Properties

Label 3024.2.h.f.2591.3
Level $3024$
Weight $2$
Character 3024.2591
Analytic conductor $24.147$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(2591,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,12,0,4,0,0,0,0,0,0,0,0,0,36,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.195105024.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 4x^{5} - 20x^{4} + 12x^{3} + 45x^{2} - 108x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.3
Root \(0.560908 - 1.63871i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2591
Dual form 3024.2.h.f.2591.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.27743i q^{5} -1.00000i q^{7} +4.39924 q^{11} +1.78901 q^{13} +2.33438i q^{17} +0.155611i q^{19} +1.72257 q^{23} +3.36818 q^{25} -0.698256i q^{29} +2.67667i q^{31} -1.27743 q^{35} -2.05696 q^{37} -6.61181i q^{41} +11.6213i q^{43} +6.09865 q^{47} -1.00000 q^{49} -2.31797i q^{53} -5.61971i q^{55} +7.48842 q^{59} -12.9731 q^{61} -2.28533i q^{65} -0.480518i q^{67} +6.14771 q^{71} +5.88924 q^{73} -4.39924i q^{77} -1.79059i q^{79} +5.65771 q^{83} +2.98201 q^{85} +4.27743i q^{89} -1.78901i q^{91} +0.198782 q^{95} -9.08381 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{11} + 4 q^{13} + 36 q^{23} - 12 q^{25} + 12 q^{35} - 20 q^{37} + 24 q^{47} - 8 q^{49} + 48 q^{59} + 36 q^{61} + 36 q^{71} - 16 q^{73} + 72 q^{83} + 28 q^{85} + 84 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.27743i − 0.571283i −0.958337 0.285641i \(-0.907793\pi\)
0.958337 0.285641i \(-0.0922066\pi\)
\(6\) 0 0
\(7\) − 1.00000i − 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.39924 1.32642 0.663211 0.748433i \(-0.269193\pi\)
0.663211 + 0.748433i \(0.269193\pi\)
\(12\) 0 0
\(13\) 1.78901 0.496182 0.248091 0.968737i \(-0.420197\pi\)
0.248091 + 0.968737i \(0.420197\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.33438i 0.566171i 0.959095 + 0.283086i \(0.0913581\pi\)
−0.959095 + 0.283086i \(0.908642\pi\)
\(18\) 0 0
\(19\) 0.155611i 0.0356996i 0.999841 + 0.0178498i \(0.00568208\pi\)
−0.999841 + 0.0178498i \(0.994318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.72257 0.359181 0.179591 0.983741i \(-0.442523\pi\)
0.179591 + 0.983741i \(0.442523\pi\)
\(24\) 0 0
\(25\) 3.36818 0.673636
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 0.698256i − 0.129663i −0.997896 0.0648314i \(-0.979349\pi\)
0.997896 0.0648314i \(-0.0206510\pi\)
\(30\) 0 0
\(31\) 2.67667i 0.480744i 0.970681 + 0.240372i \(0.0772695\pi\)
−0.970681 + 0.240372i \(0.922731\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.27743 −0.215925
\(36\) 0 0
\(37\) −2.05696 −0.338162 −0.169081 0.985602i \(-0.554080\pi\)
−0.169081 + 0.985602i \(0.554080\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 6.61181i − 1.03259i −0.856410 0.516296i \(-0.827311\pi\)
0.856410 0.516296i \(-0.172689\pi\)
\(42\) 0 0
\(43\) 11.6213i 1.77223i 0.463465 + 0.886115i \(0.346606\pi\)
−0.463465 + 0.886115i \(0.653394\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.09865 0.889580 0.444790 0.895635i \(-0.353278\pi\)
0.444790 + 0.895635i \(0.353278\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2.31797i − 0.318397i −0.987247 0.159199i \(-0.949109\pi\)
0.987247 0.159199i \(-0.0508911\pi\)
\(54\) 0 0
\(55\) − 5.61971i − 0.757762i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.48842 0.974909 0.487455 0.873148i \(-0.337925\pi\)
0.487455 + 0.873148i \(0.337925\pi\)
\(60\) 0 0
\(61\) −12.9731 −1.66103 −0.830515 0.556997i \(-0.811954\pi\)
−0.830515 + 0.556997i \(0.811954\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 2.28533i − 0.283460i
\(66\) 0 0
\(67\) − 0.480518i − 0.0587046i −0.999569 0.0293523i \(-0.990656\pi\)
0.999569 0.0293523i \(-0.00934447\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.14771 0.729599 0.364799 0.931086i \(-0.381138\pi\)
0.364799 + 0.931086i \(0.381138\pi\)
\(72\) 0 0
\(73\) 5.88924 0.689283 0.344642 0.938734i \(-0.388000\pi\)
0.344642 + 0.938734i \(0.388000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.39924i − 0.501340i
