Properties

Label 3024.2.t.e.289.1
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(289,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,2,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.e.1873.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +(0.500000 - 2.59808i) q^{7} +3.00000 q^{11} +(-1.50000 - 2.59808i) q^{13} +(-2.50000 - 4.33013i) q^{17} +(3.50000 - 6.06218i) q^{19} +5.00000 q^{23} -4.00000 q^{25} +(-0.500000 + 0.866025i) q^{29} +(-4.00000 + 6.92820i) q^{31} +(0.500000 - 2.59808i) q^{35} +(-1.50000 + 2.59808i) q^{37} +(-2.50000 - 4.33013i) q^{41} +(-3.50000 + 6.06218i) q^{43} +(-4.00000 - 6.92820i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(-0.500000 - 0.866025i) q^{53} +3.00000 q^{55} +(-5.00000 - 8.66025i) q^{61} +(-1.50000 - 2.59808i) q^{65} +(-6.00000 + 10.3923i) q^{67} +12.0000 q^{71} +(2.50000 + 4.33013i) q^{73} +(1.50000 - 7.79423i) q^{77} +(-4.00000 - 6.92820i) q^{79} +(7.50000 - 12.9904i) q^{83} +(-2.50000 - 4.33013i) q^{85} +(-2.50000 + 4.33013i) q^{89} +(-7.50000 + 2.59808i) q^{91} +(3.50000 - 6.06218i) q^{95} +(-3.50000 + 6.06218i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + q^{7} + 6 q^{11} - 3 q^{13} - 5 q^{17} + 7 q^{19} + 10 q^{23} - 8 q^{25} - q^{29} - 8 q^{31} + q^{35} - 3 q^{37} - 5 q^{41} - 7 q^{43} - 8 q^{47} - 13 q^{49} - q^{53} + 6 q^{55} - 10 q^{61}+ \cdots - 7 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −1.50000 2.59808i −0.416025 0.720577i 0.579510 0.814965i \(-0.303244\pi\)
−0.995535 + 0.0943882i \(0.969911\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.50000 4.33013i −0.606339 1.05021i −0.991838 0.127502i \(-0.959304\pi\)
0.385499 0.922708i \(-0.374029\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.00000 1.04257 0.521286 0.853382i \(-0.325452\pi\)
0.521286 + 0.853382i \(0.325452\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.500000 + 0.866025i −0.0928477 + 0.160817i −0.908708 0.417432i \(-0.862930\pi\)
0.815861 + 0.578249i \(0.196264\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.500000 2.59808i 0.0845154 0.439155i
\(36\) 0 0
\(37\) −1.50000 + 2.59808i −0.246598 + 0.427121i −0.962580 0.270998i \(-0.912646\pi\)
0.715981 + 0.698119i \(0.245980\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.50000 4.33013i −0.390434 0.676252i 0.602072 0.798441i \(-0.294342\pi\)
−0.992507 + 0.122189i \(0.961009\pi\)
\(42\) 0 0
\(43\) −3.50000 + 6.06218i −0.533745 + 0.924473i 0.465478 + 0.885059i \(0.345882\pi\)
−0.999223 + 0.0394140i \(0.987451\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 6.92820i −0.583460 1.01058i −0.995066 0.0992202i \(-0.968365\pi\)
0.411606 0.911362i \(-0.364968\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.500000 0.866025i −0.0686803 0.118958i 0.829640 0.558298i \(-0.188546\pi\)
−0.898321 + 0.439340i \(0.855212\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −5.00000 8.66025i −0.640184 1.10883i −0.985391 0.170305i \(-0.945525\pi\)
0.345207 0.938527i \(-0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.50000 2.59808i −0.186052 0.322252i
\(66\) 0 0
\(67\) −6.00000 + 10.3923i −0.733017 + 1.26962i 0.222571 + 0.974916i \(0.428555\pi\)
−0.955588 + 0.294706i \(0.904778\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 2.50000 + 4.33013i 0.292603 + 0.506803i 0.974424 0.224716i \(-0.0721453\pi\)
−0.681822 + 0.731519i \(0.738812\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.50000 7.79423i 0.170941 0.888235i
\(78\) 0 0
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.50000 12.9904i 0.823232 1.42588i −0.0800311 0.996792i \(-0.525502\pi\)
0.903263 0.429087i \(-0.141165\pi\)
\(84\) 0 0
\(85\) −2.50000 4.33013i −0.271163 0.469668i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.50000 + 4.33013i −0.264999 + 0.458993i −0.967563 0.252628i \(-0.918705\pi\)
0.702564 + 0.711621i \(0.252038\pi\)
\(90\) 0 0
\(91\) −7.50000 + 2.59808i −0.786214 + 0.272352i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.50000 6.06218i 0.359092 0.621966i
\(96\) 0 0
\(97\) −3.50000 + 6.06218i −0.355371 + 0.615521i −0.987181 0.159602i \(-0.948979\pi\)
