Properties

Label 3000.1.z.a.1349.2
Level $3000$
Weight $1$
Character 3000.1349
Analytic conductor $1.497$
Analytic rank $0$
Dimension $8$
Projective image $D_{5}$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3000,1,Mod(149,3000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3000.149"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 5, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3000 = 2^{3} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3000.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,0,-2,0,0,2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49719503790\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 600)
Projective image: \(D_{5}\)
Projective field: Galois closure of 5.1.225000000.2

Embedding invariants

Embedding label 1349.2
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 3000.1349
Dual form 3000.1.z.a.149.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 - 0.309017i) q^{2} +(-0.587785 - 0.809017i) q^{3} +(0.809017 - 0.587785i) q^{4} +(-0.809017 - 0.587785i) q^{6} -1.61803i q^{7} +(0.587785 - 0.809017i) q^{8} +(-0.309017 + 0.951057i) q^{9} +(-0.190983 - 0.587785i) q^{11} +(-0.951057 - 0.309017i) q^{12} +(-0.500000 - 1.53884i) q^{14} +(0.309017 - 0.951057i) q^{16} +1.00000i q^{18} +(-1.30902 + 0.951057i) q^{21} +(-0.363271 - 0.500000i) q^{22} -1.00000 q^{24} +(0.951057 - 0.309017i) q^{27} +(-0.951057 - 1.30902i) q^{28} +(-1.61803 + 1.17557i) q^{29} +(1.30902 + 0.951057i) q^{31} -1.00000i q^{32} +(-0.363271 + 0.500000i) q^{33} +(0.309017 + 0.951057i) q^{36} +(-0.951057 + 1.30902i) q^{42} +(-0.500000 - 0.363271i) q^{44} +(-0.951057 + 0.309017i) q^{48} -1.61803 q^{49} +(-0.363271 - 0.500000i) q^{53} +(0.809017 - 0.587785i) q^{54} +(-1.30902 - 0.951057i) q^{56} +(-1.17557 + 1.61803i) q^{58} +(0.190983 - 0.587785i) q^{59} +(1.53884 + 0.500000i) q^{62} +(1.53884 + 0.500000i) q^{63} +(-0.309017 - 0.951057i) q^{64} +(-0.190983 + 0.587785i) q^{66} +(0.587785 + 0.809017i) q^{72} +(1.90211 - 0.618034i) q^{73} +(-0.951057 + 0.309017i) q^{77} +(0.500000 - 0.363271i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(-0.951057 + 1.30902i) q^{83} +(-0.500000 + 1.53884i) q^{84} +(1.90211 + 0.618034i) q^{87} +(-0.587785 - 0.190983i) q^{88} -1.61803i q^{93} +(-0.809017 + 0.587785i) q^{96} +(0.951057 + 1.30902i) q^{97} +(-1.53884 + 0.500000i) q^{98} +0.618034 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} - 2 q^{6} + 2 q^{9} - 6 q^{11} - 4 q^{14} - 2 q^{16} - 6 q^{21} - 8 q^{24} - 4 q^{29} + 6 q^{31} - 2 q^{36} - 4 q^{44} - 4 q^{49} + 2 q^{54} - 6 q^{56} + 6 q^{59} + 2 q^{64} - 6 q^{66} + 4 q^{79}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(1001\) \(1501\) \(2377\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{9}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 0.309017i 0.951057 0.309017i
\(3\) −0.587785 0.809017i −0.587785 0.809017i
\(4\) 0.809017 0.587785i 0.809017 0.587785i
\(5\) 0 0
\(6\) −0.809017 0.587785i −0.809017 0.587785i
\(7\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(8\) 0.587785 0.809017i 0.587785 0.809017i
\(9\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(10\) 0 0
\(11\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(12\) −0.951057 0.309017i −0.951057 0.309017i
\(13\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(14\) −0.500000 1.53884i −0.500000 1.53884i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.309017 0.951057i
\(17\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(18\) 1.00000i 1.00000i
\(19\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(20\) 0 0
\(21\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(22\) −0.363271 0.500000i −0.363271 0.500000i
\(23\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(24\) −1.00000 −1.00000
\(25\) 0 0
\(26\) 0 0
\(27\) 0.951057 0.309017i 0.951057 0.309017i
\(28\) −0.951057 1.30902i −0.951057 1.30902i
\(29\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(30\) 0 0
\(31\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(32\) 1.00000i 1.00000i
\(33\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(37\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(42\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) −0.500000 0.363271i −0.500000 0.363271i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(48\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(49\) −1.61803 −1.61803
