Properties

Label 30.5.f.a.7.1
Level $30$
Weight $5$
Character 30.7
Analytic conductor $3.101$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,5,Mod(7,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.7"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 30.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.10109889252\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 7.1
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 30.7
Dual form 30.5.f.a.13.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 2.00000i) q^{2} +(-3.67423 + 3.67423i) q^{3} +8.00000i q^{4} +(24.6742 + 4.02270i) q^{5} +14.6969 q^{6} +(44.4393 + 44.4393i) q^{7} +(16.0000 - 16.0000i) q^{8} -27.0000i q^{9} +(-41.3031 - 57.3939i) q^{10} +167.439 q^{11} +(-29.3939 - 29.3939i) q^{12} +(-223.621 + 223.621i) q^{13} -177.757i q^{14} +(-105.439 + 75.8786i) q^{15} -64.0000 q^{16} +(-71.0148 - 71.0148i) q^{17} +(-54.0000 + 54.0000i) q^{18} -272.211i q^{19} +(-32.1816 + 197.394i) q^{20} -326.561 q^{21} +(-334.879 - 334.879i) q^{22} +(87.6821 - 87.6821i) q^{23} +117.576i q^{24} +(592.636 + 198.514i) q^{25} +894.484 q^{26} +(99.2043 + 99.2043i) q^{27} +(-355.514 + 355.514i) q^{28} -839.832i q^{29} +(362.636 + 59.1214i) q^{30} +403.787 q^{31} +(128.000 + 128.000i) q^{32} +(-615.211 + 615.211i) q^{33} +284.059i q^{34} +(917.739 + 1275.27i) q^{35} +216.000 q^{36} +(-207.589 - 207.589i) q^{37} +(-544.422 + 544.422i) q^{38} -1643.27i q^{39} +(459.151 - 330.424i) q^{40} -1386.39 q^{41} +(653.121 + 653.121i) q^{42} +(568.393 - 568.393i) q^{43} +1339.51i q^{44} +(108.613 - 666.204i) q^{45} -350.729 q^{46} +(-2642.77 - 2642.77i) q^{47} +(235.151 - 235.151i) q^{48} +1548.70i q^{49} +(-788.243 - 1582.30i) q^{50} +521.850 q^{51} +(-1788.97 - 1788.97i) q^{52} +(-1378.64 + 1378.64i) q^{53} -396.817i q^{54} +(4131.44 + 673.559i) q^{55} +1422.06 q^{56} +(1000.17 + 1000.17i) q^{57} +(-1679.66 + 1679.66i) q^{58} -327.503i q^{59} +(-607.029 - 843.514i) q^{60} -4205.66 q^{61} +(-807.573 - 807.573i) q^{62} +(1199.86 - 1199.86i) q^{63} -512.000i q^{64} +(-6417.24 + 4618.11i) q^{65} +2460.84 q^{66} +(2832.99 + 2832.99i) q^{67} +(568.118 - 568.118i) q^{68} +644.330i q^{69} +(715.064 - 4386.02i) q^{70} +5339.03 q^{71} +(-432.000 - 432.000i) q^{72} +(6865.24 - 6865.24i) q^{73} +830.357i q^{74} +(-2906.87 + 1448.09i) q^{75} +2177.69 q^{76} +(7440.88 + 7440.88i) q^{77} +(-3286.54 + 3286.54i) q^{78} +4666.69i q^{79} +(-1579.15 - 257.453i) q^{80} -729.000 q^{81} +(2772.78 + 2772.78i) q^{82} +(4111.98 - 4111.98i) q^{83} -2612.49i q^{84} +(-1466.56 - 2037.91i) q^{85} -2273.57 q^{86} +(3085.74 + 3085.74i) q^{87} +(2679.03 - 