0.631810 + 0.775123i \(0.282312\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) 15.0000 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.50000 7.79423i 0.435031 0.753497i −0.562267 0.826956i \(-0.690071\pi\)
0.997298 + 0.0734594i \(0.0234039\pi\)
\(108\) 0 0
\(109\) −3.50000 6.06218i −0.335239 0.580651i 0.648292 0.761392i \(-0.275484\pi\)
−0.983531 + 0.180741i \(0.942150\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.50000 + 12.9904i 0.705541 + 1.22203i 0.966496 + 0.256681i \(0.0826291\pi\)
−0.260955 + 0.965351i \(0.584038\pi\)
\(114\) 0 0
\(115\) 5.00000 0.466252
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.5000 + 4.33013i −1.14587 + 0.396942i
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) −14.0000 12.1244i −1.21395 1.05131i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −23.0000 −1.96502 −0.982511 0.186203i \(-0.940382\pi\)
−0.982511 + 0.186203i \(0.940382\pi\)
\(138\) 0 0
\(139\) −4.50000 7.79423i −0.381685 0.661098i 0.609618 0.792695i \(-0.291323\pi\)
−0.991303 + 0.131597i \(0.957989\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.50000 7.79423i −0.376309 0.651786i
\(144\) 0 0
\(145\) −0.500000 + 0.866025i −0.0415227 + 0.0719195i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.00000 0.409616 0.204808 0.978802i \(-0.434343\pi\)
0.204808 + 0.978802i \(0.434343\pi\)
\(150\) 0 0
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 + 6.92820i −0.321288 + 0.556487i
\(156\) 0 0
\(157\) 3.00000 5.19615i 0.239426 0.414698i −0.721124 0.692806i \(-0.756374\pi\)
0.960550 + 0.278108i \(0.0897074\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.50000 12.9904i 0.197028 1.02379i
\(162\) 0 0
\(163\) −2.50000 + 4.33013i −0.195815 + 0.339162i −0.947167 0.320740i \(-0.896069\pi\)
0.751352 + 0.659901i \(0.229402\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.5000 + 18.1865i 0.812514 + 1.40732i 0.911099 + 0.412188i \(0.135235\pi\)
−0.0985846 + 0.995129i \(0.531432\pi\)
\(168\) 0 0
\(169\) 2.00000 3.46410i 0.153846 0.266469i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.00000 + 1.73205i 0.0760286 + 0.131685i 0.901533 0.432710i \(-0.142443\pi\)
−0.825505 + 0.564396i \(0.809109\pi\)
\(174\) 0 0
\(175\) −2.00000 + 10.3923i −0.151186 + 0.785584i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.50000 4.33013i −0.186859 0.323649i 0.757343 0.653018i \(-0.226497\pi\)
−0.944201 + 0.329369i \(0.893164\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 + 2.59808i −0.110282 + 0.191014i
\(186\) 0 0
\(187\) −7.50000 12.9904i −0.548454 0.949951i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 13.8564i −0.578860 1.00261i −0.995610 0.0935936i \(-0.970165\pi\)
0.416751 0.909021i \(-0.363169\pi\)
\(192\) 0 0
\(193\) 9.00000 15.5885i 0.647834 1.12208i −0.335805 0.941932i \(-0.609008\pi\)
0.983639 0.180150i \(-0.0576584\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −9.50000 16.4545i −0.673437 1.16643i −0.976923 0.213591i \(-0.931484\pi\)
0.303486 0.952836i \(-0.401849\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.00000 + 1.73205i 0.140372 + 0.121566i
\(204\) 0 0
\(205\) −2.50000 4.33013i −0.174608 0.302429i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.5000 18.1865i 0.726300 1.25799i
\(210\) 0 0
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.50000 + 6.06218i −0.238698 + 0.413437i
\(216\) 0 0
\(217\) 16.0000 + 13.8564i 1.08615 + 0.940634i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.50000 + 12.9904i −0.504505 + 0.873828i
\(222\) 0 0
\(223\) 10.5000 18.1865i 0.703132 1.21786i −0.264229 0.964460i \(-0.585118\pi\)
0.967361 0.253401i \(-0.0815490\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.0000 0.730096 0.365048 0.930989i \(-0.381053\pi\)
0.365048 + 0.930989i \(0.381053\pi\)
\(228\) 0 0
\(229\) −1.00000 −0.0660819 −0.0330409 0.999454i \(-0.510519\pi\)
−0.0330409 + 0.999454i \(0.510519\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.50000 9.52628i 0.360317 0.624087i −0.627696 0.778459i \(-0.716002\pi\)
0.988013 + 0.154371i \(0.0493352\pi\)
\(234\) 0 0