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.363271 0.500000i −0.363271 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(54\) 0.809017 0.587785i 0.809017 0.587785i
\(55\) 0 0
\(56\) −1.30902 0.951057i −1.30902 0.951057i
\(57\) 0 0
\(58\) −1.17557 + 1.61803i −1.17557 + 1.61803i
\(59\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(60\) 0 0
\(61\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(62\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(63\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(64\) −0.309017 0.951057i −0.309017 0.951057i
\(65\) 0 0
\(66\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(67\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(72\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(73\) 1.90211 0.618034i 1.90211 0.618034i 0.951057 0.309017i \(-0.100000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(78\) 0 0
\(79\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.809017 0.587785i
\(82\) 0 0
\(83\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(84\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(85\) 0 0
\(86\) 0 0
\(87\) 1.90211 + 0.618034i 1.90211 + 0.618034i
\(88\) −0.587785 0.190983i −0.587785 0.190983i
\(89\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.61803i 1.61803i
\(94\) 0 0
\(95\) 0 0
\(96\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(97\) 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i \(0.100000\pi\)
1.00000i \(0.5\pi\)
\(98\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(99\) 0.618034 0.618034
\(100\) 0 0
\(101\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(102\) 0 0
\(103\) −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i \(-0.900000\pi\)
1.00000i \(-0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.500000 0.363271i −0.500000 0.363271i
\(107\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(108\) 0.587785 0.809017i 0.587785 0.809017i
\(109\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.53884 0.500000i −1.53884 0.500000i
\(113\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(117\) 0 0
\(118\) 0.618034i 0.618034i
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 0.363271i 0.500000 0.363271i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.61803 1.61803
\(125\) 0 0
\(126\) 1.61803 1.61803
\(127\) −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i \(-0.700000\pi\)
1.00000i \(0.5\pi\)
\(128\) −0.587785 0.809017i −0.587785 0.809017i
\(129\) 0 0
\(130\) 0 0
\(131\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(132\) 0.618034i 0.618034i
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(138\) 0 0
\(139\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(145\) 0 0
\(146\) 1.61803 1.17557i 1.61803 1.17557i
\(147\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(148\) 0 0
\(149\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(150\) 0 0
\(151\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0.363271 0.500000i 0.363271 0.500000i
\(159\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.951057 0.309017i −0.951057 0.309017i
\(163\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(167\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(168\) 1.61803i 1.61803i
\(169\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(174\) 2.00000 2.00000
\(175\) 0 0
\(176\) −0.618034 −0.618034
\(177\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(178\) 0 0
\(179\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(180\) 0 0
\(181\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) −0.500000 1.53884i −0.500000 1.53884i
\(187\) 0 0
\(188\) 0 0
\(189\) −0.500000 1.53884i −0.500000 1.53884i
\(190\) 0 0
\(191\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(192\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(193\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(194\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(195\) 0 0
\(196\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(197\) −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i \(-0.900000\pi\)
1.00000i \(-0.5\pi\)
\(198\) 0.587785 0.190983i 0.587785 0.190983i
\(199\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(203\) 1.90211 + 2.61803i 1.90211 + 2.61803i