\(78\) 0 0
\(79\) − 1.79059i − 0.201457i −0.994914 0.100728i \(-0.967883\pi\)
0.994914 0.100728i \(-0.0321173\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.65771 0.621015 0.310507 0.950571i \(-0.399501\pi\)
0.310507 + 0.950571i \(0.399501\pi\)
\(84\) 0 0
\(85\) 2.98201 0.323444
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.27743i 0.453406i 0.973964 + 0.226703i \(0.0727947\pi\)
−0.973964 + 0.226703i \(0.927205\pi\)
\(90\) 0 0
\(91\) − 1.78901i − 0.187539i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.198782 0.0203946
\(96\) 0 0
\(97\) −9.08381 −0.922322 −0.461161 0.887317i \(-0.652567\pi\)
−0.461161 + 0.887317i \(0.652567\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 15.9050i − 1.58261i −0.611421 0.791305i \(-0.709402\pi\)
0.611421 0.791305i \(-0.290598\pi\)
\(102\) 0 0
\(103\) − 9.87125i − 0.972643i −0.873780 0.486321i \(-0.838338\pi\)
0.873780 0.486321i \(-0.161662\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.6846 1.22626 0.613132 0.789981i \(-0.289909\pi\)
0.613132 + 0.789981i \(0.289909\pi\)
\(108\) 0 0
\(109\) 0.985161 0.0943613 0.0471806 0.998886i \(-0.484976\pi\)
0.0471806 + 0.998886i \(0.484976\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 12.9541i − 1.21862i −0.792932 0.609309i \(-0.791447\pi\)
0.792932 0.609309i \(-0.208553\pi\)
\(114\) 0 0
\(115\) − 2.20046i − 0.205194i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.33438 0.213993
\(120\) 0 0
\(121\) 8.35334 0.759395
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 10.6897i − 0.956119i
\(126\) 0 0
\(127\) 5.36545i 0.476107i 0.971252 + 0.238053i \(0.0765093\pi\)
−0.971252 + 0.238053i \(0.923491\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.96778 0.608778 0.304389 0.952548i \(-0.401548\pi\)
0.304389 + 0.952548i \(0.401548\pi\)
\(132\) 0 0
\(133\) 0.155611 0.0134932
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.2853i 1.22048i 0.792217 + 0.610239i \(0.208927\pi\)
−0.792217 + 0.610239i \(0.791073\pi\)
\(138\) 0 0
\(139\) − 7.73363i − 0.655958i −0.944685 0.327979i \(-0.893633\pi\)
0.944685 0.327979i \(-0.106367\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.87028 0.658146
\(144\) 0 0
\(145\) −0.891971 −0.0740741
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.08127i 0.170505i 0.996359 + 0.0852523i \(0.0271696\pi\)
−0.996359 + 0.0852523i \(0.972830\pi\)
\(150\) 0 0
\(151\) 1.90135i 0.154729i 0.997003 + 0.0773647i \(0.0246506\pi\)
−0.997003 + 0.0773647i \(0.975349\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.41925 0.274641
\(156\) 0 0
\(157\) 12.9145 1.03069 0.515345 0.856983i \(-0.327664\pi\)
0.515345 + 0.856983i \(0.327664\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 1.72257i − 0.135758i
\(162\) 0 0
\(163\) − 15.9294i − 1.24768i −0.781551 0.623842i \(-0.785571\pi\)
0.781551 0.623842i \(-0.214429\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.50484 0.348595 0.174297 0.984693i \(-0.444235\pi\)
0.174297 + 0.984693i \(0.444235\pi\)
\(168\) 0 0
\(169\) −9.79945 −0.753804
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 7.85641i − 0.597312i −0.954361 0.298656i \(-0.903462\pi\)
0.954361 0.298656i \(-0.0965382\pi\)
\(174\) 0 0
\(175\) − 3.36818i − 0.254610i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.9499 1.64061 0.820306 0.571925i \(-0.193803\pi\)
0.820306 + 0.571925i \(0.193803\pi\)
\(180\) 0 0
\(181\) −0.0585348 −0.00435086 −0.00217543 0.999998i \(-0.500692\pi\)
−0.00217543 + 0.999998i \(0.500692\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.62761i 0.193186i
\(186\) 0 0
\(187\) 10.2695i 0.750982i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.42514 0.320192 0.160096 0.987101i \(-0.448820\pi\)
0.160096 + 0.987101i \(0.448820\pi\)
\(192\) 0 0
\(193\) 19.1676 1.37972 0.689858 0.723945i \(-0.257673\pi\)
0.689858 + 0.723945i \(0.257673\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 21.2843i − 1.51644i −0.651998 0.758221i \(-0.726069\pi\)
0.651998 0.758221i \(-0.273931\pi\)
\(198\) 0 0
\(199\) 5.25426i 0.372465i 0.982506 + 0.186232i \(0.0596278\pi\)
