Properties

Label 304.4.a.h.1.2
Level $304$
Weight $4$
Character 304.1
Self dual yes
Analytic conductor $17.937$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [304,4,Mod(1,304)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(304, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("304.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 304 = 2^{4} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 304.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-1,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.9365806417\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.35529.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 52x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 76)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.76918\) of defining polynomial
Character \(\chi\) \(=\) 304.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.26314 q^{3} +11.0323 q^{5} -5.70454 q^{7} -25.4045 q^{9} -59.0565 q^{11} +88.0721 q^{13} -13.9354 q^{15} -113.193 q^{17} -19.0000 q^{19} +7.20564 q^{21} -40.1701 q^{23} -3.28800 q^{25} +66.1942 q^{27} -66.5906 q^{29} +248.695 q^{31} +74.5966 q^{33} -62.9343 q^{35} -330.857 q^{37} -111.247 q^{39} -172.072 q^{41} -56.9507 q^{43} -280.270 q^{45} -483.093 q^{47} -310.458 q^{49} +142.979 q^{51} -104.380 q^{53} -651.530 q^{55} +23.9997 q^{57} -579.966 q^{59} +314.576 q^{61} +144.921 q^{63} +971.639 q^{65} +12.2803 q^{67} +50.7405 q^{69} +711.303 q^{71} -704.738 q^{73} +4.15320 q^{75} +336.890 q^{77} +50.4809 q^{79} +602.308 q^{81} -849.747 q^{83} -1248.78 q^{85} +84.1133 q^{87} +704.355 q^{89} -502.411 q^{91} -314.136 q^{93} -209.614 q^{95} -232.096 q^{97} +1500.30 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 9 q^{5} - 44 q^{7} + 60 q^{9} - 79 q^{11} - 11 q^{13} - 90 q^{15} + 82 q^{17} - 57 q^{19} - 213 q^{21} - 103 q^{23} - 210 q^{25} + 107 q^{27} - 93 q^{29} + 116 q^{31} - 664 q^{33} + 93 q^{35}+ \cdots + 455 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.26314 −0.243092 −0.121546 0.992586i \(-0.538785\pi\)
−0.121546 + 0.992586i \(0.538785\pi\)
\(4\) 0 0
\(5\) 11.0323 0.986760 0.493380 0.869814i \(-0.335761\pi\)
0.493380 + 0.869814i \(0.335761\pi\)
\(6\) 0 0
\(7\) −5.70454 −0.308016 −0.154008 0.988070i \(-0.549218\pi\)
−0.154008 + 0.988070i \(0.549218\pi\)
\(8\) 0 0
\(9\) −25.4045 −0.940907
\(10\) 0 0
\(11\) −59.0565 −1.61874 −0.809372 0.587296i \(-0.800193\pi\)
−0.809372 + 0.587296i \(0.800193\pi\)
\(12\) 0 0
\(13\) 88.0721 1.87898 0.939492 0.342570i \(-0.111297\pi\)
0.939492 + 0.342570i \(0.111297\pi\)
\(14\) 0 0
\(15\) −13.9354 −0.239873
\(16\) 0 0
\(17\) −113.193 −1.61490 −0.807452 0.589933i \(-0.799154\pi\)
−0.807452 + 0.589933i \(0.799154\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 0 0
\(21\) 7.20564 0.0748762
\(22\) 0 0
\(23\) −40.1701 −0.364176 −0.182088 0.983282i \(-0.558286\pi\)
−0.182088 + 0.983282i \(0.558286\pi\)
\(24\) 0 0
\(25\) −3.28800 −0.0263040
\(26\) 0 0
\(27\) 66.1942 0.471818
\(28\) 0 0
\(29\) −66.5906 −0.426399 −0.213199 0.977009i \(-0.568388\pi\)
−0.213199 + 0.977009i \(0.568388\pi\)
\(30\) 0 0
\(31\) 248.695 1.44087 0.720433 0.693524i \(-0.243943\pi\)
0.720433 + 0.693524i \(0.243943\pi\)
\(32\) 0 0
\(33\) 74.5966 0.393503
\(34\) 0 0
\(35\) −62.9343 −0.303938
\(36\) 0 0
\(37\) −330.857 −1.47007 −0.735034 0.678031i \(-0.762834\pi\)
−0.735034 + 0.678031i \(0.762834\pi\)
\(38\) 0 0
\(39\) −111.247 −0.456765
\(40\) 0 0
\(41\) −172.072 −0.655441 −0.327721 0.944775i \(-0.606280\pi\)
−0.327721 + 0.944775i \(0.606280\pi\)
\(42\) 0 0
\(43\) −56.9507 −0.201974 −0.100987 0.994888i \(-0.532200\pi\)
−0.100987 + 0.994888i \(0.532200\pi\)
\(44\) 0 0
\(45\) −280.270 −0.928449
\(46\) 0 0
\(47\) −483.093 −1.49929 −0.749643 0.661843i \(-0.769775\pi\)
−0.749643 + 0.661843i \(0.769775\pi\)
\(48\) 0 0
\(49\) −310.458 −0.905126
\(50\) 0 0
\(51\) 142.979 0.392570
\(52\) 0 0
\(53\) −104.380 −0.270521 −0.135261 0.990810i \(-0.543187\pi\)
−0.135261 + 0.990810i \(0.543187\pi\)
\(54\) 0 0
\(55\) −651.530 −1.59731
\(56\) 0 0
\(57\) 23.9997 0.0557690
\(58\) 0 0
\(59\) −579.966 −1.27975 −0.639874 0.768479i \(-0.721014\pi\)
−0.639874 + 0.768479i \(0.721014\pi\)
\(60\) 0 0
\(61\) 314.576 0.660283 0.330142 0.943931i \(-0.392903\pi\)
0.330142 + 0.943931i \(0.392903\pi\)