\(204\) 0 0
\(205\) 0 0
\(206\) −1.30902 0.951057i −1.30902 0.951057i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(212\) −0.587785 0.190983i −0.587785 0.190983i
\(213\) 0 0
\(214\) −0.190983 0.587785i −0.190983 0.587785i
\(215\) 0 0
\(216\) 0.309017 0.951057i 0.309017 0.951057i
\(217\) 1.53884 2.11803i 1.53884 2.11803i
\(218\) 0 0
\(219\) −1.61803 1.17557i −1.61803 1.17557i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.587785 0.190983i 0.587785 0.190983i 1.00000i \(-0.5\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(224\) −1.61803 −1.61803
\(225\) 0 0
\(226\) 0 0
\(227\) 0.587785 0.190983i 0.587785 0.190983i 1.00000i \(-0.5\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(228\) 0 0
\(229\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(230\) 0 0
\(231\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(232\) 2.00000i 2.00000i
\(233\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.190983 0.587785i −0.190983 0.587785i
\(237\) −0.587785 0.190983i −0.587785 0.190983i
\(238\) 0 0
\(239\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(240\) 0 0
\(241\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(242\) 0.363271 0.500000i 0.363271 0.500000i
\(243\) 1.00000i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 1.53884 0.500000i 1.53884 0.500000i
\(249\) 1.61803 1.61803
\(250\) 0 0
\(251\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(252\) 1.53884 0.500000i 1.53884 0.500000i
\(253\) 0 0
\(254\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.809017 0.587785i
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.618034 1.90211i −0.618034 1.90211i
\(262\) 1.90211 + 0.618034i 1.90211 + 0.618034i
\(263\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(264\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(270\) 0 0
\(271\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(278\) 0 0
\(279\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(280\) 0 0
\(281\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(282\) 0 0
\(283\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(289\) −0.309017 0.951057i −0.309017 0.951057i
\(290\) 0 0
\(291\) 0.500000 1.53884i 0.500000 1.53884i
\(292\) 1.17557 1.61803i 1.17557 1.61803i
\(293\) 0.618034i 0.618034i 0.951057 + 0.309017i \(0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(294\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(295\) 0 0
\(296\) 0 0
\(297\) −0.363271 0.500000i −0.363271 0.500000i
\(298\) 0.587785 0.190983i 0.587785 0.190983i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(303\) 0.363271 + 0.500000i 0.363271 + 0.500000i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(309\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(310\) 0 0
\(311\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(312\) 0 0
\(313\) −0.587785 0.190983i −0.587785 0.190983i 1.00000i \(-0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.190983 0.587785i 0.190983 0.587785i
\(317\) −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(318\) 0.618034i 0.618034i
\(319\) 1.00000 + 0.726543i 1.00000 + 0.726543i
\(320\) 0 0
\(321\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(332\) 1.61803i 1.61803i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(337\) −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(338\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(339\) 0 0
\(340\) 0 0
\(341\) 0.309017 0.951057i 0.309017 0.951057i
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) 1.30902 0.951057i 1.30902 0.951057i
\(347\) 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(348\) 1.90211 0.618034i 1.90211 0.618034i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(353\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(354\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0.951057 1.30902i 0.951057 1.30902i
\(359\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(360\) 0 0
\(361\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(362\) 0 0
\(363\) −0.587785 0.190983i −0.587785 0.190983i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(372\) −0.951057 1.30902i −0.951057 1.30902i
\(373\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) −0.951057 1.30902i −0.951057 1.30902i
