Properties

Label 3024.2.df.e.1601.3
Level $3024$
Weight $2$
Character 3024.1601
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1601.3
Character \(\chi\) \(=\) 3024.1601
Dual form 3024.2.df.e.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.53401 q^{5} +(-1.30083 + 2.30388i) q^{7} -1.81827i q^{11} +(2.78280 - 1.60665i) q^{13} +(2.93434 + 5.08242i) q^{17} +(2.09143 + 1.20749i) q^{19} +3.84871i q^{23} +7.48923 q^{25} +(-5.79110 - 3.34349i) q^{29} +(4.21959 + 2.43618i) q^{31} +(4.59714 - 8.14192i) q^{35} +(-0.905385 + 1.56817i) q^{37} +(-5.03152 - 8.71485i) q^{41} +(2.36232 - 4.09166i) q^{43} +(3.96076 + 6.86023i) q^{47} +(-3.61569 - 5.99390i) q^{49} +(-2.26517 + 1.30780i) q^{53} +6.42580i q^{55} +(4.40604 - 7.63149i) q^{59} +(-8.98447 + 5.18718i) q^{61} +(-9.83443 + 5.67791i) q^{65} +(-3.92384 + 6.79630i) q^{67} +7.62952i q^{71} +(-11.7672 + 6.79382i) q^{73} +(4.18907 + 2.36526i) q^{77} +(-0.921268 - 1.59568i) q^{79} +(-5.61748 + 9.72975i) q^{83} +(-10.3700 - 17.9613i) q^{85} +(6.89792 - 11.9475i) q^{89} +(0.0815748 + 8.50119i) q^{91} +(-7.39114 - 4.26728i) q^{95} +(-13.7982 - 7.96638i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.53401 −1.58046 −0.790229 0.612812i \(-0.790038\pi\)
−0.790229 + 0.612812i \(0.790038\pi\)
\(6\) 0 0
\(7\) −1.30083 + 2.30388i −0.491667 + 0.870783i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.81827i 0.548230i −0.961697 0.274115i \(-0.911615\pi\)
0.961697 0.274115i \(-0.0883849\pi\)
\(12\) 0 0
\(13\) 2.78280 1.60665i 0.771809 0.445604i −0.0617107 0.998094i \(-0.519656\pi\)
0.833519 + 0.552490i \(0.186322\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.93434 + 5.08242i 0.711682 + 1.23267i 0.964225 + 0.265083i \(0.0853995\pi\)
−0.252544 + 0.967585i \(0.581267\pi\)
\(18\) 0 0
\(19\) 2.09143 + 1.20749i 0.479807 + 0.277017i 0.720336 0.693625i \(-0.243988\pi\)
−0.240529 + 0.970642i \(0.577321\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.84871i 0.802512i 0.915966 + 0.401256i \(0.131426\pi\)
−0.915966 + 0.401256i \(0.868574\pi\)
\(24\) 0 0
\(25\) 7.48923 1.49785
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.79110 3.34349i −1.07538 0.620871i −0.145734 0.989324i \(-0.546554\pi\)
−0.929647 + 0.368452i \(0.879888\pi\)
\(30\) 0 0
\(31\) 4.21959 + 2.43618i 0.757861 + 0.437551i 0.828527 0.559949i \(-0.189179\pi\)
−0.0706663 + 0.997500i \(0.522513\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.59714 8.14192i 0.777059 1.37624i
\(36\) 0 0
\(37\) −0.905385 + 1.56817i −0.148844 + 0.257806i −0.930801 0.365527i \(-0.880889\pi\)
0.781956 + 0.623333i \(0.214222\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.03152 8.71485i −0.785792 1.36103i −0.928525 0.371270i \(-0.878922\pi\)
0.142733 0.989761i \(-0.454411\pi\)
\(42\) 0 0
\(43\) 2.36232 4.09166i 0.360251 0.623973i −0.627751 0.778414i \(-0.716024\pi\)
0.988002 + 0.154441i \(0.0493577\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.96076 + 6.86023i 0.577736 + 1.00067i 0.995738 + 0.0922218i \(0.0293969\pi\)
−0.418003 + 0.908446i \(0.637270\pi\)
\(48\) 0 0
\(49\) −3.61569 5.99390i −0.516527 0.856271i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.26517 + 1.30780i −0.311146 + 0.179640i −0.647439 0.762117i \(-0.724160\pi\)
0.336293 + 0.941757i \(0.390827\pi\)
\(54\) 0 0
\(55\) 6.42580i 0.866454i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.40604 7.63149i 0.573618 0.993535i −0.422573 0.906329i \(-0.638873\pi\)
0.996190 0.0872059i \(-0.0277938\pi\)
\(60\) 0 0
\(61\) −8.98447 + 5.18718i −1.15034 + 0.664151i −0.948971 0.315364i \(-0.897873\pi\)
−0.201372 + 0.979515i \(0.564540\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.83443 + 5.67791i −1.21981 + 0.704258i
\(66\) 0 0
\(67\) −3.92384 + 6.79630i −0.479374 + 0.830300i −0.999720 0.0236554i \(-0.992470\pi\)
0.520346 + 0.853955i \(0.325803\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.62952i 0.905458i 0.891648 + 0.452729i \(0.149549\pi\)
−0.891648 + 0.452729i \(0.850451\pi\)
\(72\) 0 0
\(73\) −11.7672 + 6.79382i −1.37725 + 0.795156i −0.991828 0.127584i \(-0.959278\pi\)
−0.385423 + 0.922740i \(0.625945\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.18907 + 2.36526i 0.477389 + 0.269547i
\(78\) 0 0
\(79\) −0.921268 1.59568i −0.103651 0.179528i 0.809535 0.587071i \(-0.199719\pi\)
−0.913186 + 0.407543i \(0.866386\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.61748 + 9.72975i −0.616598 + 1.06798i 0.373504 + 0.927629i \(0.378156\pi\)
−0.990102 + 0.140351i \(0.955177\pi\)
\(84\) 0 0
\(85\) −10.3700 17.9613i −1.12478 1.94818i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.89792 11.9475i 0.731178 1.26644i −0.225202 0.974312i \(-0.572304\pi\)