\(62\) 0 0
\(63\) 144.921 0.289815
\(64\) 0 0
\(65\) 971.639 1.85411
\(66\) 0 0
\(67\) 12.2803 0.0223921 0.0111961 0.999937i \(-0.496436\pi\)
0.0111961 + 0.999937i \(0.496436\pi\)
\(68\) 0 0
\(69\) 50.7405 0.0885280
\(70\) 0 0
\(71\) 711.303 1.18896 0.594480 0.804111i \(-0.297358\pi\)
0.594480 + 0.804111i \(0.297358\pi\)
\(72\) 0 0
\(73\) −704.738 −1.12991 −0.564954 0.825122i \(-0.691106\pi\)
−0.564954 + 0.825122i \(0.691106\pi\)
\(74\) 0 0
\(75\) 4.15320 0.00639428
\(76\) 0 0
\(77\) 336.890 0.498600
\(78\) 0 0
\(79\) 50.4809 0.0718929 0.0359465 0.999354i \(-0.488555\pi\)
0.0359465 + 0.999354i \(0.488555\pi\)
\(80\) 0 0
\(81\) 602.308 0.826212
\(82\) 0 0
\(83\) −849.747 −1.12376 −0.561878 0.827220i \(-0.689921\pi\)
−0.561878 + 0.827220i \(0.689921\pi\)
\(84\) 0 0
\(85\) −1248.78 −1.59352
\(86\) 0 0
\(87\) 84.1133 0.103654
\(88\) 0 0
\(89\) 704.355 0.838893 0.419447 0.907780i \(-0.362224\pi\)
0.419447 + 0.907780i \(0.362224\pi\)
\(90\) 0 0
\(91\) −502.411 −0.578758
\(92\) 0 0
\(93\) −314.136 −0.350263
\(94\) 0 0
\(95\) −209.614 −0.226378
\(96\) 0 0
\(97\) −232.096 −0.242946 −0.121473 0.992595i \(-0.538762\pi\)
−0.121473 + 0.992595i \(0.538762\pi\)
\(98\) 0 0
\(99\) 1500.30 1.52309
\(100\) 0 0
\(101\) 943.254 0.929280 0.464640 0.885500i \(-0.346184\pi\)
0.464640 + 0.885500i \(0.346184\pi\)
\(102\) 0 0
\(103\) 1796.48 1.71857 0.859286 0.511496i \(-0.170908\pi\)
0.859286 + 0.511496i \(0.170908\pi\)
\(104\) 0 0
\(105\) 79.4949 0.0738848
\(106\) 0 0
\(107\) 1207.11 1.09061 0.545306 0.838237i \(-0.316413\pi\)
0.545306 + 0.838237i \(0.316413\pi\)
\(108\) 0 0
\(109\) −640.900 −0.563185 −0.281592 0.959534i \(-0.590863\pi\)
−0.281592 + 0.959534i \(0.590863\pi\)
\(110\) 0 0
\(111\) 417.918 0.357361
\(112\) 0 0
\(113\) 1217.17 1.01329 0.506644 0.862155i \(-0.330886\pi\)
0.506644 + 0.862155i \(0.330886\pi\)
\(114\) 0 0
\(115\) −443.169 −0.359354
\(116\) 0 0
\(117\) −2237.43 −1.76795
\(118\) 0 0
\(119\) 645.715 0.497417
\(120\) 0 0
\(121\) 2156.66 1.62033
\(122\) 0 0
\(123\) 217.351 0.159332
\(124\) 0 0
\(125\) −1415.31 −1.01272
\(126\) 0 0
\(127\) −413.264 −0.288750 −0.144375 0.989523i \(-0.546117\pi\)
−0.144375 + 0.989523i \(0.546117\pi\)
\(128\) 0 0
\(129\) 71.9367 0.0490983
\(130\) 0 0
\(131\) 834.232 0.556391 0.278195 0.960525i \(-0.410264\pi\)
0.278195 + 0.960525i \(0.410264\pi\)
\(132\) 0 0
\(133\) 108.386 0.0706638
\(134\) 0 0
\(135\) 730.276 0.465571
\(136\) 0 0
\(137\) 157.186 0.0980243 0.0490122 0.998798i \(-0.484393\pi\)
0.0490122 + 0.998798i \(0.484393\pi\)
\(138\) 0 0
\(139\) −2450.06 −1.49505 −0.747524 0.664235i \(-0.768758\pi\)
−0.747524 + 0.664235i \(0.768758\pi\)
\(140\) 0 0
\(141\) 610.215 0.364464
\(142\) 0 0
\(143\) −5201.23 −3.04160
\(144\) 0 0
\(145\) −734.648 −0.420753
\(146\) 0 0
\(147\) 392.152 0.220028
\(148\) 0 0
\(149\) 668.114 0.367343 0.183671 0.982988i \(-0.441202\pi\)
0.183671 + 0.982988i \(0.441202\pi\)
\(150\) 0 0
\(151\) 2437.23 1.31350 0.656750 0.754108i \(-0.271931\pi\)
0.656750 + 0.754108i \(0.271931\pi\)
\(152\) 0 0
\(153\) 2875.61 1.51947
\(154\) 0 0
\(155\) 2743.68 1.42179
\(156\) 0 0
\(157\) −464.281 −0.236011 −0.118005 0.993013i \(-0.537650\pi\)
−0.118005 + 0.993013i \(0.537650\pi\)
\(158\) 0 0
\(159\) 131.846 0.0657615
\(160\) 0 0
\(161\) 229.152 0.112172
\(162\) 0 0
\(163\) 1471.23 0.706968 0.353484 0.935441i \(-0.384997\pi\)
0.353484 + 0.935441i \(0.384997\pi\)
\(164\) 0 0
\(165\) 822.973 0.388293
\(166\) 0 0
\(167\) −380.337 −0.176236 −0.0881178 0.996110i \(-0.528085\pi\)
−0.0881178 + 0.996110i \(0.528085\pi\)
\(168\) 0 0
\(169\) 5559.69 2.53058
\(170\) 0 0
\(171\) 482.685 0.215859
\(172\) 0 0
\(173\) 1315.05 0.577927 0.288963 0.957340i \(-0.406689\pi\)
0.288963 + 0.957340i \(0.406689\pi\)
\(174\) 0 0
\(175\) 18.7565 0.00810206
\(176\) 0 0
\(177\) 732.579 0.311096
\(178\) 0 0
\(179\) −3965.24 −1.65573 −0.827866 0.560926i \(-0.810445\pi\)
−0.827866 + 0.560926i \(0.810445\pi\)
\(180\) 0 0
\(181\) 102.709 0.0421783 0.0210892 0.999778i \(-0.493287\pi\)
0.0210892 + 0.999778i \(0.493287\pi\)
\(182\) 0 0
\(183\) −397.353 −0.160509
\(184\) 0 0
\(185\) −3650.11 −1.45060
\(186\) 0 0
\(187\) 6684.79 2.61412
\(188\) 0 0
\(189\) −377.608 −0.145328
\(190\) 0 0
\(191\) −3291.55 −1.24695 −0.623477 0.781842i \(-0.714281\pi\)