\(379\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(380\) 0 0
\(381\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(382\) 0 0
\(383\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(384\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(385\) 0 0
\(386\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(387\) 0 0
\(388\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(389\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(393\) 2.00000i 2.00000i
\(394\) −1.30902 0.951057i −1.30902 0.951057i
\(395\) 0 0
\(396\) 0.500000 0.363271i 0.500000 0.363271i
\(397\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(398\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(405\) 0 0
\(406\) 2.61803 + 1.90211i 2.61803 + 1.90211i
\(407\) 0 0
\(408\) 0 0
\(409\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.53884 0.500000i −1.53884 0.500000i
\(413\) −0.951057 0.309017i −0.951057 0.309017i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(420\) 0 0
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −0.618034 −0.618034
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.363271 0.500000i −0.363271 0.500000i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(432\) 1.00000i 1.00000i
\(433\) −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(434\) 0.809017 2.48990i 0.809017 2.48990i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −1.90211 0.618034i −1.90211 0.618034i
\(439\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0.500000 1.53884i 0.500000 1.53884i
\(442\) 0 0
\(443\) 1.61803i 1.61803i −0.587785 0.809017i \(-0.700000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.500000 0.363271i 0.500000 0.363271i
\(447\) −0.363271 0.500000i −0.363271 0.500000i
\(448\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(454\) 0.500000 0.363271i 0.500000 0.363271i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.618034i 0.618034i 0.951057 + 0.309017i \(0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(462\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(463\) −1.90211 0.618034i −1.90211 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 0.309017i \(-0.900000\pi\)
\(464\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(465\) 0 0
\(466\) 0 0
\(467\) −0.363271 + 0.500000i −0.363271 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.363271 0.500000i −0.363271 0.500000i
\(473\) 0 0
\(474\) −0.618034 −0.618034
\(475\) 0 0
\(476\) 0 0
\(477\) 0.587785 0.190983i 0.587785 0.190983i
\(478\) 0 0
\(479\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.61803i 1.61803i
\(483\) 0 0
\(484\) 0.190983 0.587785i 0.190983 0.587785i
\(485\) 0 0
\(486\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(487\) 0.587785 + 0.190983i 0.587785 + 0.190983i 0.587785 0.809017i \(-0.300000\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.30902 0.951057i 1.30902 0.951057i
\(497\) 0 0
\(498\) 1.53884 0.500000i 1.53884 0.500000i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1.53884 0.500000i 1.53884 0.500000i
\(503\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(504\) 1.30902 0.951057i 1.30902 0.951057i
\(505\) 0 0
\(506\) 0 0
\(507\) 1.00000i 1.00000i
\(508\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(509\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(510\) 0 0
\(511\) −1.00000 3.07768i −1.00000 3.07768i
\(512\) −0.951057 0.309017i −0.951057 0.309017i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −1.30902 0.951057i −1.30902 0.951057i
\(520\) 0 0
\(521\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(522\) −1.17557 1.61803i −1.17557 1.61803i
\(523\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(524\) 2.00000 2.00000
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0.363271 + 0.500000i 0.363271 + 0.500000i
\(529\) 0.809017 0.587785i 0.809017 0.587785i
\(530\) 0 0
\(531\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.53884 0.500000i −1.53884 0.500000i
\(538\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(539\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(540\) 0 0
\(541\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(542\) 0.951057 1.30902i 0.951057 1.30902i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.587785 0.809017i −0.587785 0.809017i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(558\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(568\) 0 0