0.956380 0.292125i \(-0.0943624\pi\)
\(90\) 0 0
\(91\) 0.0815748 + 8.50119i 0.00855137 + 0.891167i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.39114 4.26728i −0.758315 0.437813i
\(96\) 0 0
\(97\) −13.7982 7.96638i −1.40099 0.808863i −0.406497 0.913652i \(-0.633250\pi\)
−0.994494 + 0.104789i \(0.966583\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.1250 −1.10698 −0.553489 0.832856i \(-0.686704\pi\)
−0.553489 + 0.832856i \(0.686704\pi\)
\(102\) 0 0
\(103\) 0.603028i 0.0594181i −0.999559 0.0297091i \(-0.990542\pi\)
0.999559 0.0297091i \(-0.00945808\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.3342 6.54381i −1.09572 0.632614i −0.160627 0.987015i \(-0.551351\pi\)
−0.935094 + 0.354401i \(0.884685\pi\)
\(108\) 0 0
\(109\) −1.37061 2.37396i −0.131280 0.227384i 0.792890 0.609365i \(-0.208575\pi\)
−0.924170 + 0.381981i \(0.875242\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.65125 + 3.84010i −0.625697 + 0.361246i −0.779084 0.626920i \(-0.784315\pi\)
0.153387 + 0.988166i \(0.450982\pi\)
\(114\) 0 0
\(115\) 13.6014i 1.26834i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.5263 + 0.148986i −1.42330 + 0.0136575i
\(120\) 0 0
\(121\) 7.69388 0.699444
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.79697 −0.786825
\(126\) 0 0
\(127\) −17.9246 −1.59055 −0.795277 0.606246i \(-0.792675\pi\)
−0.795277 + 0.606246i \(0.792675\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.9707 1.48273 0.741367 0.671100i \(-0.234178\pi\)
0.741367 + 0.671100i \(0.234178\pi\)
\(132\) 0 0
\(133\) −5.50250 + 3.24766i −0.477127 + 0.281608i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.56139i 0.475142i −0.971370 0.237571i \(-0.923649\pi\)
0.971370 0.237571i \(-0.0763512\pi\)
\(138\) 0 0
\(139\) 12.4503 7.18817i 1.05602 0.609693i 0.131690 0.991291i \(-0.457960\pi\)
0.924328 + 0.381598i \(0.124626\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.92132 5.05988i −0.244293 0.423129i
\(144\) 0 0
\(145\) 20.4658 + 11.8159i 1.69959 + 0.981261i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.42112i 0.526039i −0.964791 0.263019i \(-0.915282\pi\)
0.964791 0.263019i \(-0.0847184\pi\)
\(150\) 0 0
\(151\) −15.9925 −1.30145 −0.650727 0.759312i \(-0.725536\pi\)
−0.650727 + 0.759312i \(0.725536\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.9121 8.60949i −1.19777 0.691531i
\(156\) 0 0
\(157\) −12.0612 6.96356i −0.962592 0.555753i −0.0656219 0.997845i \(-0.520903\pi\)
−0.896970 + 0.442092i \(0.854236\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.86696 5.00652i −0.698814 0.394569i
\(162\) 0 0
\(163\) −7.79498 + 13.5013i −0.610550 + 1.05750i 0.380598 + 0.924740i \(0.375718\pi\)
−0.991148 + 0.132762i \(0.957615\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.58728 11.4095i −0.509739 0.882893i −0.999936 0.0112821i \(-0.996409\pi\)
0.490198 0.871611i \(-0.336925\pi\)
\(168\) 0 0
\(169\) −1.33736 + 2.31638i −0.102874 + 0.178183i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.60402 + 9.70645i 0.426066 + 0.737968i 0.996519 0.0833623i \(-0.0265659\pi\)
−0.570453 + 0.821330i \(0.693233\pi\)
\(174\) 0 0
\(175\) −9.74221 + 17.2543i −0.736442 + 1.30430i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.22783 5.32769i 0.689721 0.398210i −0.113787 0.993505i \(-0.536298\pi\)
0.803507 + 0.595295i \(0.202965\pi\)
\(180\) 0 0
\(181\) 11.8897i 0.883754i −0.897076 0.441877i \(-0.854313\pi\)
0.897076 0.441877i \(-0.145687\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.19964 5.54194i 0.235242 0.407451i
\(186\) 0 0
\(187\) 9.24123 5.33543i 0.675786 0.390165i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.193961 0.111983i 0.0140345 0.00810283i −0.492966 0.870048i \(-0.664087\pi\)
0.507001 + 0.861946i \(0.330754\pi\)
\(192\) 0 0
\(193\) −13.0373 + 22.5812i −0.938442 + 1.62543i −0.170064 + 0.985433i \(0.554398\pi\)
−0.768378 + 0.639996i \(0.778936\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.56289i 0.111352i 0.998449 + 0.0556758i \(0.0177313\pi\)
−0.998449 + 0.0556758i \(0.982269\pi\)
\(198\) 0 0
\(199\) −13.4725 + 7.77832i −0.955037 + 0.551391i −0.894642 0.446784i \(-0.852569\pi\)
−0.0603949 + 0.998175i \(0.519236\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.2362 8.99266i 1.06937 0.631161i
\(204\) 0 0
\(205\) 17.7815 + 30.7984i 1.24191 + 2.15105i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.19554 3.80279i 0.151869 0.263045i
\(210\) 0 0
\(211\) −6.98216 12.0935i −0.480672 0.832548i 0.519082 0.854724i \(-0.326274\pi\)
−0.999754 + 0.0221763i \(0.992941\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.34848 + 14.4600i −0.569361 + 0.986163i
\(216\) 0 0
