Properties

Label 3000.2.a.o.1.4
Level $3000$
Weight $2$
Character 3000.1
Self dual yes
Analytic conductor $23.955$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3000,2,Mod(1,3000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3000.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3000.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,3,0,4,0,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.9551206064\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.47025.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 22x^{2} + 13x + 109 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.11349\) of defining polynomial
Character \(\chi\) \(=\) 3000.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +4.73152 q^{7} +1.00000 q^{9} -4.34955 q^{11} -2.30621 q^{13} -0.618034 q^{17} -4.41969 q^{19} +4.73152 q^{21} +6.34955 q^{23} +1.00000 q^{27} +7.54227 q^{29} +4.80166 q^{31} -4.34955 q^{33} +10.9620 q^{37} -2.30621 q^{39} -5.20366 q^{41} +6.85410 q^{43} -0.165930 q^{47} +15.3873 q^{49} -0.618034 q^{51} +2.16031 q^{53} -4.41969 q^{57} +12.9387 q^{59} +4.11911 q^{61} +4.73152 q^{63} -14.6611 q^{67} +6.34955 q^{69} -4.92424 q^{71} +7.91514 q^{73} -20.5800 q^{77} +17.0578 q^{79} +1.00000 q^{81} -5.72242 q^{83} +7.54227 q^{87} +0.816376 q^{89} -10.9119 q^{91} +4.80166 q^{93} +7.20366 q^{97} -4.34955 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 3 q^{7} + 4 q^{9} + 3 q^{11} - 3 q^{13} + 2 q^{17} + 3 q^{21} + 5 q^{23} + 4 q^{27} + 15 q^{29} + 6 q^{31} + 3 q^{33} + 11 q^{37} - 3 q^{39} + 13 q^{41} + 14 q^{43} + 11 q^{47} + 19 q^{49}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.73152 1.78835 0.894173 0.447721i \(-0.147764\pi\)
0.894173 + 0.447721i \(0.147764\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −4.34955 −1.31144 −0.655720 0.755004i \(-0.727635\pi\)
−0.655720 + 0.755004i \(0.727635\pi\)
\(12\) 0 0
\(13\) −2.30621 −0.639626 −0.319813 0.947481i \(-0.603620\pi\)
−0.319813 + 0.947481i \(0.603620\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.618034 −0.149895 −0.0749476 0.997187i \(-0.523879\pi\)
−0.0749476 + 0.997187i \(0.523879\pi\)
\(18\) 0 0
\(19\) −4.41969 −1.01395 −0.506973 0.861962i \(-0.669236\pi\)
−0.506973 + 0.861962i \(0.669236\pi\)
\(20\) 0 0
\(21\) 4.73152 1.03250
\(22\) 0 0
\(23\) 6.34955 1.32397 0.661987 0.749516i \(-0.269714\pi\)
0.661987 + 0.749516i \(0.269714\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 7.54227 1.40057 0.700283 0.713866i \(-0.253057\pi\)
0.700283 + 0.713866i \(0.253057\pi\)
\(30\) 0 0
\(31\) 4.80166 0.862403 0.431202 0.902256i \(-0.358090\pi\)
0.431202 + 0.902256i \(0.358090\pi\)
\(32\) 0 0
\(33\) −4.34955 −0.757160
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.9620 1.80214 0.901068 0.433678i \(-0.142784\pi\)
0.901068 + 0.433678i \(0.142784\pi\)
\(38\) 0 0
\(39\) −2.30621 −0.369289
\(40\) 0 0
\(41\) −5.20366 −0.812674 −0.406337 0.913723i \(-0.633194\pi\)
−0.406337 + 0.913723i \(0.633194\pi\)
\(42\) 0 0
\(43\) 6.85410 1.04524 0.522620 0.852566i \(-0.324955\pi\)
0.522620 + 0.852566i \(0.324955\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.165930 −0.0242034 −0.0121017 0.999927i \(-0.503852\pi\)
−0.0121017 + 0.999927i \(0.503852\pi\)
\(48\) 0 0
\(49\) 15.3873 2.19818
\(50\) 0 0
\(51\) −0.618034 −0.0865421
\(52\) 0 0
\(53\) 2.16031 0.296741 0.148371 0.988932i \(-0.452597\pi\)
0.148371 + 0.988932i \(0.452597\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.41969 −0.585402
\(58\) 0 0
\(59\) 12.9387 1.68447 0.842234 0.539112i \(-0.181240\pi\)
0.842234 + 0.539112i \(0.181240\pi\)
\(60\) 0 0
\(61\) 4.11911 0.527398 0.263699 0.964605i \(-0.415057\pi\)
0.263699 + 0.964605i \(0.415057\pi\)
\(62\) 0 0
\(63\) 4.73152 0.596115
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −14.6611 −1.79114 −0.895568 0.444925i \(-0.853230\pi\)
−0.895568 + 0.444925i \(0.853230\pi\)
\(68\) 0 0
\(69\) 6.34955 0.764396
\(70\) 0 0
\(71\) −4.92424 −0.584400 −0.292200 0.956357i \(-0.594387\pi\)
−0.292200 + 0.956357i \(0.594387\pi\)
\(72\) 0 0
\(73\) 7.91514 0.926398 0.463199 0.886254i \(-0.346702\pi\)
