Properties

Label 3024.2.ca.d.2033.6
Level $3024$
Weight $2$
Character 3024.2033
Analytic conductor $24.147$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(2033,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.2033"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2033.6
Root \(-0.268067 + 1.71118i\) of defining polynomial
Character \(\chi\) \(=\) 3024.2033
Dual form 3024.2.ca.d.2609.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.842869 - 1.45989i) q^{5} +(2.27938 - 1.34329i) q^{7} +(3.38216 - 1.95269i) q^{11} +(-5.24391 + 3.02757i) q^{13} +(0.201244 - 0.348565i) q^{17} +(0.145617 - 0.0840718i) q^{19} +(7.69373 + 4.44198i) q^{23} +(1.07914 + 1.86913i) q^{25} +(6.15380 + 3.55290i) q^{29} -6.28766i q^{31} +(-0.0398441 - 4.45986i) q^{35} +(3.13257 + 5.42578i) q^{37} +(-1.64707 - 2.85281i) q^{41} +(-1.80474 + 3.12590i) q^{43} +8.76965 q^{47} +(3.39113 - 6.12374i) q^{49} +(-4.94628 - 2.85574i) q^{53} -6.58345i q^{55} +4.50326 q^{59} -5.12315i q^{61} +10.2074i q^{65} +5.91041 q^{67} -11.4308i q^{71} +(-6.05559 - 3.49620i) q^{73} +(5.08619 - 8.99415i) q^{77} -1.20794 q^{79} +(0.181350 - 0.314108i) q^{83} +(-0.339244 - 0.587588i) q^{85} +(1.38526 + 2.39934i) q^{89} +(-7.88594 + 13.9451i) q^{91} -0.283446i q^{95} +(-0.508914 - 0.293821i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{7} - 6 q^{11} - 3 q^{13} - 9 q^{17} + 21 q^{23} - 8 q^{25} - 6 q^{29} - 15 q^{35} + q^{37} + 6 q^{41} + 2 q^{43} - 36 q^{47} - 5 q^{49} - 30 q^{59} - 14 q^{67} - 3 q^{77} - 2 q^{79} + 6 q^{85}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.842869 1.45989i 0.376942 0.652883i −0.613673 0.789560i \(-0.710309\pi\)
0.990616 + 0.136677i \(0.0436422\pi\)
\(6\) 0 0
\(7\) 2.27938 1.34329i 0.861524 0.507717i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.38216 1.95269i 1.01976 0.588758i 0.105725 0.994395i \(-0.466284\pi\)
0.914034 + 0.405637i \(0.132950\pi\)
\(12\) 0 0
\(13\) −5.24391 + 3.02757i −1.45440 + 0.839698i −0.998727 0.0504496i \(-0.983935\pi\)
−0.455673 + 0.890147i \(0.650601\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.201244 0.348565i 0.0488088 0.0845393i −0.840589 0.541674i \(-0.817791\pi\)
0.889398 + 0.457134i \(0.151124\pi\)
\(18\) 0 0
\(19\) 0.145617 0.0840718i 0.0334067 0.0192874i −0.483204 0.875508i \(-0.660527\pi\)
0.516610 + 0.856221i \(0.327194\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.69373 + 4.44198i 1.60425 + 0.926216i 0.990623 + 0.136623i \(0.0436248\pi\)
0.613630 + 0.789593i \(0.289709\pi\)
\(24\) 0 0
\(25\) 1.07914 + 1.86913i 0.215829 + 0.373827i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.15380 + 3.55290i 1.14273 + 0.659757i 0.947106 0.320921i \(-0.103993\pi\)
0.195627 + 0.980678i \(0.437326\pi\)
\(30\) 0 0
\(31\) 6.28766i 1.12930i −0.825331 0.564649i \(-0.809012\pi\)
0.825331 0.564649i \(-0.190988\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0398441 4.45986i −0.00673488 0.753855i
\(36\) 0 0
\(37\) 3.13257 + 5.42578i 0.514992 + 0.891992i 0.999849 + 0.0173987i \(0.00553846\pi\)
−0.484857 + 0.874594i \(0.661128\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.64707 2.85281i −0.257229 0.445534i 0.708269 0.705942i \(-0.249476\pi\)
−0.965499 + 0.260408i \(0.916143\pi\)
\(42\) 0 0
\(43\) −1.80474 + 3.12590i −0.275220 + 0.476695i −0.970191 0.242343i \(-0.922084\pi\)
0.694971 + 0.719038i \(0.255417\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.76965 1.27918 0.639592 0.768714i \(-0.279103\pi\)
0.639592 + 0.768714i \(0.279103\pi\)
\(48\) 0 0
\(49\) 3.39113 6.12374i 0.484447 0.874820i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.94628 2.85574i −0.679424 0.392266i 0.120214 0.992748i \(-0.461642\pi\)
−0.799638 + 0.600482i \(0.794975\pi\)
\(54\) 0 0
\(55\) 6.58345i 0.887712i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.50326 0.586275 0.293138 0.956070i \(-0.405301\pi\)
0.293138 + 0.956070i \(0.405301\pi\)
\(60\) 0 0
\(61\) 5.12315i 0.655952i −0.944686 0.327976i \(-0.893634\pi\)
0.944686 0.327976i \(-0.106366\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.2074i 1.26607i
\(66\) 0 0
\(67\) 5.91041 0.722072 0.361036 0.932552i \(-0.382423\pi\)
0.361036 + 0.932552i \(0.382423\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4308i 1.35658i −0.734792 0.678292i \(-0.762720\pi\)
0.734792 0.678292i \(-0.237280\pi\)
\(72\) 0 0
\(73\) −6.05559 3.49620i −0.708753 0.409199i 0.101846 0.994800i \(-0.467525\pi\)
−0.810599 + 0.585601i \(0.800858\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.08619 8.99415i 0.579625 1.02498i
\(78\) 0 0
\(79\) −1.20794 −0.135903 −0.0679517 0.997689i \(-0.521646\pi\)
−0.0679517 + 0.997689i \(0.521646\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.181350 0.314108i 0.0199058 0.0344779i −0.855901 0.517140i \(-0.826997\pi\)
0.875807 + 0.482662i \(0.160330\pi\)
\(84\) 0 0