−0.982506 + 0.186232i \(0.940372\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.698256 −0.0490079
\(204\) 0 0
\(205\) −8.44611 −0.589902
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.684571i 0.0473528i
\(210\) 0 0
\(211\) − 2.67236i − 0.183973i −0.995760 0.0919865i \(-0.970678\pi\)
0.995760 0.0919865i \(-0.0293217\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.8454 1.01244
\(216\) 0 0
\(217\) 2.67667 0.181704
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.17623i 0.280924i
\(222\) 0 0
\(223\) 18.3561i 1.22921i 0.788834 + 0.614607i \(0.210685\pi\)
−0.788834 + 0.614607i \(0.789315\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.5605 −1.43102 −0.715512 0.698601i \(-0.753806\pi\)
−0.715512 + 0.698601i \(0.753806\pi\)
\(228\) 0 0
\(229\) −8.62244 −0.569787 −0.284894 0.958559i \(-0.591958\pi\)
−0.284894 + 0.958559i \(0.591958\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.8402i 0.710164i 0.934835 + 0.355082i \(0.115547\pi\)
−0.934835 + 0.355082i \(0.884453\pi\)
\(234\) 0 0
\(235\) − 7.79059i − 0.508202i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.53211 −0.422527 −0.211264 0.977429i \(-0.567758\pi\)
−0.211264 + 0.977429i \(0.567758\pi\)
\(240\) 0 0
\(241\) −25.5900 −1.64840 −0.824200 0.566300i \(-0.808375\pi\)
−0.824200 + 0.566300i \(0.808375\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.27743i 0.0816118i
\(246\) 0 0
\(247\) 0.278390i 0.0177135i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.8771 −1.00216 −0.501078 0.865402i \(-0.667063\pi\)
−0.501078 + 0.865402i \(0.667063\pi\)
\(252\) 0 0
\(253\) 7.57802 0.476426
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.2236i 1.19914i 0.800324 + 0.599568i \(0.204661\pi\)
−0.800324 + 0.599568i \(0.795339\pi\)
\(258\) 0 0
\(259\) 2.05696i 0.127813i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.7535 1.58803 0.794016 0.607897i \(-0.207987\pi\)
0.794016 + 0.607897i \(0.207987\pi\)
\(264\) 0 0
\(265\) −2.96104 −0.181895
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 19.1180i − 1.16565i −0.812599 0.582823i \(-0.801948\pi\)
0.812599 0.582823i \(-0.198052\pi\)
\(270\) 0 0
\(271\) 23.5358i 1.42970i 0.699279 + 0.714849i \(0.253505\pi\)
−0.699279 + 0.714849i \(0.746495\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.8174 0.893525
\(276\) 0 0
\(277\) −28.8416 −1.73292 −0.866461 0.499245i \(-0.833611\pi\)
−0.866461 + 0.499245i \(0.833611\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.9693i 1.37023i 0.728434 + 0.685116i \(0.240248\pi\)
−0.728434 + 0.685116i \(0.759752\pi\)
\(282\) 0 0
\(283\) − 6.69151i − 0.397769i −0.980023 0.198884i \(-0.936268\pi\)
0.980023 0.198884i \(-0.0637319\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.61181 −0.390283
\(288\) 0 0
\(289\) 11.5506 0.679450
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 20.6276i − 1.20508i −0.798089 0.602539i \(-0.794156\pi\)
0.798089 0.602539i \(-0.205844\pi\)
\(294\) 0 0
\(295\) − 9.56591i − 0.556949i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.08170 0.178219
\(300\) 0 0
\(301\) 11.6213 0.669840
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.5721i 0.948917i
\(306\) 0 0
\(307\) 6.28154i 0.358507i 0.983803 + 0.179253i \(0.0573682\pi\)
−0.983803 + 0.179253i \(0.942632\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.745313 −0.0422628 −0.0211314 0.999777i \(-0.506727\pi\)
−0.0211314 + 0.999777i \(0.506727\pi\)
\(312\) 0 0
\(313\) 3.91892 0.221510 0.110755 0.993848i \(-0.464673\pi\)
0.110755 + 0.993848i \(0.464673\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 25.7488i − 1.44620i −0.690745 0.723098i \(-0.742717\pi\)
0.690745 0.723098i \(-0.257283\pi\)
\(318\) 0 0
\(319\) − 3.07180i − 0.171988i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.363256 −0.0202121
\(324\) 0 0
\(325\) 6.02570 0.334246
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 6.09865i − 0.336230i
\(330\) 0 0
\(331\) 24.4684i 1.34491i 0.740140 + 0.672453i \(0.234759\pi\)