−0.623477 + 0.781842i \(0.714281\pi\)
\(192\) 0 0
\(193\) −1106.18 −0.412564 −0.206282 0.978493i \(-0.566136\pi\)
−0.206282 + 0.978493i \(0.566136\pi\)
\(194\) 0 0
\(195\) −1227.32 −0.450718
\(196\) 0 0
\(197\) −1454.31 −0.525967 −0.262984 0.964800i \(-0.584707\pi\)
−0.262984 + 0.964800i \(0.584707\pi\)
\(198\) 0 0
\(199\) 1796.58 0.639979 0.319990 0.947421i \(-0.396321\pi\)
0.319990 + 0.947421i \(0.396321\pi\)
\(200\) 0 0
\(201\) −15.5117 −0.00544333
\(202\) 0 0
\(203\) 379.869 0.131338
\(204\) 0 0
\(205\) −1898.35 −0.646764
\(206\) 0 0
\(207\) 1020.50 0.342655
\(208\) 0 0
\(209\) 1122.07 0.371365
\(210\) 0 0
\(211\) −2697.12 −0.879987 −0.439994 0.898001i \(-0.645019\pi\)
−0.439994 + 0.898001i \(0.645019\pi\)
\(212\) 0 0
\(213\) −898.475 −0.289026
\(214\) 0 0
\(215\) −628.298 −0.199300
\(216\) 0 0
\(217\) −1418.69 −0.443811
\(218\) 0 0
\(219\) 890.183 0.274671
\(220\) 0 0
\(221\) −9969.16 −3.03438
\(222\) 0 0
\(223\) 5405.35 1.62318 0.811590 0.584228i \(-0.198603\pi\)
0.811590 + 0.584228i \(0.198603\pi\)
\(224\) 0 0
\(225\) 83.5299 0.0247496
\(226\) 0 0
\(227\) −696.832 −0.203746 −0.101873 0.994797i \(-0.532484\pi\)
−0.101873 + 0.994797i \(0.532484\pi\)
\(228\) 0 0
\(229\) 5249.49 1.51483 0.757414 0.652934i \(-0.226462\pi\)
0.757414 + 0.652934i \(0.226462\pi\)
\(230\) 0 0
\(231\) −425.540 −0.121205
\(232\) 0 0
\(233\) 1209.87 0.340177 0.170089 0.985429i \(-0.445595\pi\)
0.170089 + 0.985429i \(0.445595\pi\)
\(234\) 0 0
\(235\) −5329.64 −1.47944
\(236\) 0 0
\(237\) −63.7644 −0.0174766
\(238\) 0 0
\(239\) 1186.77 0.321197 0.160598 0.987020i \(-0.448658\pi\)
0.160598 + 0.987020i \(0.448658\pi\)
\(240\) 0 0
\(241\) −2595.99 −0.693869 −0.346934 0.937889i \(-0.612777\pi\)
−0.346934 + 0.937889i \(0.612777\pi\)
\(242\) 0 0
\(243\) −2548.04 −0.672663
\(244\) 0 0
\(245\) −3425.07 −0.893142
\(246\) 0 0
\(247\) −1673.37 −0.431069
\(248\) 0 0
\(249\) 1073.35 0.273176
\(250\) 0 0
\(251\) −1493.59 −0.375596 −0.187798 0.982208i \(-0.560135\pi\)
−0.187798 + 0.982208i \(0.560135\pi\)
\(252\) 0 0
\(253\) 2372.30 0.589508
\(254\) 0 0
\(255\) 1577.39 0.387372
\(256\) 0 0
\(257\) −3323.84 −0.806752 −0.403376 0.915034i \(-0.632163\pi\)
−0.403376 + 0.915034i \(0.632163\pi\)
\(258\) 0 0
\(259\) 1887.39 0.452805
\(260\) 0 0
\(261\) 1691.70 0.401201
\(262\) 0 0
\(263\) 4258.10 0.998349 0.499175 0.866501i \(-0.333637\pi\)
0.499175 + 0.866501i \(0.333637\pi\)
\(264\) 0 0
\(265\) −1151.55 −0.266940
\(266\) 0 0
\(267\) −889.700 −0.203928
\(268\) 0 0
\(269\) −5924.75 −1.34289 −0.671447 0.741053i \(-0.734327\pi\)
−0.671447 + 0.741053i \(0.734327\pi\)
\(270\) 0 0
\(271\) −8022.37 −1.79824 −0.899122 0.437698i \(-0.855794\pi\)
−0.899122 + 0.437698i \(0.855794\pi\)
\(272\) 0 0
\(273\) 634.616 0.140691
\(274\) 0 0
\(275\) 194.177 0.0425794
\(276\) 0 0
\(277\) 932.970 0.202371 0.101185 0.994868i \(-0.467736\pi\)
0.101185 + 0.994868i \(0.467736\pi\)
\(278\) 0 0
\(279\) −6317.96 −1.35572
\(280\) 0 0
\(281\) 956.475 0.203055 0.101528 0.994833i \(-0.467627\pi\)
0.101528 + 0.994833i \(0.467627\pi\)
\(282\) 0 0
\(283\) −4386.74 −0.921431 −0.460715 0.887548i \(-0.652407\pi\)
−0.460715 + 0.887548i \(0.652407\pi\)
\(284\) 0 0
\(285\) 264.772 0.0550307
\(286\) 0 0
\(287\) 981.591 0.201887
\(288\) 0 0
\(289\) 7899.70 1.60792
\(290\) 0 0
\(291\) 293.170 0.0590581
\(292\) 0 0
\(293\) −1357.48 −0.270665 −0.135332 0.990800i \(-0.543210\pi\)
−0.135332 + 0.990800i \(0.543210\pi\)
\(294\) 0 0
\(295\) −6398.37 −1.26281
\(296\) 0 0
\(297\) −3909.20 −0.763753
\(298\) 0 0
\(299\) −3537.86 −0.684281
\(300\) 0 0
\(301\) 324.878 0.0622114
\(302\) 0 0
\(303\) −1191.46 −0.225900
\(304\) 0 0
\(305\) 3470.50 0.651541
\(306\) 0 0
\(307\) 9332.32 1.73493 0.867465 0.497498i \(-0.165748\pi\)
0.867465 + 0.497498i \(0.165748\pi\)
\(308\) 0 0
\(309\) −2269.21 −0.417770
\(310\) 0 0
\(311\) −2944.72 −0.536913 −0.268456 0.963292i \(-0.586514\pi\)
−0.268456 + 0.963292i \(0.586514\pi\)
\(312\) 0 0
\(313\) 2890.66 0.522011 0.261006 0.965337i \(-0.415946\pi\)
0.261006 + 0.965337i \(0.415946\pi\)
\(314\) 0 0
\(315\) 1598.81 0.285978
\(316\) 0 0
\(317\) 6749.05 1.19579 0.597894 0.801575i \(-0.296005\pi\)
0.597894 + 0.801575i \(0.296005\pi\)
\(318\) 0 0
\(319\) 3932.60 0.690231
\(320\) 0 0