0.463199 + 0.886254i \(0.346702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −20.5800 −2.34531
\(78\) 0 0
\(79\) 17.0578 1.91915 0.959574 0.281457i \(-0.0908177\pi\)
0.959574 + 0.281457i \(0.0908177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.72242 −0.628118 −0.314059 0.949404i \(-0.601689\pi\)
−0.314059 + 0.949404i \(0.601689\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.54227 0.808617
\(88\) 0 0
\(89\) 0.816376 0.0865357 0.0432678 0.999064i \(-0.486223\pi\)
0.0432678 + 0.999064i \(0.486223\pi\)
\(90\) 0 0
\(91\) −10.9119 −1.14387
\(92\) 0 0
\(93\) 4.80166 0.497909
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.20366 0.731420 0.365710 0.930729i \(-0.380826\pi\)
0.365710 + 0.930729i \(0.380826\pi\)
\(98\) 0 0
\(99\) −4.34955 −0.437147
\(100\) 0 0
\(101\) −8.47745 −0.843538 −0.421769 0.906703i \(-0.638591\pi\)
−0.421769 + 0.906703i \(0.638591\pi\)
\(102\) 0 0
\(103\) 1.93334 0.190497 0.0952486 0.995454i \(-0.469635\pi\)
0.0952486 + 0.995454i \(0.469635\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.6324 −1.22122 −0.610612 0.791930i \(-0.709077\pi\)
−0.610612 + 0.791930i \(0.709077\pi\)
\(108\) 0 0
\(109\) −3.79604 −0.363594 −0.181797 0.983336i \(-0.558191\pi\)
−0.181797 + 0.983336i \(0.558191\pi\)
\(110\) 0 0
\(111\) 10.9620 1.04046
\(112\) 0 0
\(113\) −16.7692 −1.57752 −0.788759 0.614703i \(-0.789276\pi\)
−0.788759 + 0.614703i \(0.789276\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.30621 −0.213209
\(118\) 0 0
\(119\) −2.92424 −0.268065
\(120\) 0 0
\(121\) 7.91862 0.719874
\(122\) 0 0
\(123\) −5.20366 −0.469198
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −6.89183 −0.611551 −0.305775 0.952104i \(-0.598916\pi\)
−0.305775 + 0.952104i \(0.598916\pi\)
\(128\) 0 0
\(129\) 6.85410 0.603470
\(130\) 0 0
\(131\) −16.2882 −1.42311 −0.711553 0.702632i \(-0.752008\pi\)
−0.711553 + 0.702632i \(0.752008\pi\)
\(132\) 0 0
\(133\) −20.9119 −1.81329
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.641350 −0.0547942 −0.0273971 0.999625i \(-0.508722\pi\)
−0.0273971 + 0.999625i \(0.508722\pi\)
\(138\) 0 0
\(139\) 16.5133 1.40064 0.700321 0.713828i \(-0.253040\pi\)
0.700321 + 0.713828i \(0.253040\pi\)
\(140\) 0 0
\(141\) −0.165930 −0.0139738
\(142\) 0 0
\(143\) 10.0310 0.838832
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 15.3873 1.26912
\(148\) 0 0
\(149\) −5.88273 −0.481932 −0.240966 0.970534i \(-0.577464\pi\)
−0.240966 + 0.970534i \(0.577464\pi\)
\(150\) 0 0
\(151\) 18.2971 1.48900 0.744499 0.667624i \(-0.232688\pi\)
0.744499 + 0.667624i \(0.232688\pi\)
\(152\) 0 0
\(153\) −0.618034 −0.0499651
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.37868 0.110031 0.0550154 0.998486i \(-0.482479\pi\)
0.0550154 + 0.998486i \(0.482479\pi\)
\(158\) 0 0
\(159\) 2.16031 0.171324
\(160\) 0 0
\(161\) 30.0430 2.36772
\(162\) 0 0
\(163\) 0.598002 0.0468391 0.0234196 0.999726i \(-0.492545\pi\)
0.0234196 + 0.999726i \(0.492545\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.06104 0.236871 0.118435 0.992962i \(-0.462212\pi\)
0.118435 + 0.992962i \(0.462212\pi\)
\(168\) 0 0
\(169\) −7.68141 −0.590878
\(170\) 0 0
\(171\) −4.41969 −0.337982
\(172\) 0 0
\(173\) −11.2685 −0.856727 −0.428363 0.903607i \(-0.640910\pi\)
−0.428363 + 0.903607i \(0.640910\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 12.9387 0.972528
\(178\) 0 0
\(179\) 19.9876 1.49394 0.746972 0.664855i \(-0.231507\pi\)
0.746972 + 0.664855i \(0.231507\pi\)
\(180\) 0 0
\(181\) −7.61456 −0.565986 −0.282993 0.959122i \(-0.591327\pi\)
−0.282993 + 0.959122i \(0.591327\pi\)
\(182\) 0 0
\(183\) 4.11911 0.304493
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.68817 0.196579
\(188\) 0 0
\(189\) 4.73152 0.344167
\(190\) 0 0
\(191\) 19.3458 1.39981 0.699905 0.714236i \(-0.253225\pi\)
0.699905 + 0.714236i \(0.253225\pi\)
\(192\) 0 0
\(193\) 0.863008 0.0621207 0.0310603 0.999518i \(-0.490112\pi\)
0.0310603 + 0.999518i \(0.490112\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.0524 −1.14369 −0.571845 0.820362i \(-0.693772\pi\)
−0.571845 + 0.820362i \(0.693772\pi\)
\(198\) 0 0