−0.740140 + 0.672453i \(0.765241\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.613827 −0.0335369
\(336\) 0 0
\(337\) −4.26910 −0.232553 −0.116276 0.993217i \(-0.537096\pi\)
−0.116276 + 0.993217i \(0.537096\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.7753i 0.637670i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.54792 0.136779 0.0683896 0.997659i \(-0.478214\pi\)
0.0683896 + 0.997659i \(0.478214\pi\)
\(348\) 0 0
\(349\) −2.02570 −0.108433 −0.0542167 0.998529i \(-0.517266\pi\)
−0.0542167 + 0.998529i \(0.517266\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 29.1329i − 1.55059i −0.631602 0.775293i \(-0.717602\pi\)
0.631602 0.775293i \(-0.282398\pi\)
\(354\) 0 0
\(355\) − 7.85325i − 0.416807i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.0517 −1.53329 −0.766645 0.642071i \(-0.778075\pi\)
−0.766645 + 0.642071i \(0.778075\pi\)
\(360\) 0 0
\(361\) 18.9758 0.998726
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 7.52307i − 0.393776i
\(366\) 0 0
\(367\) 3.79332i 0.198010i 0.995087 + 0.0990048i \(0.0315659\pi\)
−0.995087 + 0.0990048i \(0.968434\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.31797 −0.120343
\(372\) 0 0
\(373\) 27.8026 1.43956 0.719782 0.694200i \(-0.244242\pi\)
0.719782 + 0.694200i \(0.244242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1.24919i − 0.0643363i
\(378\) 0 0
\(379\) − 15.7874i − 0.810946i −0.914107 0.405473i \(-0.867107\pi\)
0.914107 0.405473i \(-0.132893\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.69247 0.393067 0.196533 0.980497i \(-0.437032\pi\)
0.196533 + 0.980497i \(0.437032\pi\)
\(384\) 0 0
\(385\) −5.61971 −0.286407
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 38.8433i 1.96944i 0.174158 + 0.984718i \(0.444280\pi\)
−0.174158 + 0.984718i \(0.555720\pi\)
\(390\) 0 0
\(391\) 4.02115i 0.203358i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.28734 −0.115089
\(396\) 0 0
\(397\) 16.7364 0.839974 0.419987 0.907530i \(-0.362035\pi\)
0.419987 + 0.907530i \(0.362035\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.0769i 1.15240i 0.817307 + 0.576202i \(0.195466\pi\)
−0.817307 + 0.576202i \(0.804534\pi\)
\(402\) 0 0
\(403\) 4.78859i 0.238536i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.04906 −0.448545
\(408\) 0 0
\(409\) 10.1950 0.504110 0.252055 0.967713i \(-0.418894\pi\)
0.252055 + 0.967713i \(0.418894\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 7.48842i − 0.368481i
\(414\) 0 0
\(415\) − 7.22732i − 0.354775i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.77522 −0.184432 −0.0922158 0.995739i \(-0.529395\pi\)
−0.0922158 + 0.995739i \(0.529395\pi\)
\(420\) 0 0
\(421\) −16.7035 −0.814080 −0.407040 0.913410i \(-0.633439\pi\)
−0.407040 + 0.913410i \(0.633439\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.86263i 0.381393i
\(426\) 0 0
\(427\) 12.9731i 0.627810i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.58453 −0.220829 −0.110415 0.993886i \(-0.535218\pi\)
−0.110415 + 0.993886i \(0.535218\pi\)
\(432\) 0 0
\(433\) 7.92547 0.380874 0.190437 0.981699i \(-0.439010\pi\)
0.190437 + 0.981699i \(0.439010\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.268051i 0.0128226i
\(438\) 0 0
\(439\) 12.6021i 0.601467i 0.953708 + 0.300734i \(0.0972315\pi\)
−0.953708 + 0.300734i \(0.902768\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.08066 0.0513437 0.0256719 0.999670i \(-0.491827\pi\)
0.0256719 + 0.999670i \(0.491827\pi\)
\(444\) 0 0
\(445\) 5.46410 0.259023
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 4.15561i − 0.196115i −0.995181 0.0980577i \(-0.968737\pi\)
0.995181 0.0980577i \(-0.0312630\pi\)
\(450\) 0 0
\(451\) − 29.0870i − 1.36965i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.28533 −0.107138
\(456\) 0 0
\(457\) −17.2246 −0.805732 −0.402866 0.915259i \(-0.631986\pi\)
−0.402866 + 0.915259i \(0.631986\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 33.6266i − 1.56615i −0.621930 0.783073i \(-0.713651\pi\)
0.621930 0.783073i \(-0.286349\pi\)
\(462\) 0 0
\(463\) − 36.4941i − 1.69603i −0.529976 0.848013i \(-0.677799\pi\)