\(321\) −1524.75 −0.265119
\(322\) 0 0
\(323\) 2150.67 0.370485
\(324\) 0 0
\(325\) −289.581 −0.0494248
\(326\) 0 0
\(327\) 809.547 0.136905
\(328\) 0 0
\(329\) 2755.83 0.461804
\(330\) 0 0
\(331\) −9193.52 −1.52665 −0.763325 0.646014i \(-0.776435\pi\)
−0.763325 + 0.646014i \(0.776435\pi\)
\(332\) 0 0
\(333\) 8405.24 1.38320
\(334\) 0 0
\(335\) 135.480 0.0220957
\(336\) 0 0
\(337\) −5068.33 −0.819257 −0.409628 0.912252i \(-0.634342\pi\)
−0.409628 + 0.912252i \(0.634342\pi\)
\(338\) 0 0
\(339\) −1537.45 −0.246322
\(340\) 0 0
\(341\) −14687.0 −2.33240
\(342\) 0 0
\(343\) 3727.68 0.586810
\(344\) 0 0
\(345\) 559.785 0.0873560
\(346\) 0 0
\(347\) 8586.97 1.32845 0.664226 0.747532i \(-0.268761\pi\)
0.664226 + 0.747532i \(0.268761\pi\)
\(348\) 0 0
\(349\) −4670.75 −0.716388 −0.358194 0.933647i \(-0.616607\pi\)
−0.358194 + 0.933647i \(0.616607\pi\)
\(350\) 0 0
\(351\) 5829.86 0.886539
\(352\) 0 0
\(353\) −6183.32 −0.932308 −0.466154 0.884703i \(-0.654361\pi\)
−0.466154 + 0.884703i \(0.654361\pi\)
\(354\) 0 0
\(355\) 7847.32 1.17322
\(356\) 0 0
\(357\) −815.629 −0.120918
\(358\) 0 0
\(359\) −5485.69 −0.806473 −0.403237 0.915096i \(-0.632115\pi\)
−0.403237 + 0.915096i \(0.632115\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) −2724.17 −0.393890
\(364\) 0 0
\(365\) −7774.89 −1.11495
\(366\) 0 0
\(367\) 783.301 0.111411 0.0557057 0.998447i \(-0.482259\pi\)
0.0557057 + 0.998447i \(0.482259\pi\)
\(368\) 0 0
\(369\) 4371.39 0.616709
\(370\) 0 0
\(371\) 595.438 0.0833250
\(372\) 0 0
\(373\) 7453.82 1.03470 0.517351 0.855773i \(-0.326918\pi\)
0.517351 + 0.855773i \(0.326918\pi\)
\(374\) 0 0
\(375\) 1787.74 0.246183
\(376\) 0 0
\(377\) −5864.77 −0.801197
\(378\) 0 0
\(379\) −12884.3 −1.74623 −0.873116 0.487513i \(-0.837904\pi\)
−0.873116 + 0.487513i \(0.837904\pi\)
\(380\) 0 0
\(381\) 522.011 0.0701927
\(382\) 0 0
\(383\) −4151.36 −0.553850 −0.276925 0.960892i \(-0.589315\pi\)
−0.276925 + 0.960892i \(0.589315\pi\)
\(384\) 0 0
\(385\) 3716.68 0.491999
\(386\) 0 0
\(387\) 1446.80 0.190039
\(388\) 0 0
\(389\) −395.512 −0.0515508 −0.0257754 0.999668i \(-0.508205\pi\)
−0.0257754 + 0.999668i \(0.508205\pi\)
\(390\) 0 0
\(391\) 4546.98 0.588109
\(392\) 0 0
\(393\) −1053.75 −0.135254
\(394\) 0 0
\(395\) 556.921 0.0709411
\(396\) 0 0
\(397\) −2749.61 −0.347604 −0.173802 0.984781i \(-0.555605\pi\)
−0.173802 + 0.984781i \(0.555605\pi\)
\(398\) 0 0
\(399\) −136.907 −0.0171778
\(400\) 0 0
\(401\) 5196.07 0.647080 0.323540 0.946214i \(-0.395127\pi\)
0.323540 + 0.946214i \(0.395127\pi\)
\(402\) 0 0
\(403\) 21903.1 2.70737
\(404\) 0 0
\(405\) 6644.85 0.815273
\(406\) 0 0
\(407\) 19539.2 2.37966
\(408\) 0 0
\(409\) −8811.47 −1.06528 −0.532639 0.846342i \(-0.678800\pi\)
−0.532639 + 0.846342i \(0.678800\pi\)
\(410\) 0 0
\(411\) −198.548 −0.0238289
\(412\) 0 0
\(413\) 3308.44 0.394184
\(414\) 0 0
\(415\) −9374.67 −1.10888
\(416\) 0 0
\(417\) 3094.78 0.363434
\(418\) 0 0
\(419\) −9178.16 −1.07012 −0.535062 0.844813i \(-0.679712\pi\)
−0.535062 + 0.844813i \(0.679712\pi\)
\(420\) 0 0
\(421\) 11290.8 1.30708 0.653541 0.756891i \(-0.273283\pi\)
0.653541 + 0.756891i \(0.273283\pi\)
\(422\) 0 0
\(423\) 12272.7 1.41069
\(424\) 0 0
\(425\) 372.179 0.0424784
\(426\) 0 0
\(427\) −1794.51 −0.203378
\(428\) 0 0
\(429\) 6569.88 0.739386
\(430\) 0 0
\(431\) 1907.51 0.213183 0.106591 0.994303i \(-0.466006\pi\)
0.106591 + 0.994303i \(0.466006\pi\)
\(432\) 0 0
\(433\) 13643.2 1.51421 0.757104 0.653294i \(-0.226613\pi\)
0.757104 + 0.653294i \(0.226613\pi\)
\(434\) 0 0
\(435\) 927.964 0.102282
\(436\) 0 0
\(437\) 763.232 0.0835476
\(438\) 0 0
\(439\) 9906.74 1.07705 0.538523 0.842611i \(-0.318983\pi\)
0.538523 + 0.842611i \(0.318983\pi\)
\(440\) 0 0
\(441\) 7887.03 0.851639
\(442\) 0 0
\(443\) −7580.47 −0.813000 −0.406500 0.913651i \(-0.633251\pi\)
−0.406500 + 0.913651i \(0.633251\pi\)
\(444\) 0 0
\(445\) 7770.67 0.827787
\(446\) 0 0
\(447\) −843.922 −0.0892979
\(448\) 0 0
\(449\) 8593.98 0.903285 0.451642 0.892199i \(-0.350838\pi\)
0.451642 + 0.892199i \(0.350838\pi\)
\(450\) 0 0
\(451\) 10161.9 1.06099
\(452\) 0 0
\(453\) −3078.56 −0.319301
\(454\) 0 0
\(455\) −5542.76 −0.571096
\(456\) 0 0
\(457\) −14294.6 −1.46318 −0.731589 0.681746i \(-0.761221\pi\)
−0.731589 + 0.681746i \(0.761221\pi\)