\(85\) −0.339244 0.587588i −0.0367962 0.0637329i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.38526 + 2.39934i 0.146837 + 0.254329i 0.930057 0.367416i \(-0.119757\pi\)
−0.783220 + 0.621745i \(0.786424\pi\)
\(90\) 0 0
\(91\) −7.88594 + 13.9451i −0.826671 + 1.46184i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.283446i 0.0290809i
\(96\) 0 0
\(97\) −0.508914 0.293821i −0.0516723 0.0298330i 0.473941 0.880556i \(-0.342831\pi\)
−0.525614 + 0.850723i \(0.676164\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.92329 11.9915i −0.688893 1.19320i −0.972196 0.234167i \(-0.924764\pi\)
0.283303 0.959030i \(-0.408570\pi\)
\(102\) 0 0
\(103\) −10.4610 6.03967i −1.03075 0.595106i −0.113554 0.993532i \(-0.536223\pi\)
−0.917201 + 0.398425i \(0.869557\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.9299 + 9.19711i −1.54000 + 0.889118i −0.541159 + 0.840920i \(0.682014\pi\)
−0.998838 + 0.0481978i \(0.984652\pi\)
\(108\) 0 0
\(109\) −5.51036 + 9.54422i −0.527796 + 0.914170i 0.471679 + 0.881771i \(0.343648\pi\)
−0.999475 + 0.0323997i \(0.989685\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.36811 4.25398i 0.693133 0.400181i −0.111652 0.993747i \(-0.535614\pi\)
0.804785 + 0.593567i \(0.202281\pi\)
\(114\) 0 0
\(115\) 12.9696 7.48801i 1.20942 0.698260i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.00951320 1.06484i −0.000872074 0.0976137i
\(120\) 0 0
\(121\) 2.12600 3.68234i 0.193273 0.334758i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0670 1.07930
\(126\) 0 0
\(127\) 10.6312 0.943365 0.471682 0.881769i \(-0.343647\pi\)
0.471682 + 0.881769i \(0.343647\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.16740 5.48610i 0.276737 0.479322i −0.693835 0.720134i \(-0.744080\pi\)
0.970572 + 0.240812i \(0.0774136\pi\)
\(132\) 0 0
\(133\) 0.218982 0.387237i 0.0189882 0.0335777i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.4158 + 8.32296i −1.23162 + 0.711078i −0.967368 0.253375i \(-0.918459\pi\)
−0.264255 + 0.964453i \(0.585126\pi\)
\(138\) 0 0
\(139\) −4.24007 + 2.44800i −0.359638 + 0.207637i −0.668922 0.743333i \(-0.733244\pi\)
0.309284 + 0.950970i \(0.399911\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.8238 + 20.4795i −0.988758 + 1.71258i
\(144\) 0 0
\(145\) 10.3737 5.98926i 0.861489 0.497381i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.57864 + 2.64348i 0.375097 + 0.216562i 0.675683 0.737192i \(-0.263849\pi\)
−0.300586 + 0.953755i \(0.597182\pi\)
\(150\) 0 0
\(151\) −7.29163 12.6295i −0.593385 1.02777i −0.993773 0.111427i \(-0.964458\pi\)
0.400388 0.916346i \(-0.368875\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.17930 5.29967i −0.737299 0.425680i
\(156\) 0 0
\(157\) 17.8009i 1.42066i −0.703867 0.710332i \(-0.748545\pi\)
0.703867 0.710332i \(-0.251455\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.5038 0.209981i 1.85236 0.0165488i
\(162\) 0 0
\(163\) −0.0482228 0.0835243i −0.00377710 0.00654213i 0.864131 0.503267i \(-0.167869\pi\)
−0.867908 + 0.496725i \(0.834536\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.47872 + 4.29327i 0.191809 + 0.332224i 0.945850 0.324604i \(-0.105231\pi\)
−0.754041 + 0.656828i \(0.771898\pi\)
\(168\) 0 0
\(169\) 11.8324 20.4943i 0.910185 1.57649i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.8007 1.12527 0.562637 0.826704i \(-0.309787\pi\)
0.562637 + 0.826704i \(0.309787\pi\)
\(174\) 0 0
\(175\) 4.97057 + 2.81086i 0.375740 + 0.212481i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.592751 0.342225i −0.0443043 0.0255791i 0.477684 0.878532i \(-0.341476\pi\)
−0.521989 + 0.852952i \(0.674810\pi\)
\(180\) 0 0
\(181\) 7.84745i 0.583297i −0.956526 0.291648i \(-0.905796\pi\)
0.956526 0.291648i \(-0.0942037\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.5614 0.776489
\(186\) 0 0
\(187\) 1.57187i 0.114946i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.5946i 1.41781i −0.705302 0.708907i \(-0.749189\pi\)
0.705302 0.708907i \(-0.250811\pi\)
\(192\) 0 0
\(193\) 18.3623 1.32175 0.660875 0.750496i \(-0.270186\pi\)
0.660875 + 0.750496i \(0.270186\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.92313i 0.422006i 0.977485 + 0.211003i \(0.0676730\pi\)
−0.977485 + 0.211003i \(0.932327\pi\)
\(198\) 0 0
\(199\) 13.6268 + 7.86741i 0.965975 + 0.557706i 0.898007 0.439982i \(-0.145015\pi\)
0.0679681 + 0.997687i \(0.478348\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.7994 0.167953i 1.31946 0.0117880i
\(204\) 0 0
\(205\) −5.55306 −0.387842
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.328332 0.568688i 0.0227112 0.0393370i
\(210\) 0 0
\(211\) −5.06619 8.77489i −0.348771 0.604088i 0.637261 0.770648i \(-0.280067\pi\)
−0.986031 + 0.166560i \(0.946734\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.04231 + 5.26944i 0.207484 + 0.359373i
\(216\) 0 0
\(217\) −8.44616 14.3320i −0.573363 0.972917i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.43712i 0.163939i
\(222\) 0 0
\(223\) −13.3944 7.73325i −0.896955 0.517857i −0.0207437 0.999785i \(-0.506603\pi\)
