Defining parameters
Level: | \( N \) | \(=\) | \( 3025 = 5^{2} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3025.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(660\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(3025, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 366 | 172 | 194 |
Cusp forms | 294 | 154 | 140 |
Eisenstein series | 72 | 18 | 54 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(3025, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(3025, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(3025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(605, [\chi])\)\(^{\oplus 2}\)