\(217\) −11.1016 + 6.55236i −0.753628 + 0.444803i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.3313 + 9.42890i 1.09856 + 0.634256i
\(222\) 0 0
\(223\) 21.4242 + 12.3693i 1.43467 + 0.828307i 0.997472 0.0710586i \(-0.0226377\pi\)
0.437198 + 0.899366i \(0.355971\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.24153 −0.414265 −0.207132 0.978313i \(-0.566413\pi\)
−0.207132 + 0.978313i \(0.566413\pi\)
\(228\) 0 0
\(229\) 15.8574i 1.04789i −0.851753 0.523943i \(-0.824460\pi\)
0.851753 0.523943i \(-0.175540\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.94574 1.70072i −0.192982 0.111418i 0.400396 0.916342i \(-0.368873\pi\)
−0.593378 + 0.804924i \(0.702206\pi\)
\(234\) 0 0
\(235\) −13.9974 24.2441i −0.913087 1.58151i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −16.3482 + 9.43864i −1.05748 + 0.610535i −0.924733 0.380615i \(-0.875712\pi\)
−0.132744 + 0.991150i \(0.542379\pi\)
\(240\) 0 0
\(241\) 11.1845i 0.720460i 0.932864 + 0.360230i \(0.117302\pi\)
−0.932864 + 0.360230i \(0.882698\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.7779 + 21.1825i 0.816348 + 1.35330i
\(246\) 0 0
\(247\) 7.76003 0.493759
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.4537 0.975431 0.487716 0.873003i \(-0.337830\pi\)
0.487716 + 0.873003i \(0.337830\pi\)
\(252\) 0 0
\(253\) 6.99801 0.439961
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.6448 0.664002 0.332001 0.943279i \(-0.392276\pi\)
0.332001 + 0.943279i \(0.392276\pi\)
\(258\) 0 0
\(259\) −2.43512 4.12582i −0.151311 0.256366i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.0875i 0.683685i 0.939757 + 0.341842i \(0.111051\pi\)
−0.939757 + 0.341842i \(0.888949\pi\)
\(264\) 0 0
\(265\) 8.00515 4.62178i 0.491753 0.283913i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.14147 + 5.44119i 0.191539 + 0.331755i 0.945760 0.324865i \(-0.105319\pi\)
−0.754221 + 0.656620i \(0.771986\pi\)
\(270\) 0 0
\(271\) −0.954533 0.551100i −0.0579838 0.0334769i 0.470728 0.882278i \(-0.343991\pi\)
−0.528712 + 0.848802i \(0.677325\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.6175i 0.821164i
\(276\) 0 0
\(277\) −15.3616 −0.922990 −0.461495 0.887143i \(-0.652687\pi\)
−0.461495 + 0.887143i \(0.652687\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.9133 10.9196i −1.12827 0.651407i −0.184771 0.982782i \(-0.559154\pi\)
−0.943499 + 0.331374i \(0.892488\pi\)
\(282\) 0 0
\(283\) 9.59426 + 5.53925i 0.570320 + 0.329274i 0.757277 0.653094i \(-0.226529\pi\)
−0.186957 + 0.982368i \(0.559863\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.6231 0.255467i 1.57151 0.0150797i
\(288\) 0 0
\(289\) −8.72069 + 15.1047i −0.512982 + 0.888511i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.6330 21.8810i −0.738027 1.27830i −0.953382 0.301765i \(-0.902424\pi\)
0.215355 0.976536i \(-0.430909\pi\)
\(294\) 0 0
\(295\) −15.5710 + 26.9698i −0.906578 + 1.57024i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.18353 + 10.7102i 0.357603 + 0.619386i
\(300\) 0 0
\(301\) 6.35371 + 10.7651i 0.366222 + 0.620488i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 31.7512 18.3316i 1.81807 1.04966i
\(306\) 0 0
\(307\) 12.2163i 0.697219i −0.937268 0.348610i \(-0.886654\pi\)
0.937268 0.348610i \(-0.113346\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.74484 + 8.21830i −0.269055 + 0.466017i −0.968618 0.248554i \(-0.920045\pi\)
0.699563 + 0.714571i \(0.253378\pi\)
\(312\) 0 0
\(313\) 11.7358 6.77564i 0.663344 0.382982i −0.130206 0.991487i \(-0.541564\pi\)
0.793550 + 0.608505i \(0.208231\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.7559 + 7.94197i −0.772608 + 0.446065i −0.833804 0.552060i \(-0.813842\pi\)
0.0611961 + 0.998126i \(0.480508\pi\)
\(318\) 0 0
\(319\) −6.07939 + 10.5298i −0.340380 + 0.589556i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14.1727i 0.788591i
\(324\) 0 0
\(325\) 20.8410 12.0326i 1.15605 0.667446i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −20.9574 + 0.201101i −1.15542 + 0.0110870i
\(330\) 0 0
\(331\) 5.48697 + 9.50372i 0.301591 + 0.522371i 0.976497 0.215533i \(-0.0691489\pi\)
−0.674905 + 0.737904i \(0.735816\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13.8669 24.0182i 0.757630 1.31225i
\(336\) 0 0
\(337\) 2.80751 + 4.86275i 0.152935 + 0.264891i 0.932305 0.361673i \(-0.117794\pi\)
−0.779370 + 0.626564i \(0.784461\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.42964 7.67237i 0.239879 0.415482i
\(342\) 0 0
\(343\) 18.5126 0.533054i 0.999586 0.0287822i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.18003 2.41334i −0.224396 0.129555i 0.383588 0.923504i \(-0.374688\pi\)
−0.607984 + 0.793949i \(0.708022\pi\)
\(348\) 0 0
\(349\) 22.7167 + 13.1155i 1.21600 + 0.702056i 0.964059 0.265688i \(-0.0855991\pi\)