−0.876211 + 0.481928i \(0.839937\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.0360 + 24.3110i 0.931600 + 1.61358i 0.780588 + 0.625046i \(0.214920\pi\)
0.151011 + 0.988532i \(0.451747\pi\)
\(228\) 0 0
\(229\) −14.7453 8.51319i −0.974396 0.562568i −0.0738222 0.997271i \(-0.523520\pi\)
−0.900573 + 0.434704i \(0.856853\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.0015 + 9.23847i −1.04829 + 0.605233i −0.922171 0.386782i \(-0.873587\pi\)
−0.126122 + 0.992015i \(0.540253\pi\)
\(234\) 0 0
\(235\) 7.39166 12.8027i 0.482179 0.835158i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.06656 + 3.50253i −0.392413 + 0.226560i −0.683205 0.730226i \(-0.739415\pi\)
0.290792 + 0.956786i \(0.406081\pi\)
\(240\) 0 0
\(241\) 5.38459 3.10879i 0.346852 0.200255i −0.316446 0.948611i \(-0.602490\pi\)
0.663298 + 0.748355i \(0.269156\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.08172 10.1122i −0.388547 0.646044i
\(246\) 0 0
\(247\) −0.509067 + 0.881730i −0.0323912 + 0.0561031i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.81844 0.619734 0.309867 0.950780i \(-0.399715\pi\)
0.309867 + 0.950780i \(0.399715\pi\)
\(252\) 0 0
\(253\) 34.6952 2.18127
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.667904 1.15684i 0.0416627 0.0721619i −0.844442 0.535647i \(-0.820068\pi\)
0.886105 + 0.463485i \(0.153401\pi\)
\(258\) 0 0
\(259\) 14.4287 + 8.15944i 0.896558 + 0.507003i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.6238 10.1751i 1.08673 0.627424i 0.154026 0.988067i \(-0.450776\pi\)
0.932704 + 0.360643i \(0.117443\pi\)
\(264\) 0 0
\(265\) −8.33814 + 4.81402i −0.512208 + 0.295723i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3614 + 23.1426i −0.814659 + 1.41103i 0.0949131 + 0.995486i \(0.469743\pi\)
−0.909572 + 0.415546i \(0.863591\pi\)
\(270\) 0 0
\(271\) −3.76517 + 2.17382i −0.228718 + 0.132050i −0.609980 0.792417i \(-0.708823\pi\)
0.381263 + 0.924467i \(0.375489\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.29968 + 4.21447i 0.440187 + 0.254142i
\(276\) 0 0
\(277\) 2.19901 + 3.80880i 0.132126 + 0.228849i 0.924496 0.381192i \(-0.124486\pi\)
−0.792370 + 0.610041i \(0.791153\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.62273 2.66893i −0.275769 0.159215i 0.355738 0.934586i \(-0.384230\pi\)
−0.631506 + 0.775371i \(0.717563\pi\)
\(282\) 0 0
\(283\) 17.9476i 1.06687i 0.845840 + 0.533437i \(0.179100\pi\)
−0.845840 + 0.533437i \(0.820900\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.58645 4.29014i −0.447814 0.253239i
\(288\) 0 0
\(289\) 8.41900 + 14.5821i 0.495235 + 0.857773i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.1126 + 22.7117i 0.766048 + 1.32683i 0.939691 + 0.342026i \(0.111113\pi\)
−0.173642 + 0.984809i \(0.555554\pi\)
\(294\) 0 0
\(295\) 3.79566 6.57428i 0.220992 0.382769i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −53.7936 −3.11097
\(300\) 0 0
\(301\) 0.0853135 + 9.54939i 0.00491739 + 0.550417i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.47924 4.31814i −0.428260 0.247256i
\(306\) 0 0
\(307\) 7.19520i 0.410652i 0.978694 + 0.205326i \(0.0658254\pi\)
−0.978694 + 0.205326i \(0.934175\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.17443 0.123301 0.0616503 0.998098i \(-0.480364\pi\)
0.0616503 + 0.998098i \(0.480364\pi\)
\(312\) 0 0
\(313\) 11.8784i 0.671409i 0.941967 + 0.335704i \(0.108974\pi\)
−0.941967 + 0.335704i \(0.891026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.19801i 0.460446i −0.973138 0.230223i \(-0.926054\pi\)
0.973138 0.230223i \(-0.0739456\pi\)
\(318\) 0 0
\(319\) 27.7509 1.55375
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.0676757i 0.00376558i
\(324\) 0 0
\(325\) −11.3179 6.53438i −0.627803 0.362462i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 19.9893 11.7802i 1.10205 0.649463i
\(330\) 0 0
\(331\) −17.1708 −0.943793 −0.471897 0.881654i \(-0.656430\pi\)
−0.471897 + 0.881654i \(0.656430\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.98170 8.62856i 0.272179 0.471428i
\(336\) 0 0
\(337\) 3.95399 + 6.84850i 0.215387 + 0.373062i 0.953392 0.301733i \(-0.0975653\pi\)
−0.738005 + 0.674795i \(0.764232\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.2779 21.2659i −0.664883 1.15161i
\(342\) 0 0
\(343\) −0.496303 18.5136i −0.0267979 0.999641i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.512514i 0.0275132i 0.999905 + 0.0137566i \(0.00437900\pi\)
−0.999905 + 0.0137566i \(0.995621\pi\)
\(348\) 0 0
\(349\) 5.74612 + 3.31752i 0.307583 + 0.177583i 0.645844 0.763469i \(-0.276506\pi\)
−0.338262 + 0.941052i \(0.609839\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.03437 15.6480i −0.480851 0.832858i 0.518908 0.854830i \(-0.326339\pi\)
−0.999759 + 0.0219721i \(0.993006\pi\)
\(354\) 0 0
\(355\) −16.6877 9.63465i −0.885691 0.511354i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.52677 0.881479i 0.0805796 0.0465227i −0.459169 0.888349i \(-0.651853\pi\)