\(199\) 5.30835 0.376299 0.188150 0.982140i \(-0.439751\pi\)
0.188150 + 0.982140i \(0.439751\pi\)
\(200\) 0 0
\(201\) −14.6611 −1.03411
\(202\) 0 0
\(203\) 35.6864 2.50470
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.34955 0.441324
\(208\) 0 0
\(209\) 19.2237 1.32973
\(210\) 0 0
\(211\) −25.0952 −1.72762 −0.863812 0.503815i \(-0.831929\pi\)
−0.863812 + 0.503815i \(0.831929\pi\)
\(212\) 0 0
\(213\) −4.92424 −0.337403
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 22.7191 1.54228
\(218\) 0 0
\(219\) 7.91514 0.534856
\(220\) 0 0
\(221\) 1.42531 0.0958770
\(222\) 0 0
\(223\) −2.75155 −0.184258 −0.0921288 0.995747i \(-0.529367\pi\)
−0.0921288 + 0.995747i \(0.529367\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.2157 0.678042 0.339021 0.940779i \(-0.389904\pi\)
0.339021 + 0.940779i \(0.389904\pi\)
\(228\) 0 0
\(229\) −15.2179 −1.00563 −0.502813 0.864395i \(-0.667701\pi\)
−0.502813 + 0.864395i \(0.667701\pi\)
\(230\) 0 0
\(231\) −20.5800 −1.35406
\(232\) 0 0
\(233\) −0.443506 −0.0290551 −0.0145275 0.999894i \(-0.504624\pi\)
−0.0145275 + 0.999894i \(0.504624\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 17.0578 1.10802
\(238\) 0 0
\(239\) −0.749712 −0.0484949 −0.0242474 0.999706i \(-0.507719\pi\)
−0.0242474 + 0.999706i \(0.507719\pi\)
\(240\) 0 0
\(241\) −24.2826 −1.56418 −0.782089 0.623166i \(-0.785846\pi\)
−0.782089 + 0.623166i \(0.785846\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.1927 0.648547
\(248\) 0 0
\(249\) −5.72242 −0.362644
\(250\) 0 0
\(251\) 19.0377 1.20165 0.600825 0.799380i \(-0.294839\pi\)
0.600825 + 0.799380i \(0.294839\pi\)
\(252\) 0 0
\(253\) −27.6177 −1.73631
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.4662 0.839999 0.419999 0.907524i \(-0.362030\pi\)
0.419999 + 0.907524i \(0.362030\pi\)
\(258\) 0 0
\(259\) 51.8668 3.22284
\(260\) 0 0
\(261\) 7.54227 0.466855
\(262\) 0 0
\(263\) −23.6844 −1.46044 −0.730221 0.683211i \(-0.760583\pi\)
−0.730221 + 0.683211i \(0.760583\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.816376 0.0499614
\(268\) 0 0
\(269\) 22.6319 1.37989 0.689947 0.723860i \(-0.257634\pi\)
0.689947 + 0.723860i \(0.257634\pi\)
\(270\) 0 0
\(271\) −4.32043 −0.262447 −0.131224 0.991353i \(-0.541891\pi\)
−0.131224 + 0.991353i \(0.541891\pi\)
\(272\) 0 0
\(273\) −10.9119 −0.660416
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.69942 −0.582781 −0.291391 0.956604i \(-0.594118\pi\)
−0.291391 + 0.956604i \(0.594118\pi\)
\(278\) 0 0
\(279\) 4.80166 0.287468
\(280\) 0 0
\(281\) −1.61272 −0.0962068 −0.0481034 0.998842i \(-0.515318\pi\)
−0.0481034 + 0.998842i \(0.515318\pi\)
\(282\) 0 0
\(283\) 21.6723 1.28829 0.644143 0.764905i \(-0.277214\pi\)
0.644143 + 0.764905i \(0.277214\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −24.6212 −1.45334
\(288\) 0 0
\(289\) −16.6180 −0.977531
\(290\) 0 0
\(291\) 7.20366 0.422286
\(292\) 0 0
\(293\) −24.2270 −1.41535 −0.707677 0.706536i \(-0.750257\pi\)
−0.707677 + 0.706536i \(0.750257\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.34955 −0.252387
\(298\) 0 0
\(299\) −14.6434 −0.846849
\(300\) 0 0
\(301\) 32.4303 1.86925
\(302\) 0 0
\(303\) −8.47745 −0.487017
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.59472 0.490526 0.245263 0.969457i \(-0.421126\pi\)
0.245263 + 0.969457i \(0.421126\pi\)
\(308\) 0 0
\(309\) 1.93334 0.109984
\(310\) 0 0
\(311\) 25.0933 1.42291 0.711456 0.702730i \(-0.248036\pi\)
0.711456 + 0.702730i \(0.248036\pi\)
\(312\) 0 0
\(313\) 0.399660 0.0225901 0.0112951 0.999936i \(-0.496405\pi\)
0.0112951 + 0.999936i \(0.496405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.0722 −1.52052 −0.760262 0.649616i \(-0.774930\pi\)
−0.760262 + 0.649616i \(0.774930\pi\)
\(318\) 0 0
\(319\) −32.8055 −1.83676
\(320\) 0 0
\(321\) −12.6324 −0.705074
\(322\) 0 0
\(323\) 2.73152 0.151986
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3.79604 −0.209921
\(328\) 0 0
\(329\) −0.785101 −0.0432840
\(330\) 0 0
\(331\) −7.41457 −0.407542 −0.203771 0.979019i \(-0.565320\pi\)
−0.203771 + 0.979019i \(0.565320\pi\)
\(332\) 0 0
\(333\) 10.9620 0.600712