0.251937 + 0.967744i \(0.418932\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 34.9914 1.86240 0.931201 0.364505i \(-0.118762\pi\)
0.931201 + 0.364505i \(0.118762\pi\)
\(354\) 0 0
\(355\) 26.9628i 1.43104i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.6396 12.4936i −1.14209 0.659388i −0.195146 0.980774i \(-0.562518\pi\)
−0.946948 + 0.321386i \(0.895851\pi\)
\(360\) 0 0
\(361\) −6.58394 11.4037i −0.346523 0.600196i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 41.5855 24.0094i 2.17669 1.25671i
\(366\) 0 0
\(367\) 24.6067i 1.28446i −0.766512 0.642230i \(-0.778009\pi\)
0.766512 0.642230i \(-0.221991\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.0664013 6.91990i −0.00344738 0.359264i
\(372\) 0 0
\(373\) −10.4374 −0.540428 −0.270214 0.962800i \(-0.587094\pi\)
−0.270214 + 0.962800i \(0.587094\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21.4873 −1.10665
\(378\) 0 0
\(379\) −31.8728 −1.63719 −0.818597 0.574368i \(-0.805248\pi\)
−0.818597 + 0.574368i \(0.805248\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −24.7719 −1.26579 −0.632893 0.774239i \(-0.718133\pi\)
−0.632893 + 0.774239i \(0.718133\pi\)
\(384\) 0 0
\(385\) −14.8042 8.35886i −0.754494 0.426007i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 23.0227i 1.16729i −0.812007 0.583647i \(-0.801625\pi\)
0.812007 0.583647i \(-0.198375\pi\)
\(390\) 0 0
\(391\) −19.5608 + 11.2934i −0.989232 + 0.571133i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.25577 + 5.63916i 0.163816 + 0.283737i
\(396\) 0 0
\(397\) 23.9247 + 13.8129i 1.20075 + 0.693251i 0.960721 0.277515i \(-0.0895109\pi\)
0.240025 + 0.970767i \(0.422844\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.32384i 0.265860i 0.991125 + 0.132930i \(0.0424385\pi\)
−0.991125 + 0.132930i \(0.957561\pi\)
\(402\) 0 0
\(403\) 15.6563 0.779898
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.85137 + 1.64624i 0.141337 + 0.0816009i
\(408\) 0 0
\(409\) 6.11912 + 3.53288i 0.302571 + 0.174690i 0.643597 0.765364i \(-0.277441\pi\)
−0.341026 + 0.940054i \(0.610774\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.8505 + 20.0782i 0.583124 + 0.987985i
\(414\) 0 0
\(415\) 19.8522 34.3851i 0.974507 1.68790i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.94504 3.36891i −0.0950215 0.164582i 0.814596 0.580029i \(-0.196959\pi\)
−0.909618 + 0.415447i \(0.863625\pi\)
\(420\) 0 0
\(421\) −2.18533 + 3.78510i −0.106506 + 0.184475i −0.914353 0.404919i \(-0.867300\pi\)
0.807846 + 0.589393i \(0.200633\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 21.9759 + 38.0634i 1.06599 + 1.84635i
\(426\) 0 0
\(427\) −0.263371 27.4467i −0.0127454 1.32824i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.7505 6.20681i 0.517834 0.298971i −0.218214 0.975901i \(-0.570023\pi\)
0.736048 + 0.676929i \(0.236690\pi\)
\(432\) 0 0
\(433\) 25.2979i 1.21574i −0.794036 0.607870i \(-0.792024\pi\)
0.794036 0.607870i \(-0.207976\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.64728 + 8.04932i −0.222309 + 0.385051i
\(438\) 0 0
\(439\) 23.2408 13.4181i 1.10922 0.640410i 0.170595 0.985341i \(-0.445431\pi\)
0.938628 + 0.344931i \(0.112098\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.3051 + 6.52699i −0.537120 + 0.310107i −0.743911 0.668279i \(-0.767031\pi\)
0.206791 + 0.978385i \(0.433698\pi\)
\(444\) 0 0
\(445\) −24.3773 + 42.2227i −1.15560 + 2.00155i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.468645i 0.0221167i −0.999939 0.0110584i \(-0.996480\pi\)
0.999939 0.0110584i \(-0.00352006\pi\)
\(450\) 0 0
\(451\) −15.8460 + 9.14868i −0.746158 + 0.430795i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.288286 30.0433i −0.0135151 1.40845i
\(456\) 0 0
\(457\) 2.06486 + 3.57644i 0.0965901 + 0.167299i 0.910271 0.414013i \(-0.135873\pi\)
−0.813681 + 0.581312i \(0.802540\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.9115 + 22.3633i −0.601347 + 1.04156i 0.391271 + 0.920276i \(0.372036\pi\)
−0.992617 + 0.121288i \(0.961298\pi\)
\(462\) 0 0
\(463\) 2.56402 + 4.44101i 0.119160 + 0.206391i 0.919435 0.393242i \(-0.128647\pi\)
−0.800275 + 0.599633i \(0.795313\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.26091 + 2.18396i −0.0583480 + 0.101062i −0.893724 0.448617i \(-0.851917\pi\)
0.835376 + 0.549679i \(0.185250\pi\)
\(468\) 0 0
\(469\) −10.5536 17.8809i −0.487319 0.825662i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.43976 4.29535i −0.342081 0.197500i
\(474\) 0 0
\(475\) 15.6632 + 9.04316i 0.718677 + 0.414929i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −11.4924 −0.525103 −0.262552 0.964918i \(-0.584564\pi\)
−0.262552 + 0.964918i \(0.584564\pi\)
\(480\) 0 0