0.539748 + 0.841826i \(0.318519\pi\)
\(360\) 0 0
\(361\) −9.48586 + 16.4300i −0.499256 + 0.864737i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.2081 + 5.89367i −0.534318 + 0.308489i
\(366\) 0 0
\(367\) 28.9614 16.7209i 1.51177 0.872822i 0.511867 0.859065i \(-0.328954\pi\)
0.999905 0.0137576i \(-0.00437931\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.1105 + 0.134996i −0.784500 + 0.00700867i
\(372\) 0 0
\(373\) −12.7844 + 22.1433i −0.661952 + 1.14653i 0.318150 + 0.948040i \(0.396938\pi\)
−0.980102 + 0.198494i \(0.936395\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −43.0267 −2.21599
\(378\) 0 0
\(379\) −25.7920 −1.32485 −0.662423 0.749130i \(-0.730472\pi\)
−0.662423 + 0.749130i \(0.730472\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.4158 28.4330i 0.838808 1.45286i −0.0520838 0.998643i \(-0.516586\pi\)
0.890892 0.454215i \(-0.150080\pi\)
\(384\) 0 0
\(385\) −8.84349 15.0062i −0.450706 0.764785i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 17.4542 10.0772i 0.884965 0.510935i 0.0126730 0.999920i \(-0.495966\pi\)
0.872292 + 0.488985i \(0.162633\pi\)
\(390\) 0 0
\(391\) 3.09663 1.78784i 0.156603 0.0904150i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.01813 + 1.76346i −0.0512278 + 0.0887291i
\(396\) 0 0
\(397\) −30.2125 + 17.4432i −1.51632 + 0.875449i −0.516506 + 0.856284i \(0.672768\pi\)
−0.999816 + 0.0191652i \(0.993899\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.36793 4.83122i −0.417874 0.241260i 0.276293 0.961073i \(-0.410894\pi\)
−0.694167 + 0.719814i \(0.744227\pi\)
\(402\) 0 0
\(403\) 19.0364 + 32.9719i 0.948268 + 1.64245i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 21.1897 + 12.2339i 1.05034 + 0.606412i
\(408\) 0 0
\(409\) 37.0893i 1.83395i 0.398949 + 0.916973i \(0.369375\pi\)
−0.398949 + 0.916973i \(0.630625\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.2646 6.04920i 0.505090 0.297662i
\(414\) 0 0
\(415\) −0.305709 0.529504i −0.0150067 0.0259923i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.84193 + 3.19031i 0.0899841 + 0.155857i 0.907504 0.420043i \(-0.137985\pi\)
−0.817520 + 0.575900i \(0.804652\pi\)
\(420\) 0 0
\(421\) −8.55139 + 14.8114i −0.416769 + 0.721866i −0.995612 0.0935732i \(-0.970171\pi\)
0.578843 + 0.815439i \(0.303504\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.868685 0.0421374
\(426\) 0 0
\(427\) −6.88188 11.6776i −0.333038 0.565118i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 27.3242 + 15.7756i 1.31616 + 0.759885i 0.983108 0.183024i \(-0.0585887\pi\)
0.333051 + 0.942909i \(0.391922\pi\)
\(432\) 0 0
\(433\) 10.0692i 0.483893i −0.970290 0.241947i \(-0.922214\pi\)
0.970290 0.241947i \(-0.0777859\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.49378 0.0714572
\(438\) 0 0
\(439\) 27.9398i 1.33350i 0.745283 + 0.666748i \(0.232314\pi\)
−0.745283 + 0.666748i \(0.767686\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.8638i 1.65643i −0.560411 0.828215i \(-0.689357\pi\)
0.560411 0.828215i \(-0.310643\pi\)
\(444\) 0 0
\(445\) 4.67037 0.221397
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.2411i 1.09682i 0.836211 + 0.548408i \(0.184766\pi\)
−0.836211 + 0.548408i \(0.815234\pi\)
\(450\) 0 0
\(451\) −11.1413 6.43244i −0.524624 0.302892i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 13.7115 + 23.2665i 0.642805 + 1.09075i
\(456\) 0 0
\(457\) −6.21876 −0.290901 −0.145451 0.989366i \(-0.546463\pi\)
−0.145451 + 0.989366i \(0.546463\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.17165 3.76140i 0.101144 0.175186i −0.811012 0.585029i \(-0.801083\pi\)
0.912156 + 0.409843i \(0.134416\pi\)
\(462\) 0 0
\(463\) −3.57451 6.19124i −0.166122 0.287731i 0.770931 0.636918i \(-0.219791\pi\)
−0.937053 + 0.349187i \(0.886458\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.944451 + 1.63584i 0.0437040 + 0.0756975i 0.887050 0.461673i \(-0.152751\pi\)
−0.843346 + 0.537371i \(0.819417\pi\)
\(468\) 0 0
\(469\) 13.4721 7.93941i 0.622082 0.366608i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.0964i 0.648152i
\(474\) 0 0
\(475\) 0.314283 + 0.181451i 0.0144203 + 0.00832555i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.22491 9.04981i −0.238732 0.413497i 0.721618 0.692291i \(-0.243399\pi\)
−0.960351 + 0.278794i \(0.910065\pi\)
\(480\) 0 0
\(481\) −32.8539 18.9682i −1.49801 0.864875i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.857895 + 0.495306i −0.0389550 + 0.0224907i
\(486\) 0 0
\(487\) 11.8298 20.4898i 0.536060 0.928483i −0.463052 0.886331i \(-0.653246\pi\)
0.999111 0.0421513i \(-0.0134212\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.6767 + 6.74152i −0.526960 + 0.304241i −0.739778 0.672851i \(-0.765069\pi\)
0.212817 + 0.977092i \(0.431736\pi\)
\(492\) 0 0
\(493\) 2.47683 1.43000i 0.111551 0.0644039i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.3549 26.0551i −0.688761 1.16873i