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.24731 0.503733 0.251867 0.967762i \(-0.418956\pi\)
0.251867 + 0.967762i \(0.418956\pi\)
\(338\) 0 0
\(339\) −16.7692 −0.910780
\(340\) 0 0
\(341\) −20.8851 −1.13099
\(342\) 0 0
\(343\) 39.6846 2.14277
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −31.0285 −1.66570 −0.832849 0.553500i \(-0.813292\pi\)
−0.832849 + 0.553500i \(0.813292\pi\)
\(348\) 0 0
\(349\) 29.5939 1.58413 0.792063 0.610440i \(-0.209007\pi\)
0.792063 + 0.610440i \(0.209007\pi\)
\(350\) 0 0
\(351\) −2.30621 −0.123096
\(352\) 0 0
\(353\) −16.8771 −0.898278 −0.449139 0.893462i \(-0.648269\pi\)
−0.449139 + 0.893462i \(0.648269\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −2.92424 −0.154767
\(358\) 0 0
\(359\) −35.6788 −1.88305 −0.941527 0.336938i \(-0.890609\pi\)
−0.941527 + 0.336938i \(0.890609\pi\)
\(360\) 0 0
\(361\) 0.533676 0.0280882
\(362\) 0 0
\(363\) 7.91862 0.415620
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 37.4070 1.95263 0.976315 0.216355i \(-0.0694167\pi\)
0.976315 + 0.216355i \(0.0694167\pi\)
\(368\) 0 0
\(369\) −5.20366 −0.270891
\(370\) 0 0
\(371\) 10.2215 0.530676
\(372\) 0 0
\(373\) −19.0195 −0.984794 −0.492397 0.870371i \(-0.663879\pi\)
−0.492397 + 0.870371i \(0.663879\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −17.3940 −0.895839
\(378\) 0 0
\(379\) −6.08967 −0.312805 −0.156403 0.987693i \(-0.549990\pi\)
−0.156403 + 0.987693i \(0.549990\pi\)
\(380\) 0 0
\(381\) −6.89183 −0.353079
\(382\) 0 0
\(383\) 23.1458 1.18269 0.591347 0.806417i \(-0.298596\pi\)
0.591347 + 0.806417i \(0.298596\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.85410 0.348414
\(388\) 0 0
\(389\) 0.133518 0.00676961 0.00338481 0.999994i \(-0.498923\pi\)
0.00338481 + 0.999994i \(0.498923\pi\)
\(390\) 0 0
\(391\) −3.92424 −0.198457
\(392\) 0 0
\(393\) −16.2882 −0.821631
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −29.3115 −1.47110 −0.735552 0.677469i \(-0.763077\pi\)
−0.735552 + 0.677469i \(0.763077\pi\)
\(398\) 0 0
\(399\) −20.9119 −1.04690
\(400\) 0 0
\(401\) 5.08998 0.254181 0.127091 0.991891i \(-0.459436\pi\)
0.127091 + 0.991891i \(0.459436\pi\)
\(402\) 0 0
\(403\) −11.0736 −0.551616
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −47.6797 −2.36339
\(408\) 0 0
\(409\) −23.3817 −1.15615 −0.578074 0.815984i \(-0.696196\pi\)
−0.578074 + 0.815984i \(0.696196\pi\)
\(410\) 0 0
\(411\) −0.641350 −0.0316355
\(412\) 0 0
\(413\) 61.2195 3.01241
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 16.5133 0.808662
\(418\) 0 0
\(419\) −27.7571 −1.35602 −0.678010 0.735052i \(-0.737158\pi\)
−0.678010 + 0.735052i \(0.737158\pi\)
\(420\) 0 0
\(421\) −26.3672 −1.28506 −0.642531 0.766260i \(-0.722115\pi\)
−0.642531 + 0.766260i \(0.722115\pi\)
\(422\) 0 0
\(423\) −0.165930 −0.00806779
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 19.4896 0.943170
\(428\) 0 0
\(429\) 10.0310 0.484300
\(430\) 0 0
\(431\) −24.7982 −1.19449 −0.597243 0.802060i \(-0.703737\pi\)
−0.597243 + 0.802060i \(0.703737\pi\)
\(432\) 0 0
\(433\) −19.7483 −0.949041 −0.474521 0.880244i \(-0.657379\pi\)
−0.474521 + 0.880244i \(0.657379\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −28.0631 −1.34244
\(438\) 0 0
\(439\) 20.8247 0.993907 0.496954 0.867777i \(-0.334452\pi\)
0.496954 + 0.867777i \(0.334452\pi\)
\(440\) 0 0
\(441\) 15.3873 0.732728
\(442\) 0 0
\(443\) −15.2321 −0.723699 −0.361849 0.932237i \(-0.617855\pi\)
−0.361849 + 0.932237i \(0.617855\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5.88273 −0.278244
\(448\) 0 0
\(449\) 14.7545 0.696309 0.348155 0.937437i \(-0.386808\pi\)
0.348155 + 0.937437i \(0.386808\pi\)
\(450\) 0 0
\(451\) 22.6336 1.06577
\(452\) 0 0
\(453\) 18.2971 0.859673
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.4889 1.19232 0.596160 0.802866i \(-0.296692\pi\)
0.596160 + 0.802866i \(0.296692\pi\)
\(458\) 0 0
\(459\) −0.618034 −0.0288474
\(460\) 0 0
\(461\) 12.2708 0.571509 0.285754 0.958303i \(-0.407756\pi\)
0.285754 + 0.958303i \(0.407756\pi\)
\(462\) 0 0
\(463\) 12.7782 0.593851 0.296926 0.954901i \(-0.404039\pi\)
