0 0
934934 6.18861 0.202498
935935 −14.5132 −0.474631
936936 0 0
937937 14.2982 0.467103 0.233551 0.972344i 0.424965π-0.424965\pi
0.233551 + 0.972344i 0.424965π0.424965\pi
938938 8.97367 0.293001
939939 0 0
940940 20.1359 0.656762
941941 48.5964 1.58420 0.792099 0.610392i 0.208988π-0.208988\pi
0.792099 + 0.610392i 0.208988π0.208988\pi
942942 0 0
943943 21.4868 0.699708
944944 2.32456 0.0756578
945945 0 0
946946 −10.6491 −0.346232
947947 −18.9737 −0.616561 −0.308281 0.951295i 0.599754π-0.599754\pi
−0.308281 + 0.951295i 0.599754π0.599754\pi
948948 0 0
949949 0 0
950950 63.6228 2.06420
951951 0 0
952952 −9.48683 −0.307470
953953 27.2982 0.884276 0.442138 0.896947i 0.354220π-0.354220\pi
0.442138 + 0.896947i 0.354220π0.354220\pi
954954 0 0
955955 59.6228 1.92935
956956 21.4868 0.694934
957957 0 0
958958 −24.0000 −0.775405
959959 9.48683 0.306346
960960 0 0
961961 9.00000 0.290323
962962 0 0
963963 0 0
964964 13.3246 0.429155
965965 83.1359 2.67624
966966 0 0
967967 34.5132 1.10987 0.554934 0.831894i 0.312743π-0.312743\pi
0.554934 + 0.831894i 0.312743π0.312743\pi
968968 9.64911 0.310134
969969 0 0
970970 −16.6491 −0.534571
971971 18.9737 0.608894 0.304447 0.952529i 0.401528π-0.401528\pi
0.304447 + 0.952529i 0.401528π0.401528\pi
972972 0 0
973973 −20.0000 −0.641171
974974 13.4868 0.432146
975975 0 0
976976 0.162278 0.00519438
977977 −21.0000 −0.671850 −0.335925 0.941889i 0.609049π-0.609049\pi
−0.335925 + 0.941889i 0.609049π0.609049\pi
978978 0 0
979979 −13.9473 −0.445759
980980 −12.4868 −0.398877
981981 0 0
982982 5.81139 0.185449
983983 −23.6228 −0.753450 −0.376725 0.926325i 0.622950π-0.622950\pi
−0.376725 + 0.926325i 0.622950π0.622950\pi
984984 0 0
985985 78.9737 2.51631
986986 −5.51317 −0.175575
987987 0 0
988988 0 0
989989 −65.6228 −2.08668
990990 0 0
991991 26.7851 0.850855 0.425428 0.904992i 0.360124π-0.360124\pi
0.425428 + 0.904992i 0.360124π0.360124\pi
992992 6.32456 0.200805
993993 0 0
994994 −22.6491 −0.718386
995995 27.1096 0.859432
996996 0 0
997997 −59.4605 −1.88313 −0.941566 0.336827i 0.890646π-0.890646\pi
−0.941566 + 0.336827i 0.890646π0.890646\pi
998998 −12.6491 −0.400401
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.r.1.1 2
3.2 odd 2 3042.2.a.w.1.2 2
13.3 even 3 234.2.h.e.217.1 yes 4
13.5 odd 4 3042.2.b.j.1351.4 4
13.8 odd 4 3042.2.b.j.1351.1 4
13.9 even 3 234.2.h.e.55.1 yes 4
13.12 even 2 3042.2.a.x.1.2 2
39.5 even 4 3042.2.b.k.1351.1 4
39.8 even 4 3042.2.b.k.1351.4 4
39.29 odd 6 234.2.h.d.217.2 yes 4
39.35 odd 6 234.2.h.d.55.2 4
39.38 odd 2 3042.2.a.q.1.1 2
52.3 odd 6 1872.2.t.n.1153.1 4
52.35 odd 6 1872.2.t.n.289.1 4
156.35 even 6 1872.2.t.p.289.2 4
156.107 even 6 1872.2.t.p.1153.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.h.d.55.2 4 39.35 odd 6
234.2.h.d.217.2 yes 4 39.29 odd 6
234.2.h.e.55.1 yes 4 13.9 even 3
234.2.h.e.217.1 yes 4 13.3 even 3
1872.2.t.n.289.1 4 52.35 odd 6
1872.2.t.n.1153.1 4 52.3 odd 6
1872.2.t.p.289.2 4 156.35 even 6
1872.2.t.p.1153.2 4 156.107 even 6
3042.2.a.q.1.1 2 39.38 odd 2
3042.2.a.r.1.1 2 1.1 even 1 trivial
3042.2.a.w.1.2 2 3.2 odd 2
3042.2.a.x.1.2 2 13.12 even 2
3042.2.b.j.1351.1 4 13.8 odd 4
3042.2.b.j.1351.4 4 13.5 odd 4
3042.2.b.k.1351.1 4 39.5 even 4
3042.2.b.k.1351.4 4 39.8 even 4