\(498\) 0 0
\(499\) −6.04035 + 10.4622i −0.270403 + 0.468352i −0.968965 0.247197i \(-0.920490\pi\)
0.698562 + 0.715550i \(0.253824\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.5283 0.915310 0.457655 0.889130i \(-0.348690\pi\)
0.457655 + 0.889130i \(0.348690\pi\)
\(504\) 0 0
\(505\) −23.3417 −1.03869
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.09043 + 7.08483i −0.181305 + 0.314029i −0.942325 0.334699i \(-0.891365\pi\)
0.761020 + 0.648728i \(0.224699\pi\)
\(510\) 0 0
\(511\) −18.4994 + 0.165272i −0.818365 + 0.00731121i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −17.6345 + 10.1813i −0.777070 + 0.448642i
\(516\) 0 0
\(517\) 29.6603 17.1244i 1.30446 0.753131i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.8746 + 24.0314i −0.607856 + 1.05284i 0.383738 + 0.923442i \(0.374637\pi\)
−0.991593 + 0.129395i \(0.958697\pi\)
\(522\) 0 0
\(523\) −19.8843 + 11.4802i −0.869478 + 0.501993i −0.867175 0.498004i \(-0.834066\pi\)
−0.00230311 + 0.999997i \(0.500733\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.19166 1.26535i −0.0954700 0.0551196i
\(528\) 0 0
\(529\) 27.9623 + 48.4322i 1.21575 + 2.10575i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.2742 + 9.97325i 0.748228 + 0.431990i
\(534\) 0 0
\(535\) 31.0078i 1.34058i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.488426 27.3333i −0.0210380 1.17733i
\(540\) 0 0
\(541\) −2.60405 4.51035i −0.111957 0.193915i 0.804602 0.593814i \(-0.202379\pi\)
−0.916559 + 0.399899i \(0.869045\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.28902 + 16.0890i 0.397898 + 0.689179i
\(546\) 0 0
\(547\) −10.6224 + 18.3985i −0.454181 + 0.786664i −0.998641 0.0521229i \(-0.983401\pi\)
0.544460 + 0.838787i \(0.316735\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.19479 0.0509000
\(552\) 0 0
\(553\) −2.75334 + 1.62261i −0.117084 + 0.0690005i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −11.0945 6.40543i −0.470090 0.271407i 0.246187 0.969222i \(-0.420822\pi\)
−0.716277 + 0.697816i \(0.754156\pi\)
\(558\) 0 0
\(559\) 21.8559i 0.924406i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −37.4793 −1.57956 −0.789781 0.613388i \(-0.789806\pi\)
−0.789781 + 0.613388i \(0.789806\pi\)
\(564\) 0 0
\(565\) 14.3422i 0.603380i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.86938i 0.287979i −0.989579 0.143990i \(-0.954007\pi\)
0.989579 0.143990i \(-0.0459932\pi\)
\(570\) 0 0
\(571\) −0.169582 −0.00709678 −0.00354839 0.999994i \(-0.501129\pi\)
−0.00354839 + 0.999994i \(0.501129\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 19.1741i 0.799617i
\(576\) 0 0
\(577\) −5.41193 3.12458i −0.225302 0.130078i 0.383101 0.923706i \(-0.374856\pi\)
−0.608403 + 0.793628i \(0.708189\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.00857280 0.959578i −0.000355660 0.0398100i
\(582\) 0 0
\(583\) −22.3055 −0.923799
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.7881 + 18.6855i −0.445273 + 0.771235i −0.998071 0.0620801i \(-0.980227\pi\)
0.552799 + 0.833315i \(0.313560\pi\)
\(588\) 0 0
\(589\) −0.528615 0.915588i −0.0217812 0.0377261i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.13036 + 7.15399i 0.169613 + 0.293779i 0.938284 0.345866i \(-0.112415\pi\)
−0.768671 + 0.639645i \(0.779081\pi\)
\(594\) 0 0
\(595\) −1.56257 0.883632i −0.0640591 0.0362254i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 35.5206i 1.45133i −0.688047 0.725667i \(-0.741532\pi\)
0.688047 0.725667i \(-0.258468\pi\)
\(600\) 0 0
\(601\) −35.8981 20.7258i −1.46432 0.845423i −0.465109 0.885254i \(-0.653985\pi\)
−0.999206 + 0.0398308i \(0.987318\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.58388 6.20746i −0.145705 0.252369i
\(606\) 0 0
\(607\) 2.09569 + 1.20995i 0.0850616 + 0.0491103i 0.541927 0.840425i \(-0.317695\pi\)
−0.456866 + 0.889536i \(0.651028\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −45.9873 + 26.5508i −1.86045 + 1.07413i
\(612\) 0 0
\(613\) 21.3228 36.9321i 0.861219 1.49168i −0.00953416 0.999955i \(-0.503035\pi\)
0.870753 0.491720i \(-0.163632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.2535 + 7.65193i −0.533567 + 0.308055i −0.742468 0.669882i \(-0.766345\pi\)
0.208901 + 0.977937i \(0.433011\pi\)
\(618\) 0 0
\(619\) −23.9177 + 13.8089i −0.961334 + 0.555026i −0.896583 0.442875i \(-0.853958\pi\)
−0.0647505 + 0.997901i \(0.520625\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.38054 + 3.60819i 0.255631 + 0.144559i
\(624\) 0 0
\(625\) 4.77517 8.27084i 0.191007 0.330834i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.52164 0.100545
\(630\) 0 0
\(631\) −8.28775 −0.329930 −0.164965 0.986299i \(-0.552751\pi\)
−0.164965 + 0.986299i \(0.552751\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.96069 15.5204i 0.355594 0.615907i
\(636\) 0 0
\(637\) 0.757287 + 42.3793i 0.0300048 + 1.67913i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.58307 4.95544i 0.339011 0.195728i −0.320824 0.947139i \(-0.603960\pi\)