2679.03i) q^{88} -9911.62i q^{89} +(-1549.63 + 1115.18i) q^{90} -19875.1 q^{91} +(701.457 + 701.457i) q^{92} +(-1483.61 + 1483.61i) q^{93} +10571.1i q^{94} +(1095.03 - 6716.60i) q^{95} -940.604 q^{96} +(-10688.9 - 10688.9i) q^{97} +(3097.40 - 3097.40i) q^{98} -4520.86i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} + 84 q^{5} - 28 q^{7} + 64 q^{8} - 224 q^{10} + 464 q^{11} - 336 q^{13} - 216 q^{15} - 256 q^{16} + 392 q^{17} - 216 q^{18} + 224 q^{20} - 1512 q^{21} - 928 q^{22} + 968 q^{23} + 1136 q^{25}+ \cdots + 23912 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 2.00000i −0.500000 0.500000i
\(3\) −3.67423 + 3.67423i −0.408248 + 0.408248i
\(4\) 8.00000i 0.500000i
\(5\) 24.6742 + 4.02270i 0.986969 + 0.160908i
\(6\) 14.6969 0.408248
\(7\) 44.4393 + 44.4393i 0.906924 + 0.906924i 0.996023 0.0890986i \(-0.0283986\pi\)
−0.0890986 + 0.996023i \(0.528399\pi\)
\(8\) 16.0000 16.0000i 0.250000 0.250000i
\(9\) 27.0000i 0.333333i
\(10\) −41.3031 57.3939i −0.413031 0.573939i
\(11\) 167.439 1.38380 0.691898 0.721995i \(-0.256775\pi\)
0.691898 + 0.721995i \(0.256775\pi\)
\(12\) −29.3939 29.3939i −0.204124 0.204124i
\(13\) −223.621 + 223.621i −1.32320 + 1.32320i −0.412031 + 0.911170i \(0.635180\pi\)
−0.911170 + 0.412031i \(0.864820\pi\)
\(14\) 177.757i 0.906924i
\(15\) −105.439 + 75.8786i −0.468619 + 0.337238i
\(16\) −64.0000 −0.250000
\(17\) −71.0148 71.0148i −0.245726 0.245726i 0.573488 0.819214i \(-0.305590\pi\)
−0.819214 + 0.573488i \(0.805590\pi\)
\(18\) −54.0000 + 54.0000i −0.166667 + 0.166667i
\(19\) 272.211i 0.754048i −0.926204 0.377024i \(-0.876947\pi\)
0.926204 0.377024i \(-0.123053\pi\)
\(20\) −32.1816 + 197.394i −0.0804541 + 0.493485i
\(21\) −326.561 −0.740500
\(22\) −334.879 334.879i −0.691898 0.691898i
\(23\) 87.6821 87.6821i 0.165751 0.165751i −0.619358 0.785109i \(-0.712607\pi\)
0.785109 + 0.619358i \(0.212607\pi\)
\(24\) 117.576i 0.204124i
\(25\) 592.636 + 198.514i 0.948217 + 0.317623i
\(26\) 894.484 1.32320
\(27\) 99.2043 + 99.2043i 0.136083 + 0.136083i
\(28\) −355.514 + 355.514i −0.453462 + 0.453462i
\(29\) 839.832i 0.998611i −0.866426 0.499306i \(-0.833588\pi\)
0.866426 0.499306i \(-0.166412\pi\)
\(30\) 362.636 + 59.1214i 0.402929 + 0.0656905i
\(31\) 403.787 0.420173 0.210087 0.977683i \(-0.432625\pi\)
0.210087 + 0.977683i \(0.432625\pi\)
\(32\) 128.000 + 128.000i 0.125000 + 0.125000i
\(33\) −615.211 + 615.211i −0.564932 + 0.564932i
\(34\) 284.059i 0.245726i
\(35\) 917.739 + 1275.27i 0.749175 + 1.04104i
\(36\) 216.000 0.166667
\(37\) −207.589 207.589i −0.151636 0.151636i 0.627212 0.778848i \(-0.284196\pi\)
−0.778848 + 0.627212i \(0.784196\pi\)