\(235\) −4.00000 6.92820i −0.260931 0.451946i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.5000 + 21.6506i 0.808558 + 1.40046i 0.913863 + 0.406023i \(0.133085\pi\)
−0.105305 + 0.994440i \(0.533582\pi\)
\(240\) 0 0
\(241\) −5.00000 −0.322078 −0.161039 0.986948i \(-0.551485\pi\)
−0.161039 + 0.986948i \(0.551485\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.50000 2.59808i −0.415270 0.165985i
\(246\) 0 0
\(247\) −21.0000 −1.33620
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.0000 −1.26239 −0.631194 0.775625i \(-0.717435\pi\)
−0.631194 + 0.775625i \(0.717435\pi\)
\(252\) 0 0
\(253\) 15.0000 0.943042
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.0000 1.30994 0.654972 0.755653i \(-0.272680\pi\)
0.654972 + 0.755653i \(0.272680\pi\)
\(258\) 0 0
\(259\) 6.00000 + 5.19615i 0.372822 + 0.322873i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 27.0000 1.66489 0.832446 0.554107i \(-0.186940\pi\)
0.832446 + 0.554107i \(0.186940\pi\)
\(264\) 0 0
\(265\) −0.500000 0.866025i −0.0307148 0.0531995i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.50000 + 2.59808i 0.0914566 + 0.158408i 0.908124 0.418701i \(-0.137514\pi\)
−0.816668 + 0.577108i \(0.804181\pi\)
\(270\) 0 0
\(271\) 11.5000 19.9186i 0.698575 1.20997i −0.270385 0.962752i \(-0.587151\pi\)
0.968960 0.247216i \(-0.0795156\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) −5.00000 −0.300421 −0.150210 0.988654i \(-0.547995\pi\)
−0.150210 + 0.988654i \(0.547995\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.5000 23.3827i 0.805342 1.39489i −0.110717 0.993852i \(-0.535315\pi\)
0.916060 0.401042i \(-0.131352\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.5000 + 4.33013i −0.737852 + 0.255599i
\(288\) 0 0
\(289\) −4.00000 + 6.92820i −0.235294 + 0.407541i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.5000 + 23.3827i 0.788678 + 1.36603i 0.926777 + 0.375613i \(0.122568\pi\)
−0.138098 + 0.990419i \(0.544099\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.50000 12.9904i −0.433736 0.751253i
\(300\) 0 0
\(301\) 14.0000 + 12.1244i 0.806947 + 0.698836i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.00000 8.66025i −0.286299 0.495885i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 17.0000 + 29.4449i 0.960897 + 1.66432i 0.720257 + 0.693708i \(0.244024\pi\)
0.240640 + 0.970614i \(0.422643\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −15.0000 25.9808i −0.842484 1.45922i −0.887788 0.460252i \(-0.847759\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) −1.50000 + 2.59808i −0.0839839 + 0.145464i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −35.0000 −1.94745
\(324\) 0 0
\(325\) 6.00000 + 10.3923i 0.332820 + 0.576461i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −20.0000 + 6.92820i −1.10264 + 0.381964i
\(330\) 0 0
\(331\) 4.00000 + 6.92820i 0.219860 + 0.380808i 0.954765 0.297361i \(-0.0961066\pi\)
−0.734905 + 0.678170i \(0.762773\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.00000 + 10.3923i −0.327815 + 0.567792i
\(336\) 0 0
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.0000 + 20.7846i −0.649836 + 1.12555i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) −5.50000 + 9.52628i −0.294408 + 0.509930i −0.974847 0.222875i \(-0.928456\pi\)
0.680439 + 0.732805i \(0.261789\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 21.0000 1.11772 0.558859 0.829263i \(-0.311239\pi\)
0.558859 + 0.829263i \(0.311239\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.50000 + 2.59808i −0.0791670 + 0.137121i −0.902891 0.429870i \(-0.858559\pi\)
0.823724 + 0.566991i \(0.191893\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.50000 + 4.33013i 0.130856 + 0.226649i
\(366\) 0 0
\(367\) 13.0000 0.678594 0.339297 0.940679i \(-0.389811\pi\)
0.339297 + 0.940679i \(0.389811\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.50000 + 0.866025i −0.129794 + 0.0449618i
\(372\) 0 0
\(373\) −1.00000 −0.0517780 −0.0258890 0.999665i \(-0.508242\pi\)
−0.0258890 + 0.999665i \(0.508242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.00000 0.154508
\(378\) 0 0