0.659835 + 0.751411i \(0.270626\pi\)
\(642\) 0 0
\(643\) 6.83668 3.94716i 0.269612 0.155661i −0.359099 0.933299i \(-0.616916\pi\)
0.628711 + 0.777639i \(0.283583\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.15966 + 3.74063i −0.0849049 + 0.147060i −0.905351 0.424665i \(-0.860392\pi\)
0.820446 + 0.571724i \(0.193725\pi\)
\(648\) 0 0
\(649\) 15.2308 8.79348i 0.597859 0.345174i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −37.5853 21.6999i −1.47082 0.849181i −0.471361 0.881940i \(-0.656237\pi\)
−0.999463 + 0.0327591i \(0.989571\pi\)
\(654\) 0 0
\(655\) −5.33940 9.24812i −0.208628 0.361354i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.34894 5.39761i −0.364183 0.210261i 0.306731 0.951796i \(-0.400765\pi\)
−0.670914 + 0.741535i \(0.734098\pi\)
\(660\) 0 0
\(661\) 3.92015i 0.152476i 0.997090 + 0.0762381i \(0.0242909\pi\)
−0.997090 + 0.0762381i \(0.975709\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.380751 0.646081i −0.0147649 0.0250539i
\(666\) 0 0
\(667\) 31.5638 + 54.6701i 1.22216 + 2.11683i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.0039 17.3273i −0.386197 0.668913i
\(672\) 0 0
\(673\) −12.3404 + 21.3742i −0.475687 + 0.823915i −0.999612 0.0278497i \(-0.991134\pi\)
0.523925 + 0.851765i \(0.324467\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.7265 −0.565987 −0.282994 0.959122i \(-0.591328\pi\)
−0.282994 + 0.959122i \(0.591328\pi\)
\(678\) 0 0
\(679\) −1.55469 + 0.0138895i −0.0596637 + 0.000533031i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.60128 + 0.924499i 0.0612712 + 0.0353750i 0.530323 0.847796i \(-0.322071\pi\)
−0.469051 + 0.883171i \(0.655404\pi\)
\(684\) 0 0
\(685\) 28.0606i 1.07214i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 34.5838 1.31754
\(690\) 0 0
\(691\) 38.9842i 1.48303i −0.670938 0.741514i \(-0.734108\pi\)
0.670938 0.741514i \(-0.265892\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.25339i 0.313069i
\(696\) 0 0
\(697\) −1.32585 −0.0502202
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.4389i 0.960813i −0.877046 0.480406i \(-0.840489\pi\)
0.877046 0.480406i \(-0.159511\pi\)
\(702\) 0 0
\(703\) 0.912310 + 0.526722i 0.0344084 + 0.0198657i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.8889 18.0331i −1.19930 0.678206i
\(708\) 0 0
\(709\) −14.2903 −0.536685 −0.268342 0.963324i \(-0.586476\pi\)
−0.268342 + 0.963324i \(0.586476\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 27.9296 48.3756i 1.04597 1.81168i
\(714\) 0 0
\(715\) 19.9319 + 34.5230i 0.745410 + 1.29109i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 16.7344 + 28.9848i 0.624088 + 1.08095i 0.988716 + 0.149799i \(0.0478626\pi\)
−0.364629 + 0.931153i \(0.618804\pi\)
\(720\) 0 0
\(721\) −31.9577 + 0.285507i −1.19017 + 0.0106329i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.3364i 0.569579i
\(726\) 0 0
\(727\) 12.1354 + 7.00636i 0.450076 + 0.259851i 0.707862 0.706350i \(-0.249660\pi\)
−0.257786 + 0.966202i \(0.582993\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.726384 + 1.25813i 0.0268663 + 0.0465338i
\(732\) 0 0
\(733\) 23.6491 + 13.6538i 0.873501 + 0.504316i 0.868510 0.495672i \(-0.165078\pi\)
0.00499085 + 0.999988i \(0.498411\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 19.9899 11.5412i 0.736339 0.425126i
\(738\) 0 0
\(739\) −26.3157 + 45.5801i −0.968039 + 1.67669i −0.266819 + 0.963747i \(0.585973\pi\)
−0.701220 + 0.712945i \(0.747361\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.9523 + 17.8703i −1.13553 + 0.655599i −0.945320 0.326144i \(-0.894250\pi\)
−0.190211 + 0.981743i \(0.560917\pi\)
\(744\) 0 0
\(745\) 7.71839 4.45621i 0.282780 0.163263i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −23.9558 + 42.3621i −0.875325 + 1.54788i
\(750\) 0 0
\(751\) −16.5641 + 28.6899i −0.604433 + 1.04691i 0.387708 + 0.921782i \(0.373267\pi\)
−0.992141 + 0.125126i \(0.960066\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −24.5836 −0.894687
\(756\) 0 0
\(757\) −13.6903 −0.497584 −0.248792 0.968557i \(-0.580034\pi\)
−0.248792 + 0.968557i \(0.580034\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.51737 11.2884i 0.236255 0.409205i −0.723382 0.690448i \(-0.757413\pi\)
0.959637 + 0.281243i \(0.0907467\pi\)
\(762\) 0 0
\(763\) 0.260486 + 29.1569i 0.00943021 + 1.05555i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −23.6147 + 13.6340i −0.852678 + 0.492294i
\(768\) 0 0
\(769\) 18.4866 10.6732i 0.666642 0.384886i −0.128161 0.991753i \(-0.540907\pi\)
0.794803 + 0.606867i \(0.207574\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.73940 + 9.94093i −0.206432 + 0.357550i −0.950588 0.310455i \(-0.899518\pi\)
0.744156 + 0.668006i \(0.232852\pi\)
\(774\) 0 0
\(775\) 11.7525 6.78529i 0.422161 0.243735i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.479682 0.276944i −0.0171864 0.00992256i
\(780\) 0 0