0.296926 + 0.954901i \(0.404039\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.46335 −0.113990 −0.0569951 0.998374i \(-0.518152\pi\)
−0.0569951 + 0.998374i \(0.518152\pi\)
\(468\) 0 0
\(469\) −69.3692 −3.20317
\(470\) 0 0
\(471\) 1.37868 0.0635263
\(472\) 0 0
\(473\) −29.8123 −1.37077
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.16031 0.0989137
\(478\) 0 0
\(479\) 12.9330 0.590925 0.295463 0.955354i \(-0.404526\pi\)
0.295463 + 0.955354i \(0.404526\pi\)
\(480\) 0 0
\(481\) −25.2806 −1.15269
\(482\) 0 0
\(483\) 30.0430 1.36701
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −28.1155 −1.27404 −0.637018 0.770849i \(-0.719832\pi\)
−0.637018 + 0.770849i \(0.719832\pi\)
\(488\) 0 0
\(489\) 0.598002 0.0270426
\(490\) 0 0
\(491\) 3.86320 0.174344 0.0871718 0.996193i \(-0.472217\pi\)
0.0871718 + 0.996193i \(0.472217\pi\)
\(492\) 0 0
\(493\) −4.66138 −0.209938
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.2991 −1.04511
\(498\) 0 0
\(499\) −14.6000 −0.653587 −0.326794 0.945096i \(-0.605968\pi\)
−0.326794 + 0.945096i \(0.605968\pi\)
\(500\) 0 0
\(501\) 3.06104 0.136757
\(502\) 0 0
\(503\) 2.55699 0.114011 0.0570053 0.998374i \(-0.481845\pi\)
0.0570053 + 0.998374i \(0.481845\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7.68141 −0.341144
\(508\) 0 0
\(509\) 32.4897 1.44008 0.720041 0.693932i \(-0.244123\pi\)
0.720041 + 0.693932i \(0.244123\pi\)
\(510\) 0 0
\(511\) 37.4507 1.65672
\(512\) 0 0
\(513\) −4.41969 −0.195134
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.721721 0.0317413
\(518\) 0 0
\(519\) −11.2685 −0.494631
\(520\) 0 0
\(521\) 13.1913 0.577920 0.288960 0.957341i \(-0.406690\pi\)
0.288960 + 0.957341i \(0.406690\pi\)
\(522\) 0 0
\(523\) −10.9416 −0.478444 −0.239222 0.970965i \(-0.576892\pi\)
−0.239222 + 0.970965i \(0.576892\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.96759 −0.129270
\(528\) 0 0
\(529\) 17.3168 0.752906
\(530\) 0 0
\(531\) 12.9387 0.561490
\(532\) 0 0
\(533\) 12.0007 0.519808
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 19.9876 0.862529
\(538\) 0 0
\(539\) −66.9278 −2.88278
\(540\) 0 0
\(541\) −22.1946 −0.954219 −0.477109 0.878844i \(-0.658315\pi\)
−0.477109 + 0.878844i \(0.658315\pi\)
\(542\) 0 0
\(543\) −7.61456 −0.326772
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 29.2057 1.24874 0.624372 0.781127i \(-0.285355\pi\)
0.624372 + 0.781127i \(0.285355\pi\)
\(548\) 0 0
\(549\) 4.11911 0.175799
\(550\) 0 0
\(551\) −33.3345 −1.42010
\(552\) 0 0
\(553\) 80.7091 3.43210
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 22.3043 0.945062 0.472531 0.881314i \(-0.343340\pi\)
0.472531 + 0.881314i \(0.343340\pi\)
\(558\) 0 0
\(559\) −15.8070 −0.668564
\(560\) 0 0
\(561\) 2.68817 0.113495
\(562\) 0 0
\(563\) −10.0736 −0.424552 −0.212276 0.977210i \(-0.568088\pi\)
−0.212276 + 0.977210i \(0.568088\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.73152 0.198705
\(568\) 0 0
\(569\) −36.3949 −1.52575 −0.762877 0.646543i \(-0.776214\pi\)
−0.762877 + 0.646543i \(0.776214\pi\)
\(570\) 0 0
\(571\) 37.9546 1.58835 0.794175 0.607689i \(-0.207903\pi\)
0.794175 + 0.607689i \(0.207903\pi\)
\(572\) 0 0
\(573\) 19.3458 0.808181
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11.5155 0.479396 0.239698 0.970848i \(-0.422952\pi\)
0.239698 + 0.970848i \(0.422952\pi\)
\(578\) 0 0
\(579\) 0.863008 0.0358654
\(580\) 0 0
\(581\) −27.0758 −1.12329
\(582\) 0 0
\(583\) −9.39638 −0.389158
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.39935 0.387953 0.193976 0.981006i \(-0.437861\pi\)
0.193976 + 0.981006i \(0.437861\pi\)
\(588\) 0 0
\(589\) −21.2218 −0.874431
\(590\) 0 0
\(591\) −16.0524 −0.660309
\(592\) 0 0
\(593\) −15.0133 −0.616521 −0.308261 0.951302i \(-0.599747\pi\)
−0.308261 + 0.951302i \(0.599747\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.30835 0.217256
\(598\) 0 0
\(599\) −17.4488 −0.712939 −0.356470 0.934307i \(-0.616020\pi\)
−0.356470 + 0.934307i \(0.616020\pi\)
\(600\) 0 0
\(601\) 11.5390 0.470685 0.235343 0.971912i \(-0.424379\pi\)
0.235343 + 0.971912i \(0.424379\pi\)
\(602\) 0 0
\(603\) −14.6611 −0.597045