\(379\) −36.0000 −1.84920 −0.924598 0.380945i \(-0.875599\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.00000 −0.153293 −0.0766464 0.997058i \(-0.524421\pi\)
−0.0766464 + 0.997058i \(0.524421\pi\)
\(384\) 0 0
\(385\) 1.50000 7.79423i 0.0764471 0.397231i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.0000 0.861934 0.430967 0.902368i \(-0.358172\pi\)
0.430967 + 0.902368i \(0.358172\pi\)
\(390\) 0 0
\(391\) −12.5000 21.6506i −0.632152 1.09492i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.00000 6.92820i −0.201262 0.348596i
\(396\) 0 0
\(397\) 8.50000 14.7224i 0.426603 0.738898i −0.569966 0.821668i \(-0.693044\pi\)
0.996569 + 0.0827707i \(0.0263769\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 0 0
\(403\) 24.0000 1.19553
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.50000 + 7.79423i −0.223057 + 0.386346i
\(408\) 0 0
\(409\) −3.00000 + 5.19615i −0.148340 + 0.256933i −0.930614 0.366002i \(-0.880726\pi\)
0.782274 + 0.622935i \(0.214060\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7.50000 12.9904i 0.368161 0.637673i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.5000 19.9186i −0.561812 0.973087i −0.997338 0.0729107i \(-0.976771\pi\)
0.435527 0.900176i \(-0.356562\pi\)
\(420\) 0 0
\(421\) −3.50000 + 6.06218i −0.170580 + 0.295452i −0.938623 0.344946i \(-0.887897\pi\)
0.768043 + 0.640398i \(0.221231\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 10.0000 + 17.3205i 0.485071 + 0.840168i
\(426\) 0 0
\(427\) −25.0000 + 8.66025i −1.20983 + 0.419099i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.50000 + 12.9904i 0.361262 + 0.625725i 0.988169 0.153370i \(-0.0490126\pi\)
−0.626907 + 0.779094i \(0.715679\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.5000 30.3109i 0.837139 1.44997i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.0000 17.3205i −0.475114 0.822922i 0.524479 0.851423i \(-0.324260\pi\)
−0.999594 + 0.0285009i \(0.990927\pi\)
\(444\) 0 0
\(445\) −2.50000 + 4.33013i −0.118511 + 0.205268i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) −7.50000 12.9904i −0.353161 0.611693i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.50000 + 2.59808i −0.351605 + 0.121800i
\(456\) 0 0
\(457\) −11.0000 19.0526i −0.514558 0.891241i −0.999857 0.0168929i \(-0.994623\pi\)
0.485299 0.874348i \(-0.338711\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.5000 + 18.1865i −0.489034 + 0.847031i −0.999920 0.0126168i \(-0.995984\pi\)
0.510887 + 0.859648i \(0.329317\pi\)
\(462\) 0 0
\(463\) 17.5000 + 30.3109i 0.813294 + 1.40867i 0.910546 + 0.413407i \(0.135661\pi\)
−0.0972525 + 0.995260i \(0.531005\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −13.5000 + 23.3827i −0.624705 + 1.08202i 0.363892 + 0.931441i \(0.381448\pi\)
−0.988598 + 0.150581i \(0.951886\pi\)
\(468\) 0 0
\(469\) 24.0000 + 20.7846i 1.10822 + 0.959744i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.5000 + 18.1865i −0.482791 + 0.836218i
\(474\) 0 0
\(475\) −14.0000 + 24.2487i −0.642364 + 1.11261i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.00000 0.319838 0.159919 0.987130i \(-0.448877\pi\)
0.159919 + 0.987130i \(0.448877\pi\)
\(480\) 0 0
\(481\) 9.00000 0.410365
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.50000 + 6.06218i −0.158927 + 0.275269i
\(486\) 0 0
\(487\) 18.5000 + 32.0429i 0.838315 + 1.45200i 0.891303 + 0.453409i \(0.149792\pi\)
−0.0529875 + 0.998595i \(0.516874\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.5000 + 18.1865i 0.473858 + 0.820747i 0.999552 0.0299272i \(-0.00952753\pi\)
−0.525694 + 0.850674i \(0.676194\pi\)
\(492\) 0 0
\(493\) 5.00000 0.225189
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.00000 31.1769i 0.269137 1.39848i
\(498\) 0 0
\(499\) −1.00000 −0.0447661 −0.0223831 0.999749i \(-0.507125\pi\)
−0.0223831 + 0.999749i \(0.507125\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.0000 1.78351 0.891756 0.452517i \(-0.149474\pi\)
0.891756 + 0.452517i \(0.149474\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.0000 0.930809 0.465404 0.885098i \(-0.345909\pi\)
0.465404 + 0.885098i \(0.345909\pi\)
\(510\) 0 0
\(511\) 12.5000 4.33013i 0.552967 0.191554i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15.0000 0.660979