\(781\) −22.3208 38.6607i −0.798701 1.38339i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −25.9873 15.0038i −0.927528 0.535509i
\(786\) 0 0
\(787\) 41.2006i 1.46864i −0.678802 0.734322i \(-0.737500\pi\)
0.678802 0.734322i \(-0.262500\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.0804 19.5939i 0.393972 0.696681i
\(792\) 0 0
\(793\) 15.5107 + 26.8653i 0.550801 + 0.954016i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 25.0066 + 43.3127i 0.885779 + 1.53421i 0.844819 + 0.535053i \(0.179708\pi\)
0.0409600 + 0.999161i \(0.486958\pi\)
\(798\) 0 0
\(799\) 1.76484 3.05679i 0.0624355 0.108141i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −27.3079 −0.963677
\(804\) 0 0
\(805\) 19.5041 34.4900i 0.687428 1.21561i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 43.8995 + 25.3454i 1.54343 + 0.891097i 0.998619 + 0.0525356i \(0.0167303\pi\)
0.544807 + 0.838562i \(0.316603\pi\)
\(810\) 0 0
\(811\) 8.96566i 0.314827i 0.987533 + 0.157413i \(0.0503155\pi\)
−0.987533 + 0.157413i \(0.949684\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.162582 −0.00569500
\(816\) 0 0
\(817\) 0.606910i 0.0212331i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 32.5845i 1.13721i 0.822612 + 0.568603i \(0.192516\pi\)
−0.822612 + 0.568603i \(0.807484\pi\)
\(822\) 0 0
\(823\) 20.1754 0.703271 0.351636 0.936137i \(-0.385626\pi\)
0.351636 + 0.936137i \(0.385626\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.253288i 0.00880770i 0.999990 + 0.00440385i \(0.00140179\pi\)
−0.999990 + 0.00440385i \(0.998598\pi\)
\(828\) 0 0
\(829\) −6.10909 3.52708i −0.212177 0.122501i 0.390146 0.920753i \(-0.372425\pi\)
−0.602323 + 0.798253i \(0.705758\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.45208 2.41439i −0.0503114 0.0836538i
\(834\) 0 0
\(835\) 8.35695 0.289204
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.0936 29.6069i 0.590136 1.02215i −0.404078 0.914725i \(-0.632408\pi\)
0.994214 0.107420i \(-0.0342591\pi\)
\(840\) 0 0
\(841\) 10.7462 + 18.6130i 0.370558 + 0.641826i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.9463 34.5480i −0.686174 1.18849i
\(846\) 0 0
\(847\) −0.100500 11.2493i −0.00345323 0.386530i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 55.6593i 1.90798i
\(852\) 0 0
\(853\) 21.7586 + 12.5623i 0.745000 + 0.430126i 0.823884 0.566758i \(-0.191802\pi\)
−0.0788844 + 0.996884i \(0.525136\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.0954 36.5383i −0.720604 1.24812i −0.960758 0.277388i \(-0.910531\pi\)
0.240154 0.970735i \(-0.422802\pi\)
\(858\) 0 0
\(859\) −4.08139 2.35639i −0.139255 0.0803990i 0.428754 0.903421i \(-0.358953\pi\)
−0.568009 + 0.823022i \(0.692286\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.8409 + 17.8060i −1.04984 + 0.606123i −0.922603 0.385750i \(-0.873943\pi\)
−0.127232 + 0.991873i \(0.540609\pi\)
\(864\) 0 0
\(865\) 12.4750 21.6074i 0.424163 0.734672i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.08543 + 2.35873i −0.138589 + 0.0800143i
\(870\) 0 0
\(871\) −30.9937 + 17.8942i −1.05018 + 0.606322i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 27.5053 16.2095i 0.929847 0.547981i
\(876\) 0 0
\(877\) −20.4532 + 35.4260i −0.690655 + 1.19625i 0.280969 + 0.959717i \(0.409344\pi\)
−0.971624 + 0.236532i \(0.923989\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.4443 1.26153 0.630765 0.775974i \(-0.282741\pi\)
0.630765 + 0.775974i \(0.282741\pi\)
\(882\) 0 0
\(883\) 49.8357 1.67711 0.838553 0.544821i \(-0.183402\pi\)
0.838553 + 0.544821i \(0.183402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 14.4482 25.0251i 0.485124 0.840260i −0.514730 0.857352i \(-0.672108\pi\)
0.999854 + 0.0170929i \(0.00544110\pi\)
\(888\) 0 0
\(889\) 24.2325 14.2808i 0.812731 0.478962i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.27701 0.737280i 0.0427334 0.0246721i
\(894\) 0 0
\(895\) −0.999223 + 0.576902i −0.0334003 + 0.0192837i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 22.3394 38.6930i 0.745062 1.29048i
\(900\) 0 0
\(901\) −1.99082 + 1.14940i −0.0663238 + 0.0382920i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.4564 6.61437i −0.380825 0.219869i
\(906\) 0 0
\(907\) −7.43498 12.8778i −0.246874 0.427599i 0.715783 0.698323i \(-0.246070\pi\)
−0.962657 + 0.270724i \(0.912737\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.81616 + 4.51266i 0.258961 + 0.149511i 0.623861 0.781536i \(-0.285563\pi\)
−0.364899 + 0.931047i \(0.618897\pi\)
\(912\) 0 0
\(913\) 1.41649i 0.0468788i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −0.149729 16.7596i −0.00494450 0.553452i
\(918\) 0 0
\(919\) −13.2083 22.8774i −0.435702 0.754657i 0.561651 0.827374i \(-0.310166\pi\)
−0.997353 + 0.0727170i \(0.976833\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 34.6075 + 59.9420i 1.13912 + 1.97302i
\(924\) 0 0
\(925\) −6.76100 + 11.7104i −0.222300 + 0.385036i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −22.2518 −0.730058 −0.365029 0.930996i \(-0.618941\pi\)