\(481\) 5.81854i 0.265303i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 48.7629 + 28.1533i 2.21421 + 1.27837i
\(486\) 0 0
\(487\) 10.8463 + 18.7864i 0.491493 + 0.851292i 0.999952 0.00979483i \(-0.00311784\pi\)
−0.508459 + 0.861086i \(0.669785\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19.3592 + 11.1771i −0.873669 + 0.504413i −0.868566 0.495574i \(-0.834958\pi\)
−0.00510349 + 0.999987i \(0.501624\pi\)
\(492\) 0 0
\(493\) 39.2438i 1.76745i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.5775 9.92470i −0.788457 0.445184i
\(498\) 0 0
\(499\) −17.5246 −0.784510 −0.392255 0.919857i \(-0.628305\pi\)
−0.392255 + 0.919857i \(0.628305\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −7.60926 −0.339280 −0.169640 0.985506i \(-0.554261\pi\)
−0.169640 + 0.985506i \(0.554261\pi\)
\(504\) 0 0
\(505\) 39.3159 1.74953
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.78746 0.300849 0.150424 0.988622i \(-0.451936\pi\)
0.150424 + 0.988622i \(0.451936\pi\)
\(510\) 0 0
\(511\) −0.344945 35.9479i −0.0152595 1.59024i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.13111i 0.0939078i
\(516\) 0 0
\(517\) 12.4738 7.20174i 0.548596 0.316732i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.8435 + 23.9777i 0.606497 + 1.05048i 0.991813 + 0.127698i \(0.0407590\pi\)
−0.385316 + 0.922785i \(0.625908\pi\)
\(522\) 0 0
\(523\) 0.834923 + 0.482043i 0.0365086 + 0.0210783i 0.518143 0.855294i \(-0.326623\pi\)
−0.481635 + 0.876372i \(0.659957\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.5943i 1.24559i
\(528\) 0 0
\(529\) 8.18740 0.355974
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.0034 16.1678i −1.21296 0.700304i
\(534\) 0 0
\(535\) 40.0552 + 23.1259i 1.73174 + 0.999820i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.8985 + 6.57430i −0.469433 + 0.283175i
\(540\) 0 0
\(541\) 2.36867 4.10266i 0.101837 0.176387i −0.810604 0.585594i \(-0.800861\pi\)
0.912442 + 0.409207i \(0.134195\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4.84374 + 8.38960i 0.207483 + 0.359371i
\(546\) 0 0
\(547\) 0.840875 1.45644i 0.0359532 0.0622728i −0.847489 0.530813i \(-0.821887\pi\)
0.883442 + 0.468540i \(0.155220\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.07446 13.9854i −0.343984 0.595797i
\(552\) 0 0
\(553\) 4.87467 0.0467758i 0.207292 0.00198911i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.14983 + 4.70530i −0.345319 + 0.199370i −0.662622 0.748954i \(-0.730556\pi\)
0.317303 + 0.948324i \(0.397223\pi\)
\(558\) 0 0
\(559\) 15.1817i 0.642117i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.5319 + 26.9020i −0.654591 + 1.13378i 0.327405 + 0.944884i \(0.393826\pi\)
−0.981996 + 0.188901i \(0.939508\pi\)
\(564\) 0 0
\(565\) 23.5056 13.5710i 0.988888 0.570935i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.4099 + 10.0516i −0.729859 + 0.421384i −0.818371 0.574691i \(-0.805122\pi\)
0.0885114 + 0.996075i \(0.471789\pi\)
\(570\) 0 0
\(571\) −3.93707 + 6.81920i −0.164761 + 0.285375i −0.936570 0.350479i \(-0.886019\pi\)
0.771809 + 0.635854i \(0.219352\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.8239i 1.20204i
\(576\) 0 0
\(577\) −2.77842 + 1.60412i −0.115667 + 0.0667805i −0.556717 0.830702i \(-0.687939\pi\)
0.441050 + 0.897482i \(0.354606\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.1088 25.5987i −0.626817 1.06201i
\(582\) 0 0
\(583\) 2.37794 + 4.11871i 0.0984840 + 0.170579i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.37708 + 4.11722i −0.0981125 + 0.169936i −0.910903 0.412620i \(-0.864614\pi\)
0.812791 + 0.582556i \(0.197947\pi\)
\(588\) 0 0
\(589\) 5.88332 + 10.1902i 0.242418 + 0.419880i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.0354 + 22.5780i −0.535300 + 0.927166i 0.463849 + 0.885914i \(0.346468\pi\)
−0.999149 + 0.0412519i \(0.986865\pi\)
\(594\) 0 0
\(595\) 54.8703 0.526519i 2.24946 0.0215852i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −23.8178 13.7512i −0.973168 0.561859i −0.0729672 0.997334i \(-0.523247\pi\)
−0.900200 + 0.435476i \(0.856580\pi\)
\(600\) 0 0
\(601\) −26.8647 15.5104i −1.09584 0.632681i −0.160712 0.987001i \(-0.551379\pi\)
−0.935124 + 0.354320i \(0.884712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −27.1903 −1.10544
\(606\) 0 0
\(607\) 39.2304i 1.59231i 0.605092 + 0.796156i \(0.293136\pi\)
−0.605092 + 0.796156i \(0.706864\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 22.0440 + 12.7271i 0.891803 + 0.514883i
\(612\) 0 0
\(613\) −11.5364 19.9817i −0.465951 0.807051i 0.533293 0.845931i \(-0.320954\pi\)
−0.999244 + 0.0388795i \(0.987621\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.15715 + 2.97748i −0.207619 + 0.119869i −0.600204 0.799847i \(-0.704914\pi\)