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 45.0952 1.83036 0.915178 0.403049i \(-0.132050\pi\)
0.915178 + 0.403049i \(0.132050\pi\)
\(608\) 0 0
\(609\) 35.6864 1.44609
\(610\) 0 0
\(611\) 0.382669 0.0154811
\(612\) 0 0
\(613\) −0.314804 −0.0127148 −0.00635740 0.999980i \(-0.502024\pi\)
−0.00635740 + 0.999980i \(0.502024\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.7312 0.955383 0.477691 0.878528i \(-0.341474\pi\)
0.477691 + 0.878528i \(0.341474\pi\)
\(618\) 0 0
\(619\) 20.7676 0.834721 0.417360 0.908741i \(-0.362955\pi\)
0.417360 + 0.908741i \(0.362955\pi\)
\(620\) 0 0
\(621\) 6.34955 0.254799
\(622\) 0 0
\(623\) 3.86270 0.154756
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 19.2237 0.767720
\(628\) 0 0
\(629\) −6.77487 −0.270132
\(630\) 0 0
\(631\) −6.60925 −0.263110 −0.131555 0.991309i \(-0.541997\pi\)
−0.131555 + 0.991309i \(0.541997\pi\)
\(632\) 0 0
\(633\) −25.0952 −0.997444
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −35.4862 −1.40602
\(638\) 0 0
\(639\) −4.92424 −0.194800
\(640\) 0 0
\(641\) −21.0379 −0.830948 −0.415474 0.909605i \(-0.636384\pi\)
−0.415474 + 0.909605i \(0.636384\pi\)
\(642\) 0 0
\(643\) 8.71199 0.343567 0.171784 0.985135i \(-0.445047\pi\)
0.171784 + 0.985135i \(0.445047\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 2.95318 0.116101 0.0580507 0.998314i \(-0.481511\pi\)
0.0580507 + 0.998314i \(0.481511\pi\)
\(648\) 0 0
\(649\) −56.2774 −2.20908
\(650\) 0 0
\(651\) 22.7191 0.890433
\(652\) 0 0
\(653\) −1.84848 −0.0723366 −0.0361683 0.999346i \(-0.511515\pi\)
−0.0361683 + 0.999346i \(0.511515\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.91514 0.308799
\(658\) 0 0
\(659\) 16.4035 0.638991 0.319495 0.947588i \(-0.396487\pi\)
0.319495 + 0.947588i \(0.396487\pi\)
\(660\) 0 0
\(661\) 49.0916 1.90944 0.954721 0.297504i \(-0.0961541\pi\)
0.954721 + 0.297504i \(0.0961541\pi\)
\(662\) 0 0
\(663\) 1.42531 0.0553546
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 47.8901 1.85431
\(668\) 0 0
\(669\) −2.75155 −0.106381
\(670\) 0 0
\(671\) −17.9163 −0.691650
\(672\) 0 0
\(673\) 18.5588 0.715390 0.357695 0.933838i \(-0.383563\pi\)
0.357695 + 0.933838i \(0.383563\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.67182 0.141119 0.0705597 0.997508i \(-0.477521\pi\)
0.0705597 + 0.997508i \(0.477521\pi\)
\(678\) 0 0
\(679\) 34.0842 1.30803
\(680\) 0 0
\(681\) 10.2157 0.391468
\(682\) 0 0
\(683\) 35.4795 1.35758 0.678792 0.734330i \(-0.262504\pi\)
0.678792 + 0.734330i \(0.262504\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −15.2179 −0.580598
\(688\) 0 0
\(689\) −4.98212 −0.189803
\(690\) 0 0
\(691\) −34.0164 −1.29405 −0.647023 0.762470i \(-0.723986\pi\)
−0.647023 + 0.762470i \(0.723986\pi\)
\(692\) 0 0
\(693\) −20.5800 −0.781770
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 3.21604 0.121816
\(698\) 0 0
\(699\) −0.443506 −0.0167750
\(700\) 0 0
\(701\) −18.9201 −0.714604 −0.357302 0.933989i \(-0.616303\pi\)
−0.357302 + 0.933989i \(0.616303\pi\)
\(702\) 0 0
\(703\) −48.4485 −1.82727
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.1112 −1.50854
\(708\) 0 0
\(709\) 8.81576 0.331083 0.165541 0.986203i \(-0.447063\pi\)
0.165541 + 0.986203i \(0.447063\pi\)
\(710\) 0 0
\(711\) 17.0578 0.639716
\(712\) 0 0
\(713\) 30.4884 1.14180
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.749712 −0.0279985
\(718\) 0 0
\(719\) −4.68734 −0.174808 −0.0874042 0.996173i \(-0.527857\pi\)
−0.0874042 + 0.996173i \(0.527857\pi\)
\(720\) 0 0
\(721\) 9.14762 0.340675
\(722\) 0 0
\(723\) −24.2826 −0.903079
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −36.5994 −1.35740 −0.678699 0.734417i \(-0.737456\pi\)
−0.678699 + 0.734417i \(0.737456\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.23607 −0.156677
\(732\) 0 0
\(733\) −34.4593 −1.27278 −0.636391 0.771367i \(-0.719573\pi\)
−0.636391 + 0.771367i \(0.719573\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 63.7691 2.34897
\(738\) 0 0
\(739\) −22.8606 −0.840939 −0.420470 0.907307i \(-0.638135\pi\)
−0.420470 + 0.907307i \(0.638135\pi\)
\(740\) 0 0
\(741\) 10.1927 0.374439
\(742\) 0 0
\(743\) 39.5223 1.44993 0.724967 0.688784i \(-0.241855\pi\)