\(516\) 0 0
\(517\) −12.0000 20.7846i −0.527759 0.914106i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.50000 + 2.59808i 0.0657162 + 0.113824i 0.897011 0.442007i \(-0.145733\pi\)
−0.831295 + 0.555831i \(0.812400\pi\)
\(522\) 0 0
\(523\) −12.5000 + 21.6506i −0.546587 + 0.946716i 0.451918 + 0.892059i \(0.350740\pi\)
−0.998505 + 0.0546569i \(0.982594\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 40.0000 1.74243
\(528\) 0 0
\(529\) 2.00000 0.0869565
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.50000 + 12.9904i −0.324861 + 0.562676i
\(534\) 0 0
\(535\) 4.50000 7.79423i 0.194552 0.336974i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −19.5000 7.79423i −0.839924 0.335721i
\(540\) 0 0
\(541\) −15.5000 + 26.8468i −0.666397 + 1.15423i 0.312507 + 0.949915i \(0.398831\pi\)
−0.978905 + 0.204318i \(0.934502\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.50000 6.06218i −0.149924 0.259675i
\(546\) 0 0
\(547\) −17.5000 + 30.3109i −0.748246 + 1.29600i 0.200417 + 0.979711i \(0.435770\pi\)
−0.948663 + 0.316289i \(0.897563\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.50000 + 6.06218i 0.149105 + 0.258257i
\(552\) 0 0
\(553\) −20.0000 + 6.92820i −0.850487 + 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.50000 + 16.4545i 0.402528 + 0.697199i 0.994030 0.109104i \(-0.0347983\pi\)
−0.591502 + 0.806303i \(0.701465\pi\)
\(558\) 0 0
\(559\) 21.0000 0.888205
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.00000 + 3.46410i −0.0842900 + 0.145994i −0.905088 0.425223i \(-0.860196\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(564\) 0 0
\(565\) 7.50000 + 12.9904i 0.315527 + 0.546509i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 + 25.9808i 0.628833 + 1.08917i 0.987786 + 0.155815i \(0.0498003\pi\)
−0.358954 + 0.933355i \(0.616866\pi\)
\(570\) 0 0
\(571\) 16.0000 27.7128i 0.669579 1.15975i −0.308443 0.951243i \(-0.599808\pi\)
0.978022 0.208502i \(-0.0668588\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −20.0000 −0.834058
\(576\) 0 0
\(577\) 4.50000 + 7.79423i 0.187337 + 0.324478i 0.944362 0.328909i \(-0.106681\pi\)
−0.757024 + 0.653387i \(0.773348\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −30.0000 25.9808i −1.24461 1.07786i
\(582\) 0 0
\(583\) −1.50000 2.59808i −0.0621237 0.107601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.5000 30.3109i 0.722302 1.25106i −0.237773 0.971321i \(-0.576417\pi\)
0.960075 0.279743i \(-0.0902494\pi\)
\(588\) 0 0
\(589\) 28.0000 + 48.4974i 1.15372 + 1.99830i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −16.5000 + 28.5788i −0.677574 + 1.17359i 0.298136 + 0.954524i \(0.403635\pi\)
−0.975709 + 0.219069i \(0.929698\pi\)
\(594\) 0 0
\(595\) −12.5000 + 4.33013i −0.512450 + 0.177518i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.00000 + 13.8564i −0.326871 + 0.566157i −0.981889 0.189456i \(-0.939328\pi\)
0.655018 + 0.755613i \(0.272661\pi\)
\(600\) 0 0
\(601\) −3.50000 + 6.06218i −0.142768 + 0.247281i −0.928538 0.371237i \(-0.878934\pi\)
0.785770 + 0.618519i \(0.212267\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 23.0000 0.933541 0.466771 0.884378i \(-0.345417\pi\)
0.466771 + 0.884378i \(0.345417\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 0 0
\(613\) −21.5000 37.2391i −0.868377 1.50407i −0.863655 0.504084i \(-0.831830\pi\)
−0.00472215 0.999989i \(-0.501503\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.5000 + 23.3827i 0.543490 + 0.941351i 0.998700 + 0.0509678i \(0.0162306\pi\)
−0.455211 + 0.890384i \(0.650436\pi\)
\(618\) 0 0
\(619\) −15.0000 −0.602901 −0.301450 0.953482i \(-0.597471\pi\)
−0.301450 + 0.953482i \(0.597471\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.0000 + 8.66025i 0.400642 + 0.346966i
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.0000 0.598089
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.00000 0.158735
\(636\) 0 0
\(637\) 3.00000 + 20.7846i 0.118864 + 0.823516i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.0000 0.671460 0.335730 0.941958i \(-0.391017\pi\)