0.392585 + 0.919716i \(0.371581\pi\)
\(618\) 0 0
\(619\) 32.3650i 1.30086i −0.759567 0.650429i \(-0.774589\pi\)
0.759567 0.650429i \(-0.225411\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.5526 + 31.4337i 0.743296 + 1.25936i
\(624\) 0 0
\(625\) −6.35758 −0.254303
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.6268 −0.423719
\(630\) 0 0
\(631\) 35.6689 1.41996 0.709978 0.704224i \(-0.248705\pi\)
0.709978 + 0.704224i \(0.248705\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 63.3459 2.51380
\(636\) 0 0
\(637\) −19.6918 10.8707i −0.780218 0.430711i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.8536i 0.981659i −0.871256 0.490829i \(-0.836694\pi\)
0.871256 0.490829i \(-0.163306\pi\)
\(642\) 0 0
\(643\) −14.8270 + 8.56038i −0.584720 + 0.337588i −0.763007 0.646390i \(-0.776278\pi\)
0.178287 + 0.983979i \(0.442944\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.7208 + 28.9613i 0.657363 + 1.13859i 0.981296 + 0.192506i \(0.0616614\pi\)
−0.323933 + 0.946080i \(0.605005\pi\)
\(648\) 0 0
\(649\) −13.8761 8.01138i −0.544686 0.314474i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.4238i 1.03404i 0.855972 + 0.517022i \(0.172959\pi\)
−0.855972 + 0.517022i \(0.827041\pi\)
\(654\) 0 0
\(655\) −59.9745 −2.34340
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 25.8862 + 14.9454i 1.00838 + 0.582191i 0.910718 0.413029i \(-0.135529\pi\)
0.0976658 + 0.995219i \(0.468862\pi\)
\(660\) 0 0
\(661\) −3.92629 2.26684i −0.152715 0.0881699i 0.421695 0.906738i \(-0.361435\pi\)
−0.574410 + 0.818568i \(0.694769\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.4459 11.4773i 0.754079 0.445069i
\(666\) 0 0
\(667\) 12.8682 22.2883i 0.498257 0.863006i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.43172 + 16.3362i 0.364107 + 0.630652i
\(672\) 0 0
\(673\) 4.12239 7.14019i 0.158907 0.275234i −0.775568 0.631264i \(-0.782536\pi\)
0.934475 + 0.356030i \(0.115870\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.75631 4.77407i −0.105934 0.183483i 0.808186 0.588928i \(-0.200450\pi\)
−0.914119 + 0.405445i \(0.867116\pi\)
\(678\) 0 0
\(679\) 36.3026 21.4264i 1.39317 0.822268i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.0097 13.8620i 0.918706 0.530415i 0.0354840 0.999370i \(-0.488703\pi\)
0.883222 + 0.468955i \(0.155369\pi\)
\(684\) 0 0
\(685\) 19.6540i 0.750942i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4.20235 + 7.27868i −0.160097 + 0.277296i
\(690\) 0 0
\(691\) −36.5312 + 21.0913i −1.38971 + 0.802351i −0.993283 0.115714i \(-0.963084\pi\)
−0.396430 + 0.918065i \(0.629751\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −43.9994 + 25.4031i −1.66899 + 0.963593i
\(696\) 0 0
\(697\) 29.5284 51.1447i 1.11847 1.93724i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.07738i 0.0406922i 0.999793 + 0.0203461i \(0.00647681\pi\)
−0.999793 + 0.0203461i \(0.993523\pi\)
\(702\) 0 0
\(703\) −3.78710 + 2.18648i −0.142833 + 0.0824648i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.4717 25.6306i 0.544265 0.963938i
\(708\) 0 0
\(709\) 10.9806 + 19.0189i 0.412385 + 0.714271i 0.995150 0.0983694i \(-0.0313627\pi\)
−0.582765 + 0.812640i \(0.698029\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −9.37617 + 16.2400i −0.351140 + 0.608193i
\(714\) 0 0
\(715\) 10.3240 + 17.8817i 0.386095 + 0.668737i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −5.89267 + 10.2064i −0.219760 + 0.380635i −0.954734 0.297460i \(-0.903861\pi\)
0.734975 + 0.678094i \(0.237194\pi\)
\(720\) 0 0
\(721\) 1.38930 + 0.784436i 0.0517403 + 0.0292139i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −43.3709 25.0402i −1.61075 0.929970i
\(726\) 0 0
\(727\) 10.1963 + 5.88682i 0.378159 + 0.218330i 0.677017 0.735967i \(-0.263272\pi\)
−0.298858 + 0.954298i \(0.596606\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 27.7274 1.02554
\(732\) 0 0
\(733\) 43.7655i 1.61652i −0.588829 0.808258i \(-0.700411\pi\)
0.588829 0.808258i \(-0.299589\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.3575 + 7.13462i 0.455195 + 0.262807i
\(738\) 0 0
\(739\) −13.9728 24.2016i −0.513998 0.890270i −0.999868 0.0162393i \(-0.994831\pi\)
0.485870 0.874031i \(-0.338503\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31.0951 17.9528i 1.14077 0.658623i 0.194147 0.980972i \(-0.437806\pi\)
0.946621 + 0.322350i \(0.104473\pi\)
\(744\) 0 0
\(745\) 22.6923i 0.831382i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 29.8200 17.6002i 1.08960 0.643099i
\(750\) 0 0
\(751\) 2.35031 0.0857642 0.0428821 0.999080i \(-0.486346\pi\)
0.0428821 + 0.999080i \(0.486346\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 56.5178 2.05689
\(756\) 0 0