\(458\) 0 0
\(459\) −7492.73 −0.761941
\(460\) 0 0
\(461\) 16465.7 1.66352 0.831761 0.555134i \(-0.187333\pi\)
0.831761 + 0.555134i \(0.187333\pi\)
\(462\) 0 0
\(463\) −15503.4 −1.55617 −0.778083 0.628162i \(-0.783808\pi\)
−0.778083 + 0.628162i \(0.783808\pi\)
\(464\) 0 0
\(465\) −3465.65 −0.345625
\(466\) 0 0
\(467\) −3263.71 −0.323397 −0.161699 0.986840i \(-0.551697\pi\)
−0.161699 + 0.986840i \(0.551697\pi\)
\(468\) 0 0
\(469\) −70.0532 −0.00689714
\(470\) 0 0
\(471\) 586.452 0.0573722
\(472\) 0 0
\(473\) 3363.31 0.326945
\(474\) 0 0
\(475\) 62.4720 0.00603455
\(476\) 0 0
\(477\) 2651.71 0.254535
\(478\) 0 0
\(479\) −1763.00 −0.168170 −0.0840852 0.996459i \(-0.526797\pi\)
−0.0840852 + 0.996459i \(0.526797\pi\)
\(480\) 0 0
\(481\) −29139.2 −2.76223
\(482\) 0 0
\(483\) −289.451 −0.0272681
\(484\) 0 0
\(485\) −2560.55 −0.239729
\(486\) 0 0
\(487\) −9574.66 −0.890902 −0.445451 0.895306i \(-0.646957\pi\)
−0.445451 + 0.895306i \(0.646957\pi\)
\(488\) 0 0
\(489\) −1858.37 −0.171858
\(490\) 0 0
\(491\) −18569.3 −1.70676 −0.853380 0.521290i \(-0.825451\pi\)
−0.853380 + 0.521290i \(0.825451\pi\)
\(492\) 0 0
\(493\) 7537.60 0.688593
\(494\) 0 0
\(495\) 16551.8 1.50292
\(496\) 0 0
\(497\) −4057.66 −0.366219
\(498\) 0 0
\(499\) 10116.0 0.907523 0.453761 0.891123i \(-0.350082\pi\)
0.453761 + 0.891123i \(0.350082\pi\)
\(500\) 0 0
\(501\) 480.419 0.0428414
\(502\) 0 0
\(503\) −853.516 −0.0756589 −0.0378294 0.999284i \(-0.512044\pi\)
−0.0378294 + 0.999284i \(0.512044\pi\)
\(504\) 0 0
\(505\) 10406.3 0.916977
\(506\) 0 0
\(507\) −7022.67 −0.615164
\(508\) 0 0
\(509\) −5049.04 −0.439676 −0.219838 0.975536i \(-0.570553\pi\)
−0.219838 + 0.975536i \(0.570553\pi\)
\(510\) 0 0
\(511\) 4020.21 0.348030
\(512\) 0 0
\(513\) −1257.69 −0.108242
\(514\) 0 0
\(515\) 19819.4 1.69582
\(516\) 0 0
\(517\) 28529.8 2.42696
\(518\) 0 0
\(519\) −1661.09 −0.140489
\(520\) 0 0
\(521\) −8294.77 −0.697506 −0.348753 0.937215i \(-0.613395\pi\)
−0.348753 + 0.937215i \(0.613395\pi\)
\(522\) 0 0
\(523\) 3466.62 0.289837 0.144918 0.989444i \(-0.453708\pi\)
0.144918 + 0.989444i \(0.453708\pi\)
\(524\) 0 0
\(525\) −23.6921 −0.00196954
\(526\) 0 0
\(527\) −28150.5 −2.32686
\(528\) 0 0
\(529\) −10553.4 −0.867376
\(530\) 0 0
\(531\) 14733.7 1.20412
\(532\) 0 0
\(533\) −15154.7 −1.23156
\(534\) 0 0
\(535\) 13317.2 1.07617
\(536\) 0 0
\(537\) 5008.66 0.402495
\(538\) 0 0
\(539\) 18334.6 1.46517
\(540\) 0 0
\(541\) 14784.5 1.17493 0.587464 0.809250i \(-0.300126\pi\)
0.587464 + 0.809250i \(0.300126\pi\)
\(542\) 0 0
\(543\) −129.736 −0.0102532
\(544\) 0 0
\(545\) −7070.62 −0.555728
\(546\) 0 0
\(547\) −2531.48 −0.197876 −0.0989382 0.995094i \(-0.531545\pi\)
−0.0989382 + 0.995094i \(0.531545\pi\)
\(548\) 0 0
\(549\) −7991.63 −0.621265
\(550\) 0 0
\(551\) 1265.22 0.0978226
\(552\) 0 0
\(553\) −287.970 −0.0221442
\(554\) 0 0
\(555\) 4610.61 0.352630
\(556\) 0 0
\(557\) −12526.9 −0.952933 −0.476466 0.879193i \(-0.658083\pi\)
−0.476466 + 0.879193i \(0.658083\pi\)
\(558\) 0 0
\(559\) −5015.77 −0.379507
\(560\) 0 0
\(561\) −8443.83 −0.635470
\(562\) 0 0
\(563\) −16977.2 −1.27087 −0.635437 0.772153i \(-0.719180\pi\)
−0.635437 + 0.772153i \(0.719180\pi\)
\(564\) 0 0
\(565\) 13428.2 0.999872
\(566\) 0 0
\(567\) −3435.89 −0.254487
\(568\) 0 0
\(569\) −12491.3 −0.920317 −0.460159 0.887837i \(-0.652207\pi\)
−0.460159 + 0.887837i \(0.652207\pi\)
\(570\) 0 0
\(571\) −3471.26 −0.254410 −0.127205 0.991876i \(-0.540601\pi\)
−0.127205 + 0.991876i \(0.540601\pi\)
\(572\) 0 0
\(573\) 4157.69 0.303124
\(574\) 0 0
\(575\) 132.079 0.00957927
\(576\) 0 0
\(577\) −22314.6 −1.61000 −0.804998 0.593277i \(-0.797834\pi\)
−0.804998 + 0.593277i \(0.797834\pi\)
\(578\) 0 0
\(579\) 1397.27 0.100291
\(580\) 0 0
\(581\) 4847.42 0.346135
\(582\) 0 0
\(583\) 6164.29 0.437905
\(584\) 0 0
\(585\) −24684.0 −1.74454
\(586\) 0 0
\(587\) −797.363 −0.0560659 −0.0280329 0.999607i \(-0.508924\pi\)
−0.0280329 + 0.999607i \(0.508924\pi\)
\(588\) 0 0
\(589\) −4725.20 −0.330558
\(590\) 0 0
\(591\) 1837.00 0.127858
\(592\) 0 0
\(593\) −5229.07 −0.362112 −0.181056 0.983473i \(-0.557952\pi\)
−0.181056 + 0.983473i \(0.557952\pi\)
\(594\) 0 0
\(595\) 7123.74 0.490831
\(596\) 0 0
\(597\) −2269.33 −0.155574
\(598\) 0 0