\(38\) −544.422 + 544.422i −0.377024 + 0.377024i
\(39\) 1643.27i 1.08039i
\(40\) 459.151 330.424i 0.286969 0.206515i
\(41\) −1386.39 −0.824742 −0.412371 0.911016i \(-0.635299\pi\)
−0.412371 + 0.911016i \(0.635299\pi\)
\(42\) 653.121 + 653.121i 0.370250 + 0.370250i
\(43\) 568.393 568.393i 0.307406 0.307406i −0.536497 0.843902i \(-0.680253\pi\)
0.843902 + 0.536497i \(0.180253\pi\)
\(44\) 1339.51i 0.691898i
\(45\) 108.613 666.204i 0.0536361 0.328990i
\(46\) −350.729 −0.165751
\(47\) −2642.77 2642.77i −1.19637 1.19637i −0.975247 0.221119i \(-0.929029\pi\)
−0.221119 0.975247i \(-0.570971\pi\)
\(48\) 235.151 235.151i 0.102062 0.102062i
\(49\) 1548.70i 0.645023i
\(50\) −788.243 1582.30i −0.315297 0.632920i
\(51\) 521.850 0.200634
\(52\) −1788.97 1788.97i −0.661600 0.661600i
\(53\) −1378.64 + 1378.64i −0.490792 + 0.490792i −0.908556 0.417763i \(-0.862814\pi\)
0.417763 + 0.908556i \(0.362814\pi\)
\(54\) 396.817i 0.136083i
\(55\) 4131.44 + 673.559i 1.36576 + 0.222664i
\(56\) 1422.06 0.453462
\(57\) 1000.17 + 1000.17i 0.307839 + 0.307839i
\(58\) −1679.66 + 1679.66i −0.499306 + 0.499306i
\(59\) 327.503i 0.0940829i −0.998893 0.0470415i \(-0.985021\pi\)
0.998893 0.0470415i \(-0.0149793\pi\)
\(60\) −607.029 843.514i −0.168619 0.234310i
\(61\) −4205.66 −1.13025 −0.565125 0.825005i \(-0.691172\pi\)
−0.565125 + 0.825005i \(0.691172\pi\)
\(62\) −807.573 807.573i −0.210087 0.210087i
\(63\) 1199.86 1199.86i 0.302308 0.302308i
\(64\) 512.000i 0.125000i
\(65\) −6417.24 + 4618.11i −1.51887 + 1.09304i
\(66\) 2460.84 0.564932
\(67\) 2832.99 + 2832.99i 0.631097 + 0.631097i 0.948343 0.317246i \(-0.102758\pi\)
−0.317246 + 0.948343i \(0.602758\pi\)
\(68\) 568.118 568.118i 0.122863 0.122863i
\(69\) 644.330i 0.135335i
\(70\) 715.064 4386.02i 0.145931 0.895106i
\(71\) 5339.03 1.05912 0.529560 0.848272i \(-0.322357\pi\)
0.529560 + 0.848272i \(0.322357\pi\)
\(72\) −432.000 432.000i −0.0833333 0.0833333i
\(73\) 6865.24 6865.24i 1.28828 1.28828i 0.352447 0.935832i \(-0.385350\pi\)
0.935832 0.352447i \(-0.114650\pi\)
\(74\) 830.357i 0.151636i
\(75\) −2906.87 + 1448.09i −0.516777 + 0.257439i
\(76\) 2177.69 0.377024
\(77\) 7440.88 + 7440.88i 1.25500 + 1.25500i
\(78\) −3286.54 + 3286.54i −0.540194 + 0.540194i
\(79\) 4666.69i 0.747748i 0.927480 + 0.373874i \(0.121971\pi\)
−0.927480 + 0.373874i \(0.878029\pi\)
\(80\) −1579.15 257.453i −0.246742 0.0402270i
\(81\) −729.000 −0.111111
\(82\) 2772.78 + 2772.78i 0.412371 + 0.412371i
\(83\) 4111.98 4111.98i 0.596890 0.596890i −0.342594 0.939484i \(-0.611305\pi\)
0.939484 + 0.342594i \(0.111305\pi\)
\(84\) 2612.49i 0.370250i
\(85\) −1466.56 2037.91i −0.202985 0.282063i
\(86\) −2273.57 −0.307406