\(757\) 8.88061 0.322771 0.161386 0.986891i \(-0.448404\pi\)
0.161386 + 0.986891i \(0.448404\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −26.9766 −0.977902 −0.488951 0.872311i \(-0.662620\pi\)
−0.488951 + 0.872311i \(0.662620\pi\)
\(762\) 0 0
\(763\) 7.25223 0.0695902i 0.262548 0.00251933i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.3158i 1.02243i
\(768\) 0 0
\(769\) 7.88232 4.55086i 0.284244 0.164108i −0.351099 0.936338i \(-0.614192\pi\)
0.635343 + 0.772230i \(0.280859\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.46864 + 11.2040i 0.232661 + 0.402980i 0.958590 0.284789i \(-0.0919235\pi\)
−0.725929 + 0.687769i \(0.758590\pi\)
\(774\) 0 0
\(775\) 31.6015 + 18.2451i 1.13516 + 0.655384i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 24.3020i 0.870710i
\(780\) 0 0
\(781\) 13.8726 0.496399
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 42.6245 + 24.6093i 1.52134 + 0.878343i
\(786\) 0 0
\(787\) −21.5265 12.4283i −0.767336 0.443022i 0.0645875 0.997912i \(-0.479427\pi\)
−0.831923 + 0.554890i \(0.812760\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.194975 20.3190i −0.00693250 0.722460i
\(792\) 0 0
\(793\) −16.6680 + 28.8697i −0.591896 + 1.02519i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.71671 11.6337i −0.237918 0.412086i 0.722199 0.691686i \(-0.243132\pi\)
−0.960117 + 0.279600i \(0.909798\pi\)
\(798\) 0 0
\(799\) −23.2444 + 40.2605i −0.822328 + 1.42431i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.3530 + 21.3961i 0.435928 + 0.755050i
\(804\) 0 0
\(805\) 31.3359 + 17.6931i 1.10445 + 0.623600i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.38524 5.41857i 0.329967 0.190507i −0.325859 0.945418i \(-0.605654\pi\)
0.655827 + 0.754912i \(0.272320\pi\)
\(810\) 0 0
\(811\) 35.3334i 1.24072i 0.784316 + 0.620361i \(0.213014\pi\)
−0.784316 + 0.620361i \(0.786986\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 27.5475 47.7137i 0.964948 1.67134i
\(816\) 0 0
\(817\) 9.88127 5.70496i 0.345702 0.199591i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.6412 9.60782i 0.580783 0.335315i −0.180661 0.983545i \(-0.557824\pi\)
0.761445 + 0.648230i \(0.224490\pi\)
\(822\) 0 0
\(823\) 14.9074 25.8204i 0.519639 0.900041i −0.480100 0.877214i \(-0.659400\pi\)
0.999739 0.0228278i \(-0.00726695\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.356137i 0.0123841i 0.999981 + 0.00619205i \(0.00197100\pi\)
−0.999981 + 0.00619205i \(0.998029\pi\)
\(828\) 0 0
\(829\) −17.5571 + 10.1366i −0.609783 + 0.352058i −0.772880 0.634552i \(-0.781185\pi\)
0.163098 + 0.986610i \(0.447851\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19.8539 35.9646i 0.687896 1.24610i
\(834\) 0 0
\(835\) 23.2795 + 40.3213i 0.805620 + 1.39538i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −0.662663 + 1.14777i −0.0228777 + 0.0396253i −0.877238 0.480056i \(-0.840616\pi\)
0.854360 + 0.519682i \(0.173949\pi\)
\(840\) 0 0
\(841\) 7.85791 + 13.6103i 0.270962 + 0.469321i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.72626 8.18612i 0.162588 0.281611i
\(846\) 0 0
\(847\) −10.0084 + 17.7258i −0.343894 + 0.609064i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.03545 3.48457i −0.206893 0.119449i
\(852\) 0 0
\(853\) −41.7558 24.1077i −1.42969 0.825432i −0.432594 0.901589i \(-0.642402\pi\)
−0.997096 + 0.0761571i \(0.975735\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8773 0.713155 0.356578 0.934266i \(-0.383944\pi\)
0.356578 + 0.934266i \(0.383944\pi\)
\(858\) 0 0
\(859\) 13.7094i 0.467758i −0.972266 0.233879i \(-0.924858\pi\)
0.972266 0.233879i \(-0.0751419\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.1125 + 16.2307i 0.956959 + 0.552501i 0.895236 0.445593i \(-0.147007\pi\)
0.0617233 + 0.998093i \(0.480340\pi\)
\(864\) 0 0
\(865\) −19.8047 34.3027i −0.673379 1.16633i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.90139 + 1.67512i −0.0984228 + 0.0568244i
\(870\) 0 0
\(871\) 25.2169i 0.854444i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 11.4434 20.2671i 0.386856 0.685154i
\(876\) 0 0
\(877\) 21.9338 0.740653 0.370326 0.928902i \(-0.379246\pi\)
0.370326 + 0.928902i \(0.379246\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21.8019 −0.734526 −0.367263 0.930117i \(-0.619705\pi\)
−0.367263 + 0.930117i \(0.619705\pi\)
\(882\) 0 0
\(883\) 24.4085 0.821411 0.410705 0.911768i \(-0.365283\pi\)
0.410705 + 0.911768i \(0.365283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.7444 −1.13303 −0.566513 0.824053i \(-0.691708\pi\)
−0.566513 + 0.824053i \(0.691708\pi\)
\(888\) 0 0
\(889\) 23.3169 41.2961i 0.782024 1.38503i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19.1303i 0.640170i
\(894\) 0 0