0.724967 + 0.688784i \(0.241855\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.72242 −0.209373
\(748\) 0 0
\(749\) −59.7707 −2.18397
\(750\) 0 0
\(751\) −47.3004 −1.72601 −0.863007 0.505191i \(-0.831422\pi\)
−0.863007 + 0.505191i \(0.831422\pi\)
\(752\) 0 0
\(753\) 19.0377 0.693773
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7.54392 −0.274189 −0.137094 0.990558i \(-0.543776\pi\)
−0.137094 + 0.990558i \(0.543776\pi\)
\(758\) 0 0
\(759\) −27.6177 −1.00246
\(760\) 0 0
\(761\) −12.7152 −0.460924 −0.230462 0.973081i \(-0.574024\pi\)
−0.230462 + 0.973081i \(0.574024\pi\)
\(762\) 0 0
\(763\) −17.9610 −0.650233
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −29.8392 −1.07743
\(768\) 0 0
\(769\) −49.0399 −1.76843 −0.884213 0.467084i \(-0.845304\pi\)
−0.884213 + 0.467084i \(0.845304\pi\)
\(770\) 0 0
\(771\) 13.4662 0.484974
\(772\) 0 0
\(773\) −32.9203 −1.18406 −0.592030 0.805916i \(-0.701673\pi\)
−0.592030 + 0.805916i \(0.701673\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 51.8668 1.86071
\(778\) 0 0
\(779\) 22.9986 0.824009
\(780\) 0 0
\(781\) 21.4182 0.766405
\(782\) 0 0
\(783\) 7.54227 0.269539
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −46.8396 −1.66965 −0.834825 0.550515i \(-0.814431\pi\)
−0.834825 + 0.550515i \(0.814431\pi\)
\(788\) 0 0
\(789\) −23.6844 −0.843187
\(790\) 0 0
\(791\) −79.3440 −2.82115
\(792\) 0 0
\(793\) −9.49951 −0.337338
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.94673 −0.175222 −0.0876110 0.996155i \(-0.527923\pi\)
−0.0876110 + 0.996155i \(0.527923\pi\)
\(798\) 0 0
\(799\) 0.102550 0.00362797
\(800\) 0 0
\(801\) 0.816376 0.0288452
\(802\) 0 0
\(803\) −34.4273 −1.21491
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 22.6319 0.796682
\(808\) 0 0
\(809\) −17.6464 −0.620413 −0.310206 0.950669i \(-0.600398\pi\)
−0.310206 + 0.950669i \(0.600398\pi\)
\(810\) 0 0
\(811\) 25.8503 0.907727 0.453864 0.891071i \(-0.350045\pi\)
0.453864 + 0.891071i \(0.350045\pi\)
\(812\) 0 0
\(813\) −4.32043 −0.151524
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −30.2930 −1.05982
\(818\) 0 0
\(819\) −10.9119 −0.381291
\(820\) 0 0
\(821\) −6.11563 −0.213437 −0.106719 0.994289i \(-0.534034\pi\)
−0.106719 + 0.994289i \(0.534034\pi\)
\(822\) 0 0
\(823\) 47.8125 1.66664 0.833319 0.552792i \(-0.186438\pi\)
0.833319 + 0.552792i \(0.186438\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.2754 0.461632 0.230816 0.972997i \(-0.425860\pi\)
0.230816 + 0.972997i \(0.425860\pi\)
\(828\) 0 0
\(829\) −5.32276 −0.184867 −0.0924336 0.995719i \(-0.529465\pi\)
−0.0924336 + 0.995719i \(0.529465\pi\)
\(830\) 0 0
\(831\) −9.69942 −0.336469
\(832\) 0 0
\(833\) −9.50986 −0.329497
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4.80166 0.165970
\(838\) 0 0
\(839\) −28.1680 −0.972466 −0.486233 0.873829i \(-0.661629\pi\)
−0.486233 + 0.873829i \(0.661629\pi\)
\(840\) 0 0
\(841\) 27.8859 0.961583
\(842\) 0 0
\(843\) −1.61272 −0.0555450
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 37.4671 1.28738
\(848\) 0 0
\(849\) 21.6723 0.743792
\(850\) 0 0
\(851\) 69.6036 2.38598
\(852\) 0 0
\(853\) −35.0599 −1.20043 −0.600214 0.799839i \(-0.704918\pi\)
−0.600214 + 0.799839i \(0.704918\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −48.2517 −1.64825 −0.824123 0.566410i \(-0.808332\pi\)
−0.824123 + 0.566410i \(0.808332\pi\)
\(858\) 0 0
\(859\) 26.1213 0.891248 0.445624 0.895220i \(-0.352982\pi\)
0.445624 + 0.895220i \(0.352982\pi\)
\(860\) 0 0
\(861\) −24.6212 −0.839088
\(862\) 0 0
\(863\) −40.7860 −1.38837 −0.694186 0.719796i \(-0.744235\pi\)
−0.694186 + 0.719796i \(0.744235\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −16.6180 −0.564378
\(868\) 0 0
\(869\) −74.1936 −2.51685
\(870\) 0 0
\(871\) 33.8115 1.14566
\(872\) 0 0
\(873\) 7.20366 0.243807
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −37.5142 −1.26677 −0.633383 0.773839i \(-0.718334\pi\)
−0.633383 + 0.773839i \(0.718334\pi\)
\(878\) 0 0
\(879\) −24.2270 −0.817155
\(880\) 0 0
\(881\) −23.9170 −0.805784 −0.402892 0.915248i \(-0.631995\pi\)