\(599\) 4520.22 0.308332 0.154166 0.988045i \(-0.450731\pi\)
0.154166 + 0.988045i \(0.450731\pi\)
\(600\) 0 0
\(601\) −28191.4 −1.91340 −0.956699 0.291080i \(-0.905986\pi\)
−0.956699 + 0.291080i \(0.905986\pi\)
\(602\) 0 0
\(603\) −311.973 −0.0210689
\(604\) 0 0
\(605\) 23793.0 1.59888
\(606\) 0 0
\(607\) −9824.01 −0.656910 −0.328455 0.944520i \(-0.606528\pi\)
−0.328455 + 0.944520i \(0.606528\pi\)
\(608\) 0 0
\(609\) −479.828 −0.0319271
\(610\) 0 0
\(611\) −42547.0 −2.81713
\(612\) 0 0
\(613\) −7236.11 −0.476776 −0.238388 0.971170i \(-0.576619\pi\)
−0.238388 + 0.971170i \(0.576619\pi\)
\(614\) 0 0
\(615\) 2397.88 0.157223
\(616\) 0 0
\(617\) 20177.0 1.31653 0.658263 0.752788i \(-0.271292\pi\)
0.658263 + 0.752788i \(0.271292\pi\)
\(618\) 0 0
\(619\) 9836.84 0.638734 0.319367 0.947631i \(-0.396530\pi\)
0.319367 + 0.947631i \(0.396530\pi\)
\(620\) 0 0
\(621\) −2659.03 −0.171825
\(622\) 0 0
\(623\) −4018.02 −0.258393
\(624\) 0 0
\(625\) −15203.2 −0.973004
\(626\) 0 0
\(627\) −1417.34 −0.0902758
\(628\) 0 0
\(629\) 37450.7 2.37402
\(630\) 0 0
\(631\) −5325.24 −0.335966 −0.167983 0.985790i \(-0.553725\pi\)
−0.167983 + 0.985790i \(0.553725\pi\)
\(632\) 0 0
\(633\) 3406.84 0.213917
\(634\) 0 0
\(635\) −4559.26 −0.284927
\(636\) 0 0
\(637\) −27342.7 −1.70072
\(638\) 0 0
\(639\) −18070.3 −1.11870
\(640\) 0 0
\(641\) 30186.7 1.86007 0.930035 0.367472i \(-0.119777\pi\)
0.930035 + 0.367472i \(0.119777\pi\)
\(642\) 0 0
\(643\) −6815.72 −0.418018 −0.209009 0.977914i \(-0.567024\pi\)
−0.209009 + 0.977914i \(0.567024\pi\)
\(644\) 0 0
\(645\) 793.629 0.0484482
\(646\) 0 0
\(647\) 8525.98 0.518069 0.259035 0.965868i \(-0.416596\pi\)
0.259035 + 0.965868i \(0.416596\pi\)
\(648\) 0 0
\(649\) 34250.8 2.07159
\(650\) 0 0
\(651\) 1792.00 0.107887
\(652\) 0 0
\(653\) −13797.4 −0.826849 −0.413425 0.910538i \(-0.635668\pi\)
−0.413425 + 0.910538i \(0.635668\pi\)
\(654\) 0 0
\(655\) 9203.51 0.549024
\(656\) 0 0
\(657\) 17903.5 1.06314
\(658\) 0 0
\(659\) 16673.7 0.985610 0.492805 0.870140i \(-0.335972\pi\)
0.492805 + 0.870140i \(0.335972\pi\)
\(660\) 0 0
\(661\) 2752.76 0.161982 0.0809909 0.996715i \(-0.474192\pi\)
0.0809909 + 0.996715i \(0.474192\pi\)
\(662\) 0 0
\(663\) 12592.5 0.737632
\(664\) 0 0
\(665\) 1195.75 0.0697282
\(666\) 0 0
\(667\) 2674.95 0.155284
\(668\) 0 0
\(669\) −6827.72 −0.394581
\(670\) 0 0
\(671\) −18577.7 −1.06883
\(672\) 0 0
\(673\) −3652.27 −0.209190 −0.104595 0.994515i \(-0.533355\pi\)
−0.104595 + 0.994515i \(0.533355\pi\)
\(674\) 0 0
\(675\) −217.646 −0.0124107
\(676\) 0 0
\(677\) −13175.4 −0.747964 −0.373982 0.927436i \(-0.622008\pi\)
−0.373982 + 0.927436i \(0.622008\pi\)
\(678\) 0 0
\(679\) 1324.00 0.0748313
\(680\) 0 0
\(681\) 880.197 0.0495290
\(682\) 0 0
\(683\) −25912.2 −1.45169 −0.725845 0.687859i \(-0.758551\pi\)
−0.725845 + 0.687859i \(0.758551\pi\)
\(684\) 0 0
\(685\) 1734.13 0.0967265
\(686\) 0 0
\(687\) −6630.84 −0.368242
\(688\) 0 0
\(689\) −9192.93 −0.508306
\(690\) 0 0
\(691\) 19933.9 1.09742 0.548712 0.836012i \(-0.315118\pi\)
0.548712 + 0.836012i \(0.315118\pi\)
\(692\) 0 0
\(693\) −8558.52 −0.469136
\(694\) 0 0
\(695\) −27029.9 −1.47525
\(696\) 0 0
\(697\) 19477.4 1.05848
\(698\) 0 0
\(699\) −1528.24 −0.0826942
\(700\) 0 0
\(701\) −10583.0 −0.570208 −0.285104 0.958497i \(-0.592028\pi\)
−0.285104 + 0.958497i \(0.592028\pi\)
\(702\) 0 0
\(703\) 6286.27 0.337257
\(704\) 0 0
\(705\) 6732.08 0.359638
\(706\) 0 0
\(707\) −5380.84 −0.286234
\(708\) 0 0
\(709\) −28731.2 −1.52189 −0.760947 0.648814i \(-0.775265\pi\)
−0.760947 + 0.648814i \(0.775265\pi\)
\(710\) 0 0
\(711\) −1282.44 −0.0676445
\(712\) 0 0
\(713\) −9990.08 −0.524729
\(714\) 0 0
\(715\) −57381.6 −3.00133
\(716\) 0 0
\(717\) −1499.06 −0.0780802
\(718\) 0 0
\(719\) 7427.02 0.385231 0.192615 0.981274i \(-0.438303\pi\)
0.192615 + 0.981274i \(0.438303\pi\)
\(720\) 0 0
\(721\) −10248.1 −0.529348
\(722\) 0 0
\(723\) 3279.10 0.168674
\(724\) 0 0
\(725\) 218.950 0.0112160
\(726\) 0 0
\(727\) −5465.02 −0.278798 −0.139399 0.990236i \(-0.544517\pi\)
−0.139399 + 0.990236i \(0.544517\pi\)
\(728\) 0 0
\(729\) −13043.8 −0.662693
\(730\) 0 0
\(731\) 6446.43 0.326169
\(732\) 0 0
\(733\) 11959.6 0.602644 0.301322 0.953522i \(-0.402572\pi\)
0.301322 + 0.953522i \(0.402572\pi\)
\(734\) 0 0
\(735\) 4326.35 0.217115