\(895\) −32.6113 + 18.8281i −1.09007 + 0.629355i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −16.2907 28.2164i −0.543326 0.941068i
\(900\) 0 0
\(901\) −13.2936 7.67505i −0.442873 0.255693i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 42.0183i 1.39674i
\(906\) 0 0
\(907\) −15.0566 −0.499948 −0.249974 0.968253i \(-0.580422\pi\)
−0.249974 + 0.968253i \(0.580422\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −21.5047 12.4157i −0.712481 0.411351i 0.0994977 0.995038i \(-0.468276\pi\)
−0.811979 + 0.583686i \(0.801610\pi\)
\(912\) 0 0
\(913\) 17.6913 + 10.2141i 0.585498 + 0.338038i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −22.0759 + 39.0983i −0.729012 + 1.29114i
\(918\) 0 0
\(919\) 12.0689 20.9039i 0.398115 0.689555i −0.595378 0.803445i \(-0.702998\pi\)
0.993493 + 0.113890i \(0.0363312\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.2580 + 21.2314i 0.403476 + 0.698840i
\(924\) 0 0
\(925\) −6.78064 + 11.7444i −0.222946 + 0.386154i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 13.3310 + 23.0900i 0.437376 + 0.757558i 0.997486 0.0708606i \(-0.0225745\pi\)
−0.560110 + 0.828418i \(0.689241\pi\)
\(930\) 0 0
\(931\) −0.324397 16.9017i −0.0106317 0.553932i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −32.6586 + 18.8555i −1.06805 + 0.616640i
\(936\) 0 0
\(937\) 8.17165i 0.266956i −0.991052 0.133478i \(-0.957385\pi\)
0.991052 0.133478i \(-0.0426146\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −16.0136 + 27.7363i −0.522028 + 0.904179i 0.477644 + 0.878554i \(0.341491\pi\)
−0.999672 + 0.0256254i \(0.991842\pi\)
\(942\) 0 0
\(943\) 33.5410 19.3649i 1.09224 0.630608i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.5020 + 8.95009i −0.503748 + 0.290839i −0.730260 0.683169i \(-0.760601\pi\)
0.226512 + 0.974008i \(0.427268\pi\)
\(948\) 0 0
\(949\) −21.8305 + 37.8116i −0.708650 + 1.22742i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.2737i 0.365191i −0.983188 0.182596i \(-0.941550\pi\)
0.983188 0.182596i \(-0.0584499\pi\)
\(954\) 0 0
\(955\) −0.685459 + 0.395750i −0.0221809 + 0.0128062i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.8128 + 7.23442i 0.413746 + 0.233612i
\(960\) 0 0
\(961\) −3.63003 6.28740i −0.117098 0.202819i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 46.0738 79.8022i 1.48317 2.56892i
\(966\) 0 0
\(967\) −15.3313 26.5546i −0.493022 0.853939i 0.506946 0.861978i \(-0.330774\pi\)
−0.999968 + 0.00803913i \(0.997441\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.0807 33.0488i 0.612330 1.06059i −0.378517 0.925595i \(-0.623566\pi\)
0.990847 0.134992i \(-0.0431010\pi\)
\(972\) 0 0
\(973\) 0.364967 + 38.0345i 0.0117003 + 1.21933i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −26.5862 15.3496i −0.850568 0.491076i 0.0102745 0.999947i \(-0.496729\pi\)
−0.860842 + 0.508872i \(0.830063\pi\)
\(978\) 0 0
\(979\) −21.7239 12.5423i −0.694299 0.400854i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 25.8057 0.823073 0.411536 0.911393i \(-0.364992\pi\)
0.411536 + 0.911393i \(0.364992\pi\)
\(984\) 0 0
\(985\) 5.52328i 0.175986i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 15.7476 + 9.09191i 0.500746 + 0.289106i
\(990\) 0 0
\(991\) 11.4388 + 19.8126i 0.363366 + 0.629369i 0.988513 0.151139i \(-0.0482940\pi\)
−0.625146 + 0.780508i \(0.714961\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 47.6118 27.4887i 1.50940 0.871450i
\(996\) 0 0
\(997\) 41.5407i 1.31561i 0.753189 + 0.657804i \(0.228514\pi\)
−0.753189 + 0.657804i \(0.771486\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.1601.3 48
3.2 odd 2 1008.2.df.e.929.18 48
4.3 odd 2 1512.2.cx.a.89.3 48
7.3 odd 6 3024.2.ca.e.2033.3 48
9.4 even 3 1008.2.ca.e.257.24 48
9.5 odd 6 3024.2.ca.e.2609.3 48
12.11 even 2 504.2.cx.a.425.7 yes 48
21.17 even 6 1008.2.ca.e.353.24 48
28.3 even 6 1512.2.bs.a.521.3 48
36.23 even 6 1512.2.bs.a.1097.3 48
36.31 odd 6 504.2.bs.a.257.1 48
63.31 odd 6 1008.2.df.e.689.18 48
63.59 even 6 inner 3024.2.df.e.17.3 48
84.59 odd 6 504.2.bs.a.353.1 yes 48
252.31 even 6 504.2.cx.a.185.7 yes 48
252.59 odd 6 1512.2.cx.a.17.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.1 48 36.31 odd 6
504.2.bs.a.353.1 yes 48 84.59 odd 6
504.2.cx.a.185.7 yes 48 252.31 even 6
504.2.cx.a.425.7 yes 48 12.11 even 2
1008.2.ca.e.257.24 48 9.4 even 3
1008.2.ca.e.353.24 48 21.17 even 6
1008.2.df.e.689.18 48 63.31 odd 6
1008.2.df.e.929.18 48 3.2 odd 2
1512.2.bs.a.521.3 48 28.3 even 6
1512.2.bs.a.1097.3 48 36.23 even 6
1512.2.cx.a.17.3 48 252.59 odd 6
1512.2.cx.a.89.3 48 4.3 odd 2
3024.2.ca.e.2033.3 48 7.3 odd 6
3024.2.ca.e.2609.3 48 9.5 odd 6
3024.2.df.e.17.3 48 63.59 even 6 inner
3024.2.df.e.1601.3 48 1.1 even 1 trivial