\(87\) 3085.74 + 3085.74i 0.407681 + 0.407681i
\(88\) 2679.03 2679.03i 0.345949 0.345949i
\(89\) 9911.62i 1.25131i −0.780100 0.625654i \(-0.784832\pi\)
0.780100 0.625654i \(-0.215168\pi\)
\(90\) −1549.63 + 1115.18i −0.191313 + 0.137677i
\(91\) −19875.1 −2.40009
\(92\) 701.457 + 701.457i 0.0828754 + 0.0828754i
\(93\) −1483.61 + 1483.61i −0.171535 + 0.171535i
\(94\) 10571.1i 1.19637i
\(95\) 1095.03 6716.60i 0.121332 0.744222i
\(96\) −940.604 −0.102062
\(97\) −10688.9 10688.9i −1.13603 1.13603i −0.989156 0.146871i \(-0.953080\pi\)
−0.146871 0.989156i \(-0.546920\pi\)
\(98\) 3097.40 3097.40i 0.322511 0.322511i
\(99\) 4520.86i 0.461265i
\(100\) −1588.11 + 4741.09i −0.158811 + 0.474109i
\(101\) −1763.09 −0.172835 −0.0864177 0.996259i \(-0.527542\pi\)
−0.0864177 + 0.996259i \(0.527542\pi\)
\(102\) −1043.70 1043.70i −0.100317 0.100317i
\(103\) −2414.27 + 2414.27i −0.227568 + 0.227568i −0.811676 0.584108i \(-0.801444\pi\)
0.584108 + 0.811676i \(0.301444\pi\)
\(104\) 7155.87i 0.661600i
\(105\) −8057.64 1313.66i −0.730851 0.119153i
\(106\) 5514.54 0.490792
\(107\) 4279.03 + 4279.03i 0.373747 + 0.373747i 0.868840 0.495093i \(-0.164866\pi\)
−0.495093 + 0.868840i \(0.664866\pi\)
\(108\) −793.635 + 793.635i −0.0680414 + 0.0680414i
\(109\) 11819.5i 0.994827i 0.867514 + 0.497413i \(0.165717\pi\)
−0.867514 + 0.497413i \(0.834283\pi\)
\(110\) −6915.76 9609.99i −0.571550 0.794214i
\(111\) 1525.46 0.123810
\(112\) −2844.11 2844.11i −0.226731 0.226731i
\(113\) 1620.60 1620.60i 0.126917 0.126917i −0.640795 0.767712i \(-0.721395\pi\)
0.767712 + 0.640795i \(0.221395\pi\)
\(114\) 4000.67i 0.307839i
\(115\) 2516.21 1810.77i 0.190262 0.136920i
\(116\) 6718.66 0.499306
\(117\) 6037.76 + 6037.76i 0.441067 + 0.441067i
\(118\) −655.005 + 655.005i −0.0470415 + 0.0470415i
\(119\) 6311.69i 0.445710i
\(120\) −472.971 + 2901.09i −0.0328452 + 0.201464i
\(121\) 13394.9 0.914891
\(122\) 8411.32 + 8411.32i 0.565125 + 0.565125i
\(123\) 5093.93 5093.93i 0.336699 0.336699i
\(124\) 3230.29i 0.210087i
\(125\) 13824.3 + 7282.19i 0.884753 + 0.466060i
\(126\) −4799.44 −0.302308
\(127\) −11572.5 11572.5i −0.717494 0.717494i 0.250597 0.968091i \(-0.419373\pi\)
−0.968091 + 0.250597i \(0.919373\pi\)
\(128\) −1024.00 + 1024.00i −0.0625000 + 0.0625000i
\(129\) 4176.82i 0.250996i
\(130\) 22070.7 + 3598.24i 1.30596 + 0.212914i
\(131\) 65.6230 0.00382396 0.00191198 0.999998i \(-0.499391\pi\)
0.00191198 + 0.999998i \(0.499391\pi\)
\(132\) −4921.69 4921.69i −0.282466 0.282466i
\(133\) 12096.9 12096.9i 0.683864 0.683864i
\(134\) 11332.0i 0.631097i
\(135\) 2048.72 + 2846.86i 0.112413 + 0.156206i
\(136\) −2272.47 −0.122863
