Properties

Label 3025.2.k
Level $3025$
Weight $2$
Character orbit 3025.k
Rep. character $\chi_{3025}(1291,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $1048$
Sturm bound $660$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.k (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{5})\)
Sturm bound: \(660\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3025, [\chi])\).

Total New Old
Modular forms 1368 1112 256
Cusp forms 1272 1048 224
Eisenstein series 96 64 32

Trace form

\( 1048 q + q^{2} + 2 q^{3} - 253 q^{4} + 4 q^{5} - q^{6} + 9 q^{7} - 7 q^{8} + 986 q^{9} + 12 q^{10} + 24 q^{12} - 2 q^{13} - 7 q^{14} + 14 q^{15} - 241 q^{16} + 2 q^{17} + 21 q^{18} - 5 q^{19} - 15 q^{20}+ \cdots - 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3025, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3025, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)