Properties

Label 3025.2.e
Level $3025$
Weight $2$
Character orbit 3025.e
Rep. character $\chi_{3025}(1693,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $308$
Sturm bound $660$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3025 = 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3025.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(i)\)
Sturm bound: \(660\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3025, [\chi])\).

Total New Old
Modular forms 732 340 392
Cusp forms 588 308 280
Eisenstein series 144 32 112

Trace form

\( 308 q - 8 q^{3} + 36 q^{12} - 284 q^{16} + 36 q^{23} - 72 q^{26} + 4 q^{27} + 40 q^{31} - 252 q^{36} + 4 q^{37} + 40 q^{38} - 60 q^{42} - 20 q^{47} + 64 q^{48} + 4 q^{53} - 8 q^{56} - 64 q^{58} + 68 q^{67}+ \cdots - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3025, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3025, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 2}\)