\(569\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(570\) 0 0
\(571\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) 1.53884 0.500000i 1.53884 0.500000i 0.587785 0.809017i \(-0.300000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(578\) −0.587785 0.809017i −0.587785 0.809017i
\(579\) 1.30902 0.951057i 1.30902 0.951057i
\(580\) 0 0
\(581\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(582\) 1.61803i 1.61803i
\(583\) −0.224514 + 0.309017i −0.224514 + 0.309017i
\(584\) 0.618034 1.90211i 0.618034 1.90211i
\(585\) 0 0
\(586\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(587\) −0.587785 0.190983i −0.587785 0.190983i 1.00000i \(-0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(588\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(589\) 0 0
\(590\) 0 0
\(591\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) −0.500000 0.363271i −0.500000 0.363271i
\(595\) 0 0
\(596\) 0.500000 0.363271i 0.500000 0.363271i
\(597\) 0.363271 + 0.500000i 0.363271 + 0.500000i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(605\) 0 0
\(606\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(607\) 0.618034i 0.618034i 0.951057 + 0.309017i \(0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(608\) 0 0
\(609\) 1.00000 3.07768i 1.00000 3.07768i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(617\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(618\) 1.61803i 1.61803i
\(619\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) −0.618034 −0.618034
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(632\) 0.618034i 0.618034i
\(633\) 0 0
\(634\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(635\) 0 0
\(636\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(637\) 0 0
\(638\) 1.17557 + 0.381966i 1.17557 + 0.381966i
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(642\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(648\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(649\) −0.381966 −0.381966
\(650\) 0 0
\(651\) −2.61803 −2.61803
\(652\) 0 0
\(653\) 0.951057 + 1.30902i 0.951057 + 1.30902i 0.951057 + 0.309017i \(0.100000\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000i 2.00000i
\(658\) 0 0
\(659\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.500000 0.363271i −0.500000 0.363271i
\(670\) 0 0
\(671\) 0 0
\(672\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(673\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(674\) −1.61803 −1.61803
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(678\) 0 0
\(679\) 2.11803 1.53884i 2.11803 1.53884i
\(680\) 0 0
\(681\) −0.500000 0.363271i −0.500000 0.363271i
\(682\) 1.00000i 1.00000i
\(683\) 0.363271 0.500000i 0.363271 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(692\) 0.951057 1.30902i 0.951057 1.30902i
\(693\) 1.00000i 1.00000i
\(694\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(695\) 0 0
\(696\) 1.61803 1.17557i 1.61803 1.17557i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00000i 1.00000i
\(708\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(709\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(710\) 0 0
\(711\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 1.53884i 0.500000 1.53884i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(720\) 0 0
\(721\) −2.11803 + 1.53884i −2.11803 + 1.53884i
\(722\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(723\) 1.53884 0.500000i 1.53884 0.500000i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.618034 −0.618034
\(727\) −1.90211 + 0.618034i −1.90211 + 0.618034i −0.951057 + 0.309017i \(0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(728\) 0 0
\(729\) 0.809017 0.587785i 0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(734\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −1.30902 0.951057i −1.30902 0.951057i
\(745\) 0 0
\(746\) 0 0
\(747\) −0.951057 1.30902i −0.951057 1.30902i
\(748\) 0 0
\(749\) −1.00000 −1.00000
\(750\) 0 0
\(751\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(752\) 0 0
\(753\) −0.951057 1.30902i −0.951057 1.30902i
\(754\) 0 0
\(755\) 0 0
\(756\) −1.30902 0.951057i −1.30902 0.951057i