0.529976 0.848013i \(-0.322201\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −37.5380 −1.73705 −0.868526 0.495644i \(-0.834932\pi\)
−0.868526 + 0.495644i \(0.834932\pi\)
\(468\) 0 0
\(469\) −0.480518 −0.0221883
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 51.1249i 2.35072i
\(474\) 0 0
\(475\) 0.524126i 0.0240486i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.3223 −0.882857 −0.441429 0.897296i \(-0.645528\pi\)
−0.441429 + 0.897296i \(0.645528\pi\)
\(480\) 0 0
\(481\) −3.67991 −0.167790
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.6039i 0.526906i
\(486\) 0 0
\(487\) − 11.0093i − 0.498878i −0.968390 0.249439i \(-0.919754\pi\)
0.968390 0.249439i \(-0.0802463\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −15.7147 −0.709193 −0.354597 0.935019i \(-0.615382\pi\)
−0.354597 + 0.935019i \(0.615382\pi\)
\(492\) 0 0
\(493\) 1.63000 0.0734114
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6.14771i − 0.275762i
\(498\) 0 0
\(499\) 18.7156i 0.837827i 0.908026 + 0.418913i \(0.137589\pi\)
−0.908026 + 0.418913i \(0.862411\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −27.9614 −1.24674 −0.623368 0.781929i \(-0.714236\pi\)
−0.623368 + 0.781929i \(0.714236\pi\)
\(504\) 0 0
\(505\) −20.3175 −0.904118
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 3.00727i − 0.133295i −0.997777 0.0666475i \(-0.978770\pi\)
0.997777 0.0666475i \(-0.0212303\pi\)
\(510\) 0 0
\(511\) − 5.88924i − 0.260525i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.6098 −0.555654
\(516\) 0 0
\(517\) 26.8295 1.17996
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.26872i 0.0993944i 0.998764 + 0.0496972i \(0.0158256\pi\)
−0.998764 + 0.0496972i \(0.984174\pi\)
\(522\) 0 0
\(523\) 3.38957i 0.148216i 0.997250 + 0.0741078i \(0.0236109\pi\)
−0.997250 + 0.0741078i \(0.976389\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.24838 −0.272184
\(528\) 0 0
\(529\) −20.0327 −0.870989
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 11.8286i − 0.512353i
\(534\) 0 0
\(535\) − 16.2036i − 0.700543i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.39924 −0.189489
\(540\) 0 0
\(541\) −9.32922 −0.401094 −0.200547 0.979684i \(-0.564272\pi\)
−0.200547 + 0.979684i \(0.564272\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 1.25847i − 0.0539070i
\(546\) 0 0
\(547\) 16.7453i 0.715978i 0.933726 + 0.357989i \(0.116537\pi\)
−0.933726 + 0.357989i \(0.883463\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.108656 0.00462892
\(552\) 0 0
\(553\) −1.79059 −0.0761434
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24.2369i 1.02695i 0.858105 + 0.513475i \(0.171642\pi\)
−0.858105 + 0.513475i \(0.828358\pi\)
\(558\) 0 0
\(559\) 20.7906i 0.879348i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −27.0405 −1.13962 −0.569810 0.821777i \(-0.692983\pi\)
−0.569810 + 0.821777i \(0.692983\pi\)
\(564\) 0 0
\(565\) −16.5479 −0.696176
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 37.9406i 1.59055i 0.606246 + 0.795277i \(0.292675\pi\)
−0.606246 + 0.795277i \(0.707325\pi\)
\(570\) 0 0
\(571\) 12.3194i 0.515549i 0.966205 + 0.257774i \(0.0829891\pi\)
−0.966205 + 0.257774i \(0.917011\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.80194 0.241957
\(576\) 0 0
\(577\) −19.7785 −0.823389 −0.411694 0.911322i \(-0.635063\pi\)
−0.411694 + 0.911322i \(0.635063\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 5.65771i − 0.234722i
\(582\) 0 0
\(583\) − 10.1973i − 0.422329i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.3148 −0.425738 −0.212869 0.977081i \(-0.568281\pi\)
−0.212869 + 0.977081i \(0.568281\pi\)
\(588\) 0 0
\(589\) −0.416520 −0.0171624
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.7373i 1.05691i 0.848963 + 0.528453i \(0.177228\pi\)
−0.848963 + 0.528453i \(0.822772\pi\)
\(594\) 0 0
\(595\) − 2.98201i − 0.122250i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 28.5899 1.16815 0.584077 0.811698i \(-0.301457\pi\)
0.584077 + 0.811698i \(0.301457\pi\)
\(600\) 0 0