\(736\) 0 0
\(737\) −725.228 −0.0362471
\(738\) 0 0
\(739\) −21411.4 −1.06581 −0.532903 0.846176i \(-0.678899\pi\)
−0.532903 + 0.846176i \(0.678899\pi\)
\(740\) 0 0
\(741\) 2113.70 0.104789
\(742\) 0 0
\(743\) 39368.8 1.94388 0.971938 0.235238i \(-0.0755871\pi\)
0.971938 + 0.235238i \(0.0755871\pi\)
\(744\) 0 0
\(745\) 7370.85 0.362479
\(746\) 0 0
\(747\) 21587.4 1.05735
\(748\) 0 0
\(749\) −6886.00 −0.335927
\(750\) 0 0
\(751\) 928.320 0.0451063 0.0225532 0.999746i \(-0.492820\pi\)
0.0225532 + 0.999746i \(0.492820\pi\)
\(752\) 0 0
\(753\) 1886.62 0.0913043
\(754\) 0 0
\(755\) 26888.2 1.29611
\(756\) 0 0
\(757\) 8174.49 0.392480 0.196240 0.980556i \(-0.437127\pi\)
0.196240 + 0.980556i \(0.437127\pi\)
\(758\) 0 0
\(759\) −2996.55 −0.143304
\(760\) 0 0
\(761\) −21673.8 −1.03242 −0.516211 0.856462i \(-0.672658\pi\)
−0.516211 + 0.856462i \(0.672658\pi\)
\(762\) 0 0
\(763\) 3656.04 0.173470
\(764\) 0 0
\(765\) 31724.7 1.49936
\(766\) 0 0
\(767\) −51078.8 −2.40463
\(768\) 0 0
\(769\) 5279.64 0.247580 0.123790 0.992308i \(-0.460495\pi\)
0.123790 + 0.992308i \(0.460495\pi\)
\(770\) 0 0
\(771\) 4198.48 0.196115
\(772\) 0 0
\(773\) −30853.7 −1.43562 −0.717809 0.696241i \(-0.754855\pi\)
−0.717809 + 0.696241i \(0.754855\pi\)
\(774\) 0 0
\(775\) −817.707 −0.0379005
\(776\) 0 0
\(777\) −2384.03 −0.110073
\(778\) 0 0
\(779\) 3269.36 0.150369
\(780\) 0 0
\(781\) −42007.0 −1.92462
\(782\) 0 0
\(783\) −4407.91 −0.201183
\(784\) 0 0
\(785\) −5122.10 −0.232886
\(786\) 0 0
\(787\) 14408.0 0.652590 0.326295 0.945268i \(-0.394200\pi\)
0.326295 + 0.945268i \(0.394200\pi\)
\(788\) 0 0
\(789\) −5378.58 −0.242690
\(790\) 0 0
\(791\) −6943.38 −0.312109
\(792\) 0 0
\(793\) 27705.3 1.24066
\(794\) 0 0
\(795\) 1454.57 0.0648908
\(796\) 0 0
\(797\) 6512.56 0.289444 0.144722 0.989472i \(-0.453771\pi\)
0.144722 + 0.989472i \(0.453771\pi\)
\(798\) 0 0
\(799\) 54682.9 2.42120
\(800\) 0 0
\(801\) −17893.8 −0.789320
\(802\) 0 0
\(803\) 41619.3 1.82903
\(804\) 0 0
\(805\) 2528.08 0.110687
\(806\) 0 0
\(807\) 7483.80 0.326446
\(808\) 0 0
\(809\) −22213.1 −0.965354 −0.482677 0.875799i \(-0.660335\pi\)
−0.482677 + 0.875799i \(0.660335\pi\)
\(810\) 0 0
\(811\) −2480.93 −0.107420 −0.0537098 0.998557i \(-0.517105\pi\)
−0.0537098 + 0.998557i \(0.517105\pi\)
\(812\) 0 0
\(813\) 10133.4 0.437138
\(814\) 0 0
\(815\) 16231.1 0.697608
\(816\) 0 0
\(817\) 1082.06 0.0463361
\(818\) 0 0
\(819\) 12763.5 0.544557
\(820\) 0 0
\(821\) 17912.8 0.761461 0.380730 0.924686i \(-0.375673\pi\)
0.380730 + 0.924686i \(0.375673\pi\)
\(822\) 0 0
\(823\) 3445.46 0.145931 0.0729656 0.997334i \(-0.476754\pi\)
0.0729656 + 0.997334i \(0.476754\pi\)
\(824\) 0 0
\(825\) −245.273 −0.0103507
\(826\) 0 0
\(827\) −33614.6 −1.41341 −0.706707 0.707506i \(-0.749820\pi\)
−0.706707 + 0.707506i \(0.749820\pi\)
\(828\) 0 0
\(829\) 3539.89 0.148306 0.0741529 0.997247i \(-0.476375\pi\)
0.0741529 + 0.997247i \(0.476375\pi\)
\(830\) 0 0
\(831\) −1178.47 −0.0491947
\(832\) 0 0
\(833\) 35141.7 1.46169
\(834\) 0 0
\(835\) −4196.00 −0.173902
\(836\) 0 0
\(837\) 16462.1 0.679827
\(838\) 0 0
\(839\) 17069.1 0.702374 0.351187 0.936305i \(-0.385778\pi\)
0.351187 + 0.936305i \(0.385778\pi\)
\(840\) 0 0
\(841\) −19954.7 −0.818184
\(842\) 0 0
\(843\) −1208.16 −0.0493610
\(844\) 0 0
\(845\) 61336.3 2.49708
\(846\) 0 0
\(847\) −12302.8 −0.499090
\(848\) 0 0
\(849\) 5541.08 0.223992
\(850\) 0 0
\(851\) 13290.5 0.535363
\(852\) 0 0
\(853\) 22496.0 0.902989 0.451495 0.892274i \(-0.350891\pi\)
0.451495 + 0.892274i \(0.350891\pi\)
\(854\) 0 0
\(855\) 5325.13 0.213001
\(856\) 0 0
\(857\) −14011.8 −0.558498 −0.279249 0.960219i \(-0.590085\pi\)
−0.279249 + 0.960219i \(0.590085\pi\)
\(858\) 0 0
\(859\) 26340.3 1.04624 0.523120 0.852259i \(-0.324768\pi\)
0.523120 + 0.852259i \(0.324768\pi\)
\(860\) 0 0
\(861\) −1239.89 −0.0490769
\(862\) 0 0
\(863\) 26311.7 1.03785 0.518924 0.854821i \(-0.326333\pi\)
0.518924 + 0.854821i \(0.326333\pi\)
\(864\) 0 0
\(865\) 14508.0 0.570275
\(866\) 0 0
\(867\) −9978.43 −0.390871
\(868\) 0 0
\(869\) −2981.22 −0.116376
\(870\) 0 0
\(871\) 1081.55 0.0420744
\(872\) 0 0
\(873\) 5896.27 0.228589
\(874\) 0 0
\(875\) 8073.72 0.311933
\(876\) 0 0
\(877\) 29383.8 1.13138 0.565690 0.824618i \(-0.308610\pi\)