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(762\) 0.587785 + 0.190983i 0.587785 + 0.190983i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 1.00000i 1.00000i
\(769\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(773\) −0.587785 + 0.190983i −0.587785 + 0.190983i −0.587785 0.809017i \(-0.700000\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.61803 1.61803
\(777\) 0 0
\(778\) 0.363271 + 0.500000i 0.363271 + 0.500000i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.17557 + 1.61803i −1.17557 + 1.61803i
\(784\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(785\) 0 0
\(786\) −0.618034 1.90211i −0.618034 1.90211i
\(787\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(788\) −1.53884 0.500000i −1.53884 0.500000i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.363271 0.500000i 0.363271 0.500000i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(797\) 0.363271 + 0.500000i 0.363271 + 0.500000i 0.951057 0.309017i \(-0.100000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.726543 1.00000i −0.726543 1.00000i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.61803i 1.61803i
\(808\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(809\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(810\) 0 0
\(811\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(812\) 3.07768 + 1.00000i 3.07768 + 1.00000i
\(813\) −1.53884 0.500000i −1.53884 0.500000i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0.618034i 0.618034i
\(819\) 0 0
\(820\) 0 0
\(821\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0.587785 0.190983i 0.587785 0.190983i 1.00000i \(-0.5\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(824\) −1.61803 −1.61803
\(825\) 0 0
\(826\) −1.00000 −1.00000
\(827\) −1.53884 + 0.500000i −1.53884 + 0.500000i −0.951057 0.309017i \(-0.900000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(828\) 0 0
\(829\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(838\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(839\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(840\) 0 0
\(841\) 0.927051 2.85317i 0.927051 2.85317i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.587785 0.809017i −0.587785 0.809017i
\(848\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.500000 0.363271i −0.500000 0.363271i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(864\) −0.309017 0.951057i −0.309017 0.951057i
\(865\) 0 0
\(866\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(867\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(868\) 2.61803i 2.61803i
\(869\) −0.309017 0.224514i −0.309017 0.224514i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(874\) 0 0
\(875\) 0 0
\(876\) −2.00000 −2.00000
\(877\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(878\) −0.363271 0.500000i −0.363271 0.500000i
\(879\) 0.500000 0.363271i 0.500000 0.363271i
\(880\) 0 0
\(881\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(882\) 1.61803i 1.61803i
\(883\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.500000 1.53884i −0.500000 1.53884i
\(887\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(888\) 0 0
\(889\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(890\) 0 0
\(891\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(892\) 0.363271 0.500000i 0.363271 0.500000i
\(893\) 0 0
\(894\) −0.500000 0.363271i −0.500000 0.363271i
\(895\) 0 0
\(896\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(897\) 0 0
\(898\) 0 0
\(899\) −3.23607 −3.23607
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0.363271 0.500000i 0.363271 0.500000i
\(909\) 0.190983 0.587785i 0.190983 0.587785i
\(910\) 0 0
\(911\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(912\) 0 0
\(913\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(914\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(915\) 0 0
\(916\) 0 0
\(917\) 1.90211 2.61803i 1.90211 2.61803i
\(918\) 0 0
\(919\) 1.61803 + 1.17557i 1.61803 + 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.951057 + 1.30902i 0.951057 + 1.30902i
\(923\) 0 0
\(924\) 1.00000 1.00000
\(925\) 0 0
\(926\) −2.00000 −2.00000
\(927\) 1.53884 0.500000i 1.53884 0.500000i
\(928\) 1.17557 + 1.61803i 1.17557 + 1.61803i
\(929\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(935\) 0 0
\(936\) 0 0
\(937\) −1.53884 0.500000i −1.53884 0.500000i −0.587785 0.809017i \(-0.700000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(938\) 0 0