−0.365029 + 0.930996i \(0.618941\pi\)
\(930\) 0 0
\(931\) −0.0210289 1.17682i −0.000689194 0.0385686i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.29476 1.32488i −0.0750465 0.0433281i
\(936\) 0 0
\(937\) 14.6822i 0.479647i 0.970817 + 0.239823i \(0.0770896\pi\)
−0.970817 + 0.239823i \(0.922910\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.0792 −1.50214 −0.751070 0.660223i \(-0.770462\pi\)
−0.751070 + 0.660223i \(0.770462\pi\)
\(942\) 0 0
\(943\) 29.2650i 0.952999i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.03805i 0.261202i 0.991435 + 0.130601i \(0.0416906\pi\)
−0.991435 + 0.130601i \(0.958309\pi\)
\(948\) 0 0
\(949\) 42.3400 1.37441
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 54.9348i 1.77951i 0.456437 + 0.889756i \(0.349125\pi\)
−0.456437 + 0.889756i \(0.650875\pi\)
\(954\) 0 0
\(955\) −28.6060 16.5157i −0.925667 0.534434i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21.6789 + 38.3358i −0.700047 + 1.23793i
\(960\) 0 0
\(961\) −8.53466 −0.275312
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.4770 26.8070i 0.498223 0.862948i
\(966\) 0 0
\(967\) 26.5917 + 46.0582i 0.855132 + 1.48113i 0.876522 + 0.481361i \(0.159857\pi\)
−0.0213900 + 0.999771i \(0.506809\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.61403 13.1879i −0.244346 0.423219i 0.717602 0.696454i \(-0.245240\pi\)
−0.961947 + 0.273234i \(0.911907\pi\)
\(972\) 0 0
\(973\) −6.37634 + 11.2756i −0.204416 + 0.361479i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.72533i 0.0551983i 0.999619 + 0.0275992i \(0.00878620\pi\)
−0.999619 + 0.0275992i \(0.991214\pi\)
\(978\) 0 0
\(979\) 9.37033 + 5.40997i 0.299477 + 0.172903i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −30.1191 52.1679i −0.960651 1.66390i −0.720871 0.693070i \(-0.756258\pi\)
−0.239780 0.970827i \(-0.577075\pi\)
\(984\) 0 0
\(985\) 8.64713 + 4.99242i 0.275521 + 0.159072i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −27.7703 + 16.0332i −0.883044 + 0.509826i
\(990\) 0 0
\(991\) 2.87312 4.97639i 0.0912676 0.158080i −0.816777 0.576953i \(-0.804241\pi\)
0.908045 + 0.418873i \(0.137575\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.9711 13.2624i 0.728234 0.420446i
\(996\) 0 0
\(997\) 0.0224508 0.0129620i 0.000711024 0.000410510i −0.499644 0.866231i \(-0.666536\pi\)
0.500355 + 0.865820i \(0.333203\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.ca.d.2033.6 16
3.2 odd 2 1008.2.ca.d.353.5 16
4.3 odd 2 756.2.w.a.521.6 16
7.5 odd 6 3024.2.df.d.1601.6 16
9.4 even 3 1008.2.df.d.689.2 16
9.5 odd 6 3024.2.df.d.17.6 16
12.11 even 2 252.2.w.a.101.4 yes 16
21.5 even 6 1008.2.df.d.929.2 16
28.3 even 6 5292.2.x.b.4409.3 16
28.11 odd 6 5292.2.x.a.4409.6 16
28.19 even 6 756.2.bm.a.89.6 16
28.23 odd 6 5292.2.bm.a.4625.3 16
28.27 even 2 5292.2.w.b.521.3 16
36.7 odd 6 2268.2.t.a.1781.6 16
36.11 even 6 2268.2.t.b.1781.3 16
36.23 even 6 756.2.bm.a.17.6 16
36.31 odd 6 252.2.bm.a.185.7 yes 16
63.5 even 6 inner 3024.2.ca.d.2609.6 16
63.40 odd 6 1008.2.ca.d.257.5 16
84.11 even 6 1764.2.x.a.1469.8 16
84.23 even 6 1764.2.bm.a.1685.2 16
84.47 odd 6 252.2.bm.a.173.7 yes 16
84.59 odd 6 1764.2.x.b.1469.1 16
84.83 odd 2 1764.2.w.b.1109.5 16
252.23 even 6 5292.2.w.b.1097.3 16
252.31 even 6 1764.2.x.a.293.8 16
252.47 odd 6 2268.2.t.a.2105.6 16
252.59 odd 6 5292.2.x.a.881.6 16
252.67 odd 6 1764.2.x.b.293.1 16
252.95 even 6 5292.2.x.b.881.3 16
252.103 even 6 252.2.w.a.5.4 16
252.131 odd 6 756.2.w.a.341.6 16
252.139 even 6 1764.2.bm.a.1697.2 16
252.167 odd 6 5292.2.bm.a.2285.3 16
252.187 even 6 2268.2.t.b.2105.3 16
252.247 odd 6 1764.2.w.b.509.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.4 16 252.103 even 6
252.2.w.a.101.4 yes 16 12.11 even 2
252.2.bm.a.173.7 yes 16 84.47 odd 6
252.2.bm.a.185.7 yes 16 36.31 odd 6
756.2.w.a.341.6 16 252.131 odd 6
756.2.w.a.521.6 16 4.3 odd 2
756.2.bm.a.17.6 16 36.23 even 6
756.2.bm.a.89.6 16 28.19 even 6
1008.2.ca.d.257.5 16 63.40 odd 6
1008.2.ca.d.353.5 16 3.2 odd 2
1008.2.df.d.689.2 16 9.4 even 3
1008.2.df.d.929.2 16 21.5 even 6
1764.2.w.b.509.5 16 252.247 odd 6
1764.2.w.b.1109.5 16 84.83 odd 2
1764.2.x.a.293.8 16 252.31 even 6
1764.2.x.a.1469.8 16 84.11 even 6
1764.2.x.b.293.1 16 252.67 odd 6
1764.2.x.b.1469.1 16 84.59 odd 6
1764.2.bm.a.1685.2 16 84.23 even 6
1764.2.bm.a.1697.2 16 252.139 even 6
2268.2.t.a.1781.6 16 36.7 odd 6
2268.2.t.a.2105.6 16 252.47 odd 6
2268.2.t.b.1781.3 16 36.11 even 6
2268.2.t.b.2105.3 16 252.187 even 6
3024.2.ca.d.2033.6 16 1.1 even 1 trivial
3024.2.ca.d.2609.6 16 63.5 even 6 inner
3024.2.df.d.17.6 16 9.5 odd 6
3024.2.df.d.1601.6 16 7.5 odd 6
5292.2.w.b.521.3 16 28.27 even 2
5292.2.w.b.1097.3 16 252.23 even 6
5292.2.x.a.881.6 16 252.59 odd 6
5292.2.x.a.4409.6 16 28.11 odd 6
5292.2.x.b.881.3 16 252.95 even 6
5292.2.x.b.4409.3 16 28.3 even 6
5292.2.bm.a.2285.3 16 252.167 odd 6
5292.2.bm.a.4625.3 16 28.23 odd 6