0.335730 + 0.941958i \(0.391017\pi\)
\(642\) 0 0
\(643\) 21.5000 + 37.2391i 0.847877 + 1.46857i 0.883099 + 0.469187i \(0.155453\pi\)
−0.0352216 + 0.999380i \(0.511214\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.0000 0.508729 0.254365 0.967108i \(-0.418134\pi\)
0.254365 + 0.967108i \(0.418134\pi\)
\(654\) 0 0
\(655\) −7.00000 −0.273513
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.5000 + 25.1147i −0.564840 + 0.978331i 0.432225 + 0.901766i \(0.357729\pi\)
−0.997065 + 0.0765653i \(0.975605\pi\)
\(660\) 0 0
\(661\) 23.0000 39.8372i 0.894596 1.54949i 0.0602929 0.998181i \(-0.480797\pi\)
0.834303 0.551306i \(-0.185870\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −14.0000 12.1244i −0.542897 0.470162i
\(666\) 0 0
\(667\) −2.50000 + 4.33013i −0.0968004 + 0.167663i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.0000 25.9808i −0.579069 1.00298i
\(672\) 0 0
\(673\) 14.5000 25.1147i 0.558934 0.968102i −0.438652 0.898657i \(-0.644544\pi\)
0.997586 0.0694449i \(-0.0221228\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.00000 + 15.5885i 0.345898 + 0.599113i 0.985517 0.169580i \(-0.0542410\pi\)
−0.639618 + 0.768693i \(0.720908\pi\)
\(678\) 0 0
\(679\) 14.0000 + 12.1244i 0.537271 + 0.465290i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.5000 + 33.7750i 0.746147 + 1.29236i 0.949657 + 0.313291i \(0.101432\pi\)
−0.203510 + 0.979073i \(0.565235\pi\)
\(684\) 0 0
\(685\) −23.0000 −0.878785
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.50000 + 2.59808i −0.0571454 + 0.0989788i
\(690\) 0 0
\(691\) −14.0000 24.2487i −0.532585 0.922464i −0.999276 0.0380440i \(-0.987887\pi\)
0.466691 0.884420i \(-0.345446\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.50000 7.79423i −0.170695 0.295652i
\(696\) 0 0
\(697\) −12.5000 + 21.6506i −0.473471 + 0.820076i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 10.5000 + 18.1865i 0.396015 + 0.685918i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.50000 23.3827i 0.169240 0.879396i
\(708\) 0 0
\(709\) 19.0000 + 32.9090i 0.713560 + 1.23592i 0.963512 + 0.267664i \(0.0862517\pi\)
−0.249952 + 0.968258i \(0.580415\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.0000 + 34.6410i −0.749006 + 1.29732i
\(714\) 0 0
\(715\) −4.50000 7.79423i −0.168290 0.291488i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.5000 18.1865i 0.391584 0.678243i −0.601075 0.799193i \(-0.705261\pi\)
0.992659 + 0.120950i \(0.0385939\pi\)
\(720\) 0 0
\(721\) 7.50000 38.9711i 0.279315 1.45136i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000 3.46410i 0.0742781 0.128654i
\(726\) 0 0
\(727\) −3.50000 + 6.06218i −0.129808 + 0.224834i −0.923602 0.383353i \(-0.874769\pi\)
0.793794 + 0.608186i \(0.208103\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 35.0000 1.29452
\(732\) 0 0
\(733\) −29.0000 −1.07114 −0.535570 0.844491i \(-0.679903\pi\)
−0.535570 + 0.844491i \(0.679903\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.0000 + 31.1769i −0.663039 + 1.14842i
\(738\) 0 0
\(739\) 0.500000 + 0.866025i 0.0183928 + 0.0318573i 0.875075 0.483987i \(-0.160812\pi\)
−0.856683 + 0.515844i \(0.827478\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.5000 + 42.4352i 0.898818 + 1.55680i 0.829007 + 0.559238i \(0.188906\pi\)
0.0698106 + 0.997560i \(0.477761\pi\)
\(744\) 0 0
\(745\) 5.00000 0.183186
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −18.0000 15.5885i −0.657706 0.569590i
\(750\) 0 0
\(751\) 7.00000 0.255434 0.127717 0.991811i \(-0.459235\pi\)
0.127717 + 0.991811i \(0.459235\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −27.0000 −0.978749 −0.489375 0.872074i \(-0.662775\pi\)
−0.489375 + 0.872074i \(0.662775\pi\)
\(762\) 0 0
\(763\) −17.5000 + 6.06218i −0.633543 + 0.219466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −15.5000 26.8468i −0.558944 0.968120i −0.997585 0.0694574i \(-0.977873\pi\)
0.438641 0.898663i \(-0.355460\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.50000 14.7224i −0.305724 0.529529i 0.671698 0.740825i \(-0.265565\pi\)
−0.977422 + 0.211296i \(0.932232\pi\)
\(774\) 0 0