0.565690 + 0.824618i \(0.308610\pi\)
\(878\) 0 0
\(879\) 1714.69 0.0657963
\(880\) 0 0
\(881\) −6960.95 −0.266198 −0.133099 0.991103i \(-0.542493\pi\)
−0.133099 + 0.991103i \(0.542493\pi\)
\(882\) 0 0
\(883\) 31161.5 1.18762 0.593810 0.804605i \(-0.297623\pi\)
0.593810 + 0.804605i \(0.297623\pi\)
\(884\) 0 0
\(885\) 8082.04 0.306977
\(886\) 0 0
\(887\) 17886.8 0.677091 0.338545 0.940950i \(-0.390065\pi\)
0.338545 + 0.940950i \(0.390065\pi\)
\(888\) 0 0
\(889\) 2357.48 0.0889398
\(890\) 0 0
\(891\) −35570.2 −1.33743
\(892\) 0 0
\(893\) 9178.78 0.343960
\(894\) 0 0
\(895\) −43745.8 −1.63381
\(896\) 0 0
\(897\) 4468.82 0.166343
\(898\) 0 0
\(899\) −16560.7 −0.614384
\(900\) 0 0
\(901\) 11815.1 0.436866
\(902\) 0 0
\(903\) −410.366 −0.0151231
\(904\) 0 0
\(905\) 1133.11 0.0416199
\(906\) 0 0
\(907\) −23803.3 −0.871417 −0.435709 0.900088i \(-0.643502\pi\)
−0.435709 + 0.900088i \(0.643502\pi\)
\(908\) 0 0
\(909\) −23962.9 −0.874366
\(910\) 0 0
\(911\) −41133.8 −1.49596 −0.747982 0.663719i \(-0.768977\pi\)
−0.747982 + 0.663719i \(0.768977\pi\)
\(912\) 0 0
\(913\) 50183.0 1.81908
\(914\) 0 0
\(915\) −4383.73 −0.158384
\(916\) 0 0
\(917\) −4758.91 −0.171377
\(918\) 0 0
\(919\) −9314.09 −0.334324 −0.167162 0.985929i \(-0.553460\pi\)
−0.167162 + 0.985929i \(0.553460\pi\)
\(920\) 0 0
\(921\) −11788.0 −0.421747
\(922\) 0 0
\(923\) 62645.9 2.23404
\(924\) 0 0
\(925\) 1087.86 0.0386686
\(926\) 0 0
\(927\) −45638.7 −1.61701
\(928\) 0 0
\(929\) −29566.7 −1.04419 −0.522095 0.852887i \(-0.674849\pi\)
−0.522095 + 0.852887i \(0.674849\pi\)
\(930\) 0 0
\(931\) 5898.71 0.207650
\(932\) 0 0
\(933\) 3719.60 0.130519
\(934\) 0 0
\(935\) 73748.7 2.57951
\(936\) 0 0
\(937\) 53866.5 1.87806 0.939029 0.343837i \(-0.111727\pi\)
0.939029 + 0.343837i \(0.111727\pi\)
\(938\) 0 0
\(939\) −3651.31 −0.126897
\(940\) 0 0
\(941\) −47012.9 −1.62867 −0.814334 0.580396i \(-0.802898\pi\)
−0.814334 + 0.580396i \(0.802898\pi\)
\(942\) 0 0
\(943\) 6912.14 0.238696
\(944\) 0 0
\(945\) −4165.89 −0.143404
\(946\) 0 0
\(947\) −24305.9 −0.834038 −0.417019 0.908898i \(-0.636925\pi\)
−0.417019 + 0.908898i \(0.636925\pi\)
\(948\) 0 0
\(949\) −62067.7 −2.12308
\(950\) 0 0
\(951\) −8525.00 −0.290686
\(952\) 0 0
\(953\) 29214.7 0.993028 0.496514 0.868029i \(-0.334613\pi\)
0.496514 + 0.868029i \(0.334613\pi\)
\(954\) 0 0
\(955\) −36313.4 −1.23045
\(956\) 0 0
\(957\) −4967.43 −0.167789
\(958\) 0 0
\(959\) −896.676 −0.0301931
\(960\) 0 0
\(961\) 32058.0 1.07610
\(962\) 0 0
\(963\) −30666.0 −1.02616
\(964\) 0 0
\(965\) −12203.8 −0.407102
\(966\) 0 0
\(967\) 32370.0 1.07647 0.538236 0.842794i \(-0.319091\pi\)
0.538236 + 0.842794i \(0.319091\pi\)
\(968\) 0 0
\(969\) −2716.60 −0.0900617
\(970\) 0 0
\(971\) −44819.7 −1.48129 −0.740644 0.671897i \(-0.765480\pi\)
−0.740644 + 0.671897i \(0.765480\pi\)
\(972\) 0 0
\(973\) 13976.5 0.460499
\(974\) 0 0
\(975\) 365.781 0.0120147
\(976\) 0 0
\(977\) 44799.8 1.46701 0.733507 0.679682i \(-0.237882\pi\)
0.733507 + 0.679682i \(0.237882\pi\)
\(978\) 0 0
\(979\) −41596.7 −1.35795
\(980\) 0 0
\(981\) 16281.7 0.529904
\(982\) 0 0
\(983\) 29289.2 0.950335 0.475167 0.879895i \(-0.342388\pi\)
0.475167 + 0.879895i \(0.342388\pi\)
\(984\) 0 0
\(985\) −16044.4 −0.519004
\(986\) 0 0
\(987\) −3481.00 −0.112261
\(988\) 0 0
\(989\) 2287.71 0.0735542
\(990\) 0 0
\(991\) 23400.6 0.750096 0.375048 0.927005i \(-0.377626\pi\)
0.375048 + 0.927005i \(0.377626\pi\)
\(992\) 0 0
\(993\) 11612.7 0.371116
\(994\) 0 0
\(995\) 19820.4 0.631506
\(996\) 0 0
\(997\) −59994.4 −1.90576 −0.952880 0.303349i \(-0.901895\pi\)
−0.952880 + 0.303349i \(0.901895\pi\)
\(998\) 0 0
\(999\) −21900.8 −0.693604
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 304.4.a.h.1.2 3
4.3 odd 2 76.4.a.b.1.2 3
8.3 odd 2 1216.4.a.t.1.2 3
8.5 even 2 1216.4.a.v.1.2 3
12.11 even 2 684.4.a.i.1.1 3
20.3 even 4 1900.4.c.c.1749.4 6
20.7 even 4 1900.4.c.c.1749.3 6
20.19 odd 2 1900.4.a.c.1.2 3
76.75 even 2 1444.4.a.e.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
76.4.a.b.1.2 3 4.3 odd 2
304.4.a.h.1.2 3 1.1 even 1 trivial
684.4.a.i.1.1 3 12.11 even 2
1216.4.a.t.1.2 3 8.3 odd 2
1216.4.a.v.1.2 3 8.5 even 2
1444.4.a.e.1.2 3 76.75 even 2
1900.4.a.c.1.2 3 20.19 odd 2
1900.4.c.c.1749.3 6 20.7 even 4
1900.4.c.c.1749.4 6 20.3 even 4