\(601\) −21.4730 −0.875901 −0.437950 0.898999i \(-0.644295\pi\)
−0.437950 + 0.898999i \(0.644295\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 10.6708i − 0.433829i
\(606\) 0 0
\(607\) − 40.7312i − 1.65323i −0.562768 0.826615i \(-0.690264\pi\)
0.562768 0.826615i \(-0.309736\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.9105 0.441393
\(612\) 0 0
\(613\) −25.3260 −1.02291 −0.511453 0.859311i \(-0.670893\pi\)
−0.511453 + 0.859311i \(0.670893\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.1580i 0.529719i 0.964287 + 0.264860i \(0.0853257\pi\)
−0.964287 + 0.264860i \(0.914674\pi\)
\(618\) 0 0
\(619\) 20.5839i 0.827337i 0.910428 + 0.413668i \(0.135753\pi\)
−0.910428 + 0.413668i \(0.864247\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.27743 0.171372
\(624\) 0 0
\(625\) 3.18553 0.127421
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 4.80173i − 0.191458i
\(630\) 0 0
\(631\) 12.4878i 0.497132i 0.968615 + 0.248566i \(0.0799592\pi\)
−0.968615 + 0.248566i \(0.920041\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.85397 0.271991
\(636\) 0 0
\(637\) −1.78901 −0.0708831
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.2853i 1.27519i 0.770370 + 0.637597i \(0.220071\pi\)
−0.770370 + 0.637597i \(0.779929\pi\)
\(642\) 0 0
\(643\) − 17.3565i − 0.684473i −0.939614 0.342237i \(-0.888816\pi\)
0.939614 0.342237i \(-0.111184\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.5970 −0.691808 −0.345904 0.938270i \(-0.612428\pi\)
−0.345904 + 0.938270i \(0.612428\pi\)
\(648\) 0 0
\(649\) 32.9434 1.29314
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 5.04424i − 0.197396i −0.995117 0.0986981i \(-0.968532\pi\)
0.995117 0.0986981i \(-0.0314678\pi\)
\(654\) 0 0
\(655\) − 8.90083i − 0.347784i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −33.7322 −1.31402 −0.657009 0.753883i \(-0.728179\pi\)
−0.657009 + 0.753883i \(0.728179\pi\)
\(660\) 0 0
\(661\) −9.08697 −0.353442 −0.176721 0.984261i \(-0.556549\pi\)
−0.176721 + 0.984261i \(0.556549\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 0.198782i − 0.00770843i
\(666\) 0 0
\(667\) − 1.20280i − 0.0465725i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −57.0716 −2.20323
\(672\) 0 0
\(673\) −2.21299 −0.0853045 −0.0426523 0.999090i \(-0.513581\pi\)
−0.0426523 + 0.999090i \(0.513581\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.9735i 1.45944i 0.683746 + 0.729720i \(0.260349\pi\)
−0.683746 + 0.729720i \(0.739651\pi\)
\(678\) 0 0
\(679\) 9.08381i 0.348605i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.0625 0.576352 0.288176 0.957577i \(-0.406951\pi\)
0.288176 + 0.957577i \(0.406951\pi\)
\(684\) 0 0
\(685\) 18.2485 0.697238
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 4.14687i − 0.157983i
\(690\) 0 0
\(691\) 35.5627i 1.35287i 0.736503 + 0.676434i \(0.236476\pi\)
−0.736503 + 0.676434i \(0.763524\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.87915 −0.374737
\(696\) 0 0
\(697\) 15.4345 0.584624
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 23.8391i − 0.900392i −0.892930 0.450196i \(-0.851354\pi\)
0.892930 0.450196i \(-0.148646\pi\)
\(702\) 0 0
\(703\) − 0.320085i − 0.0120723i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −15.9050 −0.598171
\(708\) 0 0
\(709\) −19.6053 −0.736292 −0.368146 0.929768i \(-0.620007\pi\)
−0.368146 + 0.929768i \(0.620007\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.61076i 0.172674i
\(714\) 0 0
\(715\) − 10.0537i − 0.375988i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.4126 0.910438 0.455219 0.890379i \(-0.349561\pi\)
0.455219 + 0.890379i \(0.349561\pi\)
\(720\) 0 0
\(721\) −9.87125 −0.367624
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.35185i − 0.0873455i
\(726\) 0 0
\(727\) − 4.67036i − 0.173214i −0.996243 0.0866071i \(-0.972398\pi\)
0.996243 0.0866071i \(-0.0276025\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −27.1286 −1.00339
\(732\) 0 0
\(733\) 12.3938 0.457775 0.228888 0.973453i \(-0.426491\pi\)
0.228888 + 0.973453i \(0.426491\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.11392i − 0.0778671i