\(775\) 16.0000 27.7128i 0.574737 0.995474i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −35.0000 −1.25401
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.00000 5.19615i 0.107075 0.185459i
\(786\) 0 0
\(787\) 26.0000 45.0333i 0.926800 1.60526i 0.138159 0.990410i \(-0.455881\pi\)
0.788641 0.614855i \(-0.210785\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 37.5000 12.9904i 1.33335 0.461885i
\(792\) 0 0
\(793\) −15.0000 + 25.9808i −0.532666 + 0.922604i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.5000 28.5788i −0.584460 1.01231i −0.994943 0.100446i \(-0.967973\pi\)
0.410483 0.911868i \(-0.365360\pi\)
\(798\) 0 0
\(799\) −20.0000 + 34.6410i −0.707549 + 1.22551i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.50000 + 12.9904i 0.264669 + 0.458421i
\(804\) 0 0
\(805\) 2.50000 12.9904i 0.0881134 0.457851i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.5000 28.5788i −0.580109 1.00478i −0.995466 0.0951198i \(-0.969677\pi\)
0.415357 0.909659i \(-0.363657\pi\)
\(810\) 0 0
\(811\) −12.0000 −0.421377 −0.210688 0.977553i \(-0.567571\pi\)
−0.210688 + 0.977553i \(0.567571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.50000 + 4.33013i −0.0875712 + 0.151678i
\(816\) 0 0
\(817\) 24.5000 + 42.4352i 0.857146 + 1.48462i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.0000 36.3731i −0.732905 1.26943i −0.955636 0.294549i \(-0.904831\pi\)
0.222731 0.974880i \(-0.428503\pi\)
\(822\) 0 0
\(823\) 4.00000 6.92820i 0.139431 0.241502i −0.787850 0.615867i \(-0.788806\pi\)
0.927281 + 0.374365i \(0.122139\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) 12.5000 + 21.6506i 0.434143 + 0.751958i 0.997225 0.0744432i \(-0.0237179\pi\)
−0.563082 + 0.826401i \(0.690385\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.00000 + 34.6410i 0.173240 + 1.20024i
\(834\) 0 0
\(835\) 10.5000 + 18.1865i 0.363367 + 0.629371i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.50000 2.59808i 0.0517858 0.0896956i −0.838971 0.544177i \(-0.816842\pi\)
0.890756 + 0.454481i \(0.150175\pi\)
\(840\) 0 0
\(841\) 14.0000 + 24.2487i 0.482759 + 0.836162i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.00000 3.46410i 0.0688021 0.119169i
\(846\) 0 0
\(847\) −1.00000 + 5.19615i −0.0343604 + 0.178542i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.50000 + 12.9904i −0.257097 + 0.445305i
\(852\) 0 0
\(853\) 26.5000 45.8993i 0.907343 1.57156i 0.0896015 0.995978i \(-0.471441\pi\)
0.817741 0.575586i \(-0.195226\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.0000 1.53717 0.768585 0.639747i \(-0.220961\pi\)
0.768585 + 0.639747i \(0.220961\pi\)
\(858\) 0 0
\(859\) 23.0000 0.784750 0.392375 0.919805i \(-0.371654\pi\)
0.392375 + 0.919805i \(0.371654\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −23.5000 + 40.7032i −0.799949 + 1.38555i 0.119699 + 0.992810i \(0.461807\pi\)
−0.919648 + 0.392743i \(0.871526\pi\)
\(864\) 0 0
\(865\) 1.00000 + 1.73205i 0.0340010 + 0.0588915i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −12.0000 20.7846i −0.407072 0.705070i
\(870\) 0 0
\(871\) 36.0000 1.21981
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.50000 + 23.3827i −0.152128 + 0.790479i
\(876\) 0 0
\(877\) −37.0000 −1.24940 −0.624701 0.780864i \(-0.714779\pi\)
−0.624701 + 0.780864i \(0.714779\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22.0000 −0.741199 −0.370599 0.928793i \(-0.620848\pi\)
−0.370599 + 0.928793i \(0.620848\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.00000 −0.100730 −0.0503651 0.998731i \(-0.516038\pi\)
−0.0503651 + 0.998731i \(0.516038\pi\)
\(888\) 0 0
\(889\) 2.00000 10.3923i 0.0670778 0.348547i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −56.0000 −1.87397
\(894\) 0 0
\(895\) −2.50000 4.33013i −0.0835658 0.144740i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.00000 6.92820i −0.133407 0.231069i
\(900\) 0 0
\(901\) −2.50000 + 4.33013i −0.0832871 + 0.144257i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.00000 0.0664822
\(906\) 0 0
\(907\) 37.0000 1.22856 0.614282 0.789086i \(-0.289446\pi\)