−0.402892 + 0.915248i \(0.631995\pi\)
\(882\) 0 0
\(883\) −5.24086 −0.176369 −0.0881845 0.996104i \(-0.528107\pi\)
−0.0881845 + 0.996104i \(0.528107\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 25.6016 0.859616 0.429808 0.902920i \(-0.358581\pi\)
0.429808 + 0.902920i \(0.358581\pi\)
\(888\) 0 0
\(889\) −32.6088 −1.09366
\(890\) 0 0
\(891\) −4.34955 −0.145716
\(892\) 0 0
\(893\) 0.733359 0.0245409
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −14.6434 −0.488928
\(898\) 0 0
\(899\) 36.2154 1.20785
\(900\) 0 0
\(901\) −1.33514 −0.0444801
\(902\) 0 0
\(903\) 32.4303 1.07921
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −15.2035 −0.504823 −0.252411 0.967620i \(-0.581224\pi\)
−0.252411 + 0.967620i \(0.581224\pi\)
\(908\) 0 0
\(909\) −8.47745 −0.281179
\(910\) 0 0
\(911\) 2.95849 0.0980192 0.0490096 0.998798i \(-0.484394\pi\)
0.0490096 + 0.998798i \(0.484394\pi\)
\(912\) 0 0
\(913\) 24.8900 0.823738
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −77.0680 −2.54501
\(918\) 0 0
\(919\) 14.7727 0.487307 0.243654 0.969862i \(-0.421654\pi\)
0.243654 + 0.969862i \(0.421654\pi\)
\(920\) 0 0
\(921\) 8.59472 0.283206
\(922\) 0 0
\(923\) 11.3563 0.373798
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.93334 0.0634991
\(928\) 0 0
\(929\) 35.8915 1.17756 0.588781 0.808292i \(-0.299608\pi\)
0.588781 + 0.808292i \(0.299608\pi\)
\(930\) 0 0
\(931\) −68.0070 −2.22884
\(932\) 0 0
\(933\) 25.0933 0.821519
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 22.1290 0.722924 0.361462 0.932387i \(-0.382278\pi\)
0.361462 + 0.932387i \(0.382278\pi\)
\(938\) 0 0
\(939\) 0.399660 0.0130424
\(940\) 0 0
\(941\) 45.2047 1.47363 0.736815 0.676094i \(-0.236329\pi\)
0.736815 + 0.676094i \(0.236329\pi\)
\(942\) 0 0
\(943\) −33.0409 −1.07596
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.8853 0.938645 0.469322 0.883027i \(-0.344498\pi\)
0.469322 + 0.883027i \(0.344498\pi\)
\(948\) 0 0
\(949\) −18.2540 −0.592548
\(950\) 0 0
\(951\) −27.0722 −0.877875
\(952\) 0 0
\(953\) −22.9455 −0.743277 −0.371639 0.928377i \(-0.621204\pi\)
−0.371639 + 0.928377i \(0.621204\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −32.8055 −1.06045
\(958\) 0 0
\(959\) −3.03456 −0.0979910
\(960\) 0 0
\(961\) −7.94408 −0.256261
\(962\) 0 0
\(963\) −12.6324 −0.407075
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −39.1830 −1.26004 −0.630020 0.776579i \(-0.716953\pi\)
−0.630020 + 0.776579i \(0.716953\pi\)
\(968\) 0 0
\(969\) 2.73152 0.0877491
\(970\) 0 0
\(971\) 21.3489 0.685120 0.342560 0.939496i \(-0.388706\pi\)
0.342560 + 0.939496i \(0.388706\pi\)
\(972\) 0 0
\(973\) 78.1332 2.50483
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.86435 −0.219610 −0.109805 0.993953i \(-0.535023\pi\)
−0.109805 + 0.993953i \(0.535023\pi\)
\(978\) 0 0
\(979\) −3.55087 −0.113486
\(980\) 0 0
\(981\) −3.79604 −0.121198
\(982\) 0 0
\(983\) −19.5704 −0.624199 −0.312099 0.950049i \(-0.601032\pi\)
−0.312099 + 0.950049i \(0.601032\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.785101 −0.0249900
\(988\) 0 0
\(989\) 43.5205 1.38387
\(990\) 0 0
\(991\) 3.28617 0.104389 0.0521944 0.998637i \(-0.483378\pi\)
0.0521944 + 0.998637i \(0.483378\pi\)
\(992\) 0 0
\(993\) −7.41457 −0.235294
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −27.1168 −0.858797 −0.429398 0.903115i \(-0.641274\pi\)
−0.429398 + 0.903115i \(0.641274\pi\)
\(998\) 0 0
\(999\) 10.9620 0.346821
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3000.2.a.o.1.4 yes 4
3.2 odd 2 9000.2.a.y.1.4 4
4.3 odd 2 6000.2.a.bc.1.1 4
5.2 odd 4 3000.2.f.h.1249.4 8
5.3 odd 4 3000.2.f.h.1249.5 8
5.4 even 2 3000.2.a.j.1.1 4
15.14 odd 2 9000.2.a.t.1.1 4
20.3 even 4 6000.2.f.p.1249.4 8
20.7 even 4 6000.2.f.p.1249.5 8
20.19 odd 2 6000.2.a.bl.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3000.2.a.j.1.1 4 5.4 even 2
3000.2.a.o.1.4 yes 4 1.1 even 1 trivial
3000.2.f.h.1249.4 8 5.2 odd 4
3000.2.f.h.1249.5 8 5.3 odd 4
6000.2.a.bc.1.1 4 4.3 odd 2
6000.2.a.bl.1.4 4 20.19 odd 2
6000.2.f.p.1249.4 8 20.3 even 4
6000.2.f.p.1249.5 8 20.7 even 4
9000.2.a.t.1.1 4 15.14 odd 2
9000.2.a.y.1.4 4 3.2 odd 2