\(738\) 0 0
\(739\) − 34.3618i − 1.26402i −0.774961 0.632009i \(-0.782230\pi\)
0.774961 0.632009i \(-0.217770\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −33.2263 −1.21895 −0.609477 0.792804i \(-0.708620\pi\)
−0.609477 + 0.792804i \(0.708620\pi\)
\(744\) 0 0
\(745\) 2.65868 0.0974064
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 12.6846i − 0.463484i
\(750\) 0 0
\(751\) 5.32366i 0.194263i 0.995272 + 0.0971316i \(0.0309668\pi\)
−0.995272 + 0.0971316i \(0.969033\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.42883 0.0883942
\(756\) 0 0
\(757\) 47.7784 1.73654 0.868268 0.496096i \(-0.165234\pi\)
0.868268 + 0.496096i \(0.165234\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 33.9333i 1.23008i 0.788496 + 0.615040i \(0.210860\pi\)
−0.788496 + 0.615040i \(0.789140\pi\)
\(762\) 0 0
\(763\) − 0.985161i − 0.0356652i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.3968 0.483732
\(768\) 0 0
\(769\) 4.54136 0.163766 0.0818828 0.996642i \(-0.473907\pi\)
0.0818828 + 0.996642i \(0.473907\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 19.6720i − 0.707554i −0.935330 0.353777i \(-0.884897\pi\)
0.935330 0.353777i \(-0.115103\pi\)
\(774\) 0 0
\(775\) 9.01551i 0.323847i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.02887 0.0368631
\(780\) 0 0
\(781\) 27.0453 0.967756
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 16.4974i − 0.588816i
\(786\) 0 0
\(787\) 42.0240i 1.49800i 0.662573 + 0.748998i \(0.269465\pi\)
−0.662573 + 0.748998i \(0.730535\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.9541 −0.460595
\(792\) 0 0
\(793\) −23.2089 −0.824172
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 17.5073i − 0.620139i −0.950714 0.310070i \(-0.899648\pi\)
0.950714 0.310070i \(-0.100352\pi\)
\(798\) 0 0
\(799\) 14.2366i 0.503655i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 25.9082 0.914280
\(804\) 0 0
\(805\) −2.20046 −0.0775561
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 48.7499i 1.71395i 0.515355 + 0.856977i \(0.327660\pi\)
−0.515355 + 0.856977i \(0.672340\pi\)
\(810\) 0 0
\(811\) − 46.3624i − 1.62800i −0.580862 0.814002i \(-0.697285\pi\)
0.580862 0.814002i \(-0.302715\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.3486 −0.712780
\(816\) 0 0
\(817\) −1.80840 −0.0632680
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.2030i 1.08899i 0.838763 + 0.544496i \(0.183279\pi\)
−0.838763 + 0.544496i \(0.816721\pi\)
\(822\) 0 0
\(823\) 54.0205i 1.88304i 0.336960 + 0.941519i \(0.390601\pi\)
−0.336960 + 0.941519i \(0.609399\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.89197 0.170110 0.0850552 0.996376i \(-0.472893\pi\)
0.0850552 + 0.996376i \(0.472893\pi\)
\(828\) 0 0
\(829\) −1.73363 −0.0602114 −0.0301057 0.999547i \(-0.509584\pi\)
−0.0301057 + 0.999547i \(0.509584\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 2.33438i − 0.0808816i
\(834\) 0 0
\(835\) − 5.75460i − 0.199146i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.1014 −1.38445 −0.692227 0.721679i \(-0.743371\pi\)
−0.692227 + 0.721679i \(0.743371\pi\)
\(840\) 0 0
\(841\) 28.5124 0.983188
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 12.5181i 0.430635i
\(846\) 0 0
\(847\) − 8.35334i − 0.287024i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.54326 −0.121461
\(852\) 0 0
\(853\) 7.20826 0.246806 0.123403 0.992357i \(-0.460619\pi\)
0.123403 + 0.992357i \(0.460619\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 33.2866i 1.13705i 0.822666 + 0.568525i \(0.192486\pi\)
−0.822666 + 0.568525i \(0.807514\pi\)
\(858\) 0 0
\(859\) − 56.9226i − 1.94217i −0.238729 0.971086i \(-0.576731\pi\)
0.238729 0.971086i \(-0.423269\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.00286 −0.170299 −0.0851497 0.996368i \(-0.527137\pi\)
−0.0851497 + 0.996368i \(0.527137\pi\)
\(864\) 0 0
\(865\) −10.0360 −0.341234
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 7.87722i − 0.267216i
\(870\) 0 0