0.614282 + 0.789086i \(0.289446\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.50000 + 11.2583i −0.215355 + 0.373005i −0.953382 0.301765i \(-0.902424\pi\)
0.738028 + 0.674771i \(0.235757\pi\)
\(912\) 0 0
\(913\) 22.5000 38.9711i 0.744641 1.28976i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.50000 + 18.1865i −0.115580 + 0.600572i
\(918\) 0 0
\(919\) −20.5000 + 35.5070i −0.676233 + 1.17127i 0.299874 + 0.953979i \(0.403055\pi\)
−0.976107 + 0.217291i \(0.930278\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −18.0000 31.1769i −0.592477 1.02620i
\(924\) 0 0
\(925\) 6.00000 10.3923i 0.197279 0.341697i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.0000 + 29.4449i 0.557752 + 0.966055i 0.997684 + 0.0680235i \(0.0216693\pi\)
−0.439932 + 0.898031i \(0.644997\pi\)
\(930\) 0 0
\(931\) −38.5000 + 30.3109i −1.26179 + 0.993399i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.50000 12.9904i −0.245276 0.424831i
\(936\) 0 0
\(937\) −6.00000 −0.196011 −0.0980057 0.995186i \(-0.531246\pi\)
−0.0980057 + 0.995186i \(0.531246\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.0000 + 25.9808i −0.488986 + 0.846949i −0.999920 0.0126715i \(-0.995966\pi\)
0.510934 + 0.859620i \(0.329300\pi\)
\(942\) 0 0
\(943\) −12.5000 21.6506i −0.407056 0.705042i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.0000 45.0333i −0.844886 1.46339i −0.885720 0.464220i \(-0.846335\pi\)
0.0408333 0.999166i \(-0.486999\pi\)
\(948\) 0 0
\(949\) 7.50000 12.9904i 0.243460 0.421686i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −46.0000 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(954\) 0 0
\(955\) −8.00000 13.8564i −0.258874 0.448383i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.5000 + 59.7558i −0.371354 + 1.92961i
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.00000 15.5885i 0.289720 0.501810i
\(966\) 0 0
\(967\) −10.5000 18.1865i −0.337657 0.584839i 0.646334 0.763054i \(-0.276301\pi\)
−0.983992 + 0.178215i \(0.942968\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.50000 + 6.06218i −0.112320 + 0.194545i −0.916705 0.399564i \(-0.869162\pi\)
0.804385 + 0.594108i \(0.202495\pi\)
\(972\) 0 0
\(973\) −22.5000 + 7.79423i −0.721317 + 0.249871i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 9.00000 15.5885i 0.287936 0.498719i −0.685381 0.728184i \(-0.740364\pi\)
0.973317 + 0.229465i \(0.0736978\pi\)
\(978\) 0 0
\(979\) −7.50000 + 12.9904i −0.239701 + 0.415174i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 27.0000 0.861166 0.430583 0.902551i \(-0.358308\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(984\) 0 0
\(985\) 6.00000 0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −17.5000 + 30.3109i −0.556468 + 0.963830i
\(990\) 0 0
\(991\) 10.5000 + 18.1865i 0.333543 + 0.577714i 0.983204 0.182510i \(-0.0584223\pi\)
−0.649660 + 0.760224i \(0.725089\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.50000 16.4545i −0.301170 0.521642i
\(996\) 0 0
\(997\) −17.0000 −0.538395 −0.269198 0.963085i \(-0.586759\pi\)
−0.269198 + 0.963085i \(0.586759\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.t.e.289.1 2
3.2 odd 2 1008.2.t.a.961.1 2
4.3 odd 2 1512.2.t.b.289.1 2
7.4 even 3 3024.2.q.c.2881.1 2
9.4 even 3 3024.2.q.c.2305.1 2
9.5 odd 6 1008.2.q.d.625.1 2
12.11 even 2 504.2.t.b.457.1 yes 2
21.11 odd 6 1008.2.q.d.529.1 2
28.11 odd 6 1512.2.q.a.1369.1 2
36.23 even 6 504.2.q.b.121.1 yes 2
36.31 odd 6 1512.2.q.a.793.1 2
63.4 even 3 inner 3024.2.t.e.1873.1 2
63.32 odd 6 1008.2.t.a.193.1 2
84.11 even 6 504.2.q.b.25.1 2
252.67 odd 6 1512.2.t.b.361.1 2
252.95 even 6 504.2.t.b.193.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.b.25.1 2 84.11 even 6
504.2.q.b.121.1 yes 2 36.23 even 6
504.2.t.b.193.1 yes 2 252.95 even 6
504.2.t.b.457.1 yes 2 12.11 even 2
1008.2.q.d.529.1 2 21.11 odd 6
1008.2.q.d.625.1 2 9.5 odd 6
1008.2.t.a.193.1 2 63.32 odd 6
1008.2.t.a.961.1 2 3.2 odd 2
1512.2.q.a.793.1 2 36.31 odd 6
1512.2.q.a.1369.1 2 28.11 odd 6
1512.2.t.b.289.1 2 4.3 odd 2
1512.2.t.b.361.1 2 252.67 odd 6
3024.2.q.c.2305.1 2 9.4 even 3
3024.2.q.c.2881.1 2 7.4 even 3
3024.2.t.e.289.1 2 1.1 even 1 trivial
3024.2.t.e.1873.1 2 63.4 even 3 inner