\(939\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(940\) 0 0
\(941\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.500000 0.363271i −0.500000 0.363271i
\(945\) 0 0
\(946\) 0 0
\(947\) −0.951057 1.30902i −0.951057 1.30902i −0.951057 0.309017i \(-0.900000\pi\)
1.00000i \(-0.5\pi\)
\(948\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(949\) 0 0
\(950\) 0 0
\(951\) 0.618034 0.618034
\(952\) 0 0
\(953\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(954\) 0.500000 0.363271i 0.500000 0.363271i
\(955\) 0 0
\(956\) 0 0
\(957\) 1.23607i 1.23607i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(962\) 0 0
\(963\) 0.587785 + 0.190983i 0.587785 + 0.190983i
\(964\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(965\) 0 0
\(966\) 0 0
\(967\) −0.951057 + 1.30902i −0.951057 + 1.30902i 1.00000i \(0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(968\) 0.618034i 0.618034i
\(969\) 0 0
\(970\) 0 0
\(971\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(972\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(973\) 0 0
\(974\) 0.618034 0.618034
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 1.61803i 1.61803i
\(983\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(992\) 0.951057 1.30902i 0.951057 1.30902i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 1.30902 0.951057i 1.30902 0.951057i
\(997\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3000.1.z.a.1349.2 8
3.2 odd 2 3000.1.z.b.1349.1 8
5.2 odd 4 3000.1.bj.a.1901.1 4
5.3 odd 4 600.1.bj.b.581.1 yes 4
5.4 even 2 inner 3000.1.z.a.1349.1 8
8.5 even 2 3000.1.z.b.1349.1 8
15.2 even 4 3000.1.bj.b.1901.1 4
15.8 even 4 600.1.bj.a.581.1 yes 4
15.14 odd 2 3000.1.z.b.1349.2 8
20.3 even 4 2400.1.cp.a.881.1 4
24.5 odd 2 CM 3000.1.z.a.1349.2 8
25.3 odd 20 600.1.bj.b.221.1 yes 4
25.4 even 10 inner 3000.1.z.a.149.2 8
25.21 even 5 inner 3000.1.z.a.149.1 8
25.22 odd 20 3000.1.bj.a.101.1 4
40.3 even 4 2400.1.cp.b.881.1 4
40.13 odd 4 600.1.bj.a.581.1 yes 4
40.29 even 2 3000.1.z.b.1349.2 8
40.37 odd 4 3000.1.bj.b.1901.1 4
60.23 odd 4 2400.1.cp.b.881.1 4
75.29 odd 10 3000.1.z.b.149.1 8
75.47 even 20 3000.1.bj.b.101.1 4
75.53 even 20 600.1.bj.a.221.1 4
75.71 odd 10 3000.1.z.b.149.2 8
100.3 even 20 2400.1.cp.a.2321.1 4
120.29 odd 2 inner 3000.1.z.a.1349.1 8
120.53 even 4 600.1.bj.b.581.1 yes 4
120.77 even 4 3000.1.bj.a.1901.1 4
120.83 odd 4 2400.1.cp.a.881.1 4
200.3 even 20 2400.1.cp.b.2321.1 4
200.21 even 10 3000.1.z.b.149.2 8
200.29 even 10 3000.1.z.b.149.1 8
200.53 odd 20 600.1.bj.a.221.1 4
200.197 odd 20 3000.1.bj.b.101.1 4
300.203 odd 20 2400.1.cp.b.2321.1 4
600.29 odd 10 inner 3000.1.z.a.149.2 8
600.53 even 20 600.1.bj.b.221.1 yes 4
600.197 even 20 3000.1.bj.a.101.1 4
600.203 odd 20 2400.1.cp.a.2321.1 4
600.221 odd 10 inner 3000.1.z.a.149.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.1.bj.a.221.1 4 75.53 even 20
600.1.bj.a.221.1 4 200.53 odd 20
600.1.bj.a.581.1 yes 4 15.8 even 4
600.1.bj.a.581.1 yes 4 40.13 odd 4
600.1.bj.b.221.1 yes 4 25.3 odd 20
600.1.bj.b.221.1 yes 4 600.53 even 20
600.1.bj.b.581.1 yes 4 5.3 odd 4
600.1.bj.b.581.1 yes 4 120.53 even 4
2400.1.cp.a.881.1 4 20.3 even 4
2400.1.cp.a.881.1 4 120.83 odd 4
2400.1.cp.a.2321.1 4 100.3 even 20
2400.1.cp.a.2321.1 4 600.203 odd 20
2400.1.cp.b.881.1 4 40.3 even 4
2400.1.cp.b.881.1 4 60.23 odd 4
2400.1.cp.b.2321.1 4 200.3 even 20
2400.1.cp.b.2321.1 4 300.203 odd 20
3000.1.z.a.149.1 8 25.21 even 5 inner
3000.1.z.a.149.1 8 600.221 odd 10 inner
3000.1.z.a.149.2 8 25.4 even 10 inner
3000.1.z.a.149.2 8 600.29 odd 10 inner
3000.1.z.a.1349.1 8 5.4 even 2 inner
3000.1.z.a.1349.1 8 120.29 odd 2 inner
3000.1.z.a.1349.2 8 1.1 even 1 trivial
3000.1.z.a.1349.2 8 24.5 odd 2 CM
3000.1.z.b.149.1 8 75.29 odd 10
3000.1.z.b.149.1 8 200.29 even 10
3000.1.z.b.149.2 8 75.71 odd 10
3000.1.z.b.149.2 8 200.21 even 10
3000.1.z.b.1349.1 8 3.2 odd 2
3000.1.z.b.1349.1 8 8.5 even 2
3000.1.z.b.1349.2 8 15.14 odd 2
3000.1.z.b.1349.2 8 40.29 even 2
3000.1.bj.a.101.1 4 25.22 odd 20
3000.1.bj.a.101.1 4 600.197 even 20
3000.1.bj.a.1901.1 4 5.2 odd 4
3000.1.bj.a.1901.1 4 120.77 even 4
3000.1.bj.b.101.1 4 75.47 even 20
3000.1.bj.b.101.1 4 200.197 odd 20
3000.1.bj.b.1901.1 4 15.2 even 4
3000.1.bj.b.1901.1 4 40.37 odd 4