\(871\) − 0.859651i − 0.0291282i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.6897 −0.361379
\(876\) 0 0
\(877\) −13.4640 −0.454647 −0.227324 0.973819i \(-0.572998\pi\)
−0.227324 + 0.973819i \(0.572998\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 14.8565i − 0.500528i −0.968178 0.250264i \(-0.919483\pi\)
0.968178 0.250264i \(-0.0805174\pi\)
\(882\) 0 0
\(883\) 33.0315i 1.11160i 0.831317 + 0.555799i \(0.187588\pi\)
−0.831317 + 0.555799i \(0.812412\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5.27364 0.177072 0.0885358 0.996073i \(-0.471781\pi\)
0.0885358 + 0.996073i \(0.471781\pi\)
\(888\) 0 0
\(889\) 5.36545 0.179951
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.949018i 0.0317577i
\(894\) 0 0
\(895\) − 28.0394i − 0.937253i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.86900 0.0623347
\(900\) 0 0
\(901\) 5.41103 0.180268
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.0747739i 0.00248557i
\(906\) 0 0
\(907\) − 5.87167i − 0.194966i −0.995237 0.0974828i \(-0.968921\pi\)
0.995237 0.0974828i \(-0.0310791\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −55.8316 −1.84978 −0.924891 0.380232i \(-0.875844\pi\)
−0.924891 + 0.380232i \(0.875844\pi\)
\(912\) 0 0
\(913\) 24.8897 0.823728
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 6.96778i − 0.230096i
\(918\) 0 0
\(919\) 0.100963i 0.00333045i 0.999999 + 0.00166522i \(0.000530058\pi\)
−0.999999 + 0.00166522i \(0.999470\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.9983 0.362014
\(924\) 0 0
\(925\) −6.92820 −0.227798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.0245i 0.328893i 0.986386 + 0.164447i \(0.0525839\pi\)
−0.986386 + 0.164447i \(0.947416\pi\)
\(930\) 0 0
\(931\) − 0.155611i − 0.00509995i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 13.1186 0.429023
\(936\) 0 0
\(937\) −5.58688 −0.182515 −0.0912577 0.995827i \(-0.529089\pi\)
−0.0912577 + 0.995827i \(0.529089\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 52.3440i − 1.70636i −0.521613 0.853182i \(-0.674669\pi\)
0.521613 0.853182i \(-0.325331\pi\)
\(942\) 0 0
\(943\) − 11.3893i − 0.370888i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.0156 0.747906 0.373953 0.927448i \(-0.378002\pi\)
0.373953 + 0.927448i \(0.378002\pi\)
\(948\) 0 0
\(949\) 10.5359 0.342010
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 26.0063i − 0.842427i −0.906962 0.421213i \(-0.861604\pi\)
0.906962 0.421213i \(-0.138396\pi\)
\(954\) 0 0
\(955\) − 5.65279i − 0.182920i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.2853 0.461297
\(960\) 0 0
\(961\) 23.8354 0.768885
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 24.4852i − 0.788208i
\(966\) 0 0
\(967\) 6.45251i 0.207499i 0.994603 + 0.103749i \(0.0330840\pi\)
−0.994603 + 0.103749i \(0.966916\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −46.4608 −1.49100 −0.745500 0.666506i \(-0.767789\pi\)
−0.745500 + 0.666506i \(0.767789\pi\)
\(972\) 0 0
\(973\) −7.73363 −0.247929
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.2796i 1.51261i 0.654219 + 0.756305i \(0.272997\pi\)
−0.654219 + 0.756305i \(0.727003\pi\)
\(978\) 0 0
\(979\) 18.8174i 0.601408i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 53.4899 1.70606 0.853032 0.521859i \(-0.174761\pi\)
0.853032 + 0.521859i \(0.174761\pi\)
\(984\) 0 0
\(985\) −27.1891 −0.866317
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.0185i 0.636552i
\(990\) 0 0
\(991\) 41.3741i 1.31429i 0.753764 + 0.657145i \(0.228236\pi\)
−0.753764 + 0.657145i \(0.771764\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.71194 0.212783
\(996\) 0 0
\(997\) −12.2196 −0.386999 −0.193499 0.981100i \(-0.561984\pi\)
−0.193499 + 0.981100i \(0.561984\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.h.f.2591.3 yes 8
3.2 odd 2 3024.2.h.a.2591.6 yes 8
4.3 odd 2 3024.2.h.a.2591.3 8
12.11 even 2 inner 3024.2.h.f.2591.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3024.2.h.a.2591.3 8 4.3 odd 2
3024.2.h.a.2591.6 yes 8 3.2 odd 2
3024.2.h.f.2591.3 yes 8 1.1 even 1 trivial
3024.2.h.f.2591.6 yes 8 12.11 even 2 inner