\(137\) 579.439 + 579.439i 0.0308721 + 0.0308721i 0.722374 0.691502i \(-0.243051\pi\)
−0.691502 + 0.722374i \(0.743051\pi\)
\(138\) 1288.66 1288.66i 0.0676675 0.0676675i
\(139\) 36158.2i 1.87145i 0.352734 + 0.935724i \(0.385252\pi\)
−0.352734 + 0.935724i \(0.614748\pi\)
\(140\) −10202.2 + 7341.91i −0.520519 + 0.374587i
\(141\) 19420.3 0.976829
\(142\) −10678.1 10678.1i −0.529560 0.529560i
\(143\) −37442.9 + 37442.9i −1.83104 + 1.83104i
\(144\) 1728.00i 0.0833333i
\(145\) 3378.40 20722.2i 0.160685 0.985599i
\(146\) −27461.0 −1.28828
\(147\) −5690.29 5690.29i −0.263330 0.263330i
\(148\) 1660.71 1660.71i 0.0758178 0.0758178i
\(149\) 2143.94i 0.0965695i −0.998834 0.0482847i \(-0.984625\pi\)
0.998834 0.0482847i \(-0.0153755\pi\)
\(150\) 8709.93 + 2917.55i 0.387108 + 0.129669i
\(151\) −8940.59 −0.392114 −0.196057 0.980593i \(-0.562814\pi\)
−0.196057 + 0.980593i \(0.562814\pi\)
\(152\) −4355.38 4355.38i −0.188512 0.188512i
\(153\) −1917.40 + 1917.40i −0.0819086 + 0.0819086i
\(154\) 29763.5i 1.25500i
\(155\) 9963.13 + 1624.31i 0.414698 + 0.0676093i
\(156\) 13146.2 0.540194
\(157\) 18032.9 + 18032.9i 0.731586 + 0.731586i 0.970934 0.239348i \(-0.0769337\pi\)
−0.239348 + 0.970934i \(0.576934\pi\)
\(158\) 9333.39 9333.39i 0.373874 0.373874i
\(159\) 10130.9i 0.400730i
\(160\) 2643.40 + 3673.21i 0.103258 + 0.143485i
\(161\) 7793.06 0.300647
\(162\) 1458.00 + 1458.00i 0.0555556 + 0.0555556i
\(163\) −6859.00 + 6859.00i −0.258158 + 0.258158i −0.824305 0.566147i \(-0.808434\pi\)
0.566147 + 0.824305i \(0.308434\pi\)
\(164\) 11091.1i 0.412371i
\(165\) −17654.7 + 12705.1i −0.648473 + 0.466669i
\(166\) −16447.9 −0.596890
\(167\) −37439.2 37439.2i −1.34244 1.34244i −0.893627 0.448811i \(-0.851848\pi\)
−0.448811 0.893627i \(-0.648152\pi\)
\(168\) −5224.97 + 5224.97i −0.185125 + 0.185125i
\(169\) 71451.6i 2.50172i
\(170\) −1142.69 + 7008.94i −0.0395393 + 0.242524i
\(171\) −7349.70 −0.251349
\(172\) 4547.14 + 4547.14i 0.153703 + 0.153703i
\(173\) −32638.2 + 32638.2i −1.09052 + 1.09052i −0.0950500 + 0.995472i \(0.530301\pi\)
−0.995472 + 0.0950500i \(0.969699\pi\)
\(174\) 12343.0i 0.407681i
\(175\) 17514.5 + 35158.1i 0.571901 + 1.14802i
\(176\) −10716.1 −0.345949
\(177\) 1203.32 + 1203.32i 0.0384092 + 0.0384092i
\(178\) −19823.2 + 19823.2i −0.625654 + 0.625654i
\(179\) 6396.19i 0.199625i −0.995006 0.0998126i \(-0.968176\pi\)
0.995006 0.0998126i \(-0.0318243\pi\)
\(180\) 5329.63 + 868.904i 0.164495 + 0.0268180i
\(181\) 49025.9 1.49647 0.748236 0.663432i \(-0.230901\pi\)
0.748236 + 0.663432i \(0.230901\pi\)
\(182\) 39750.2 + 39750.2i 1.20004 + 1.20004i
\(183\) 15452.6 15452.6i 0.461423 0.461423i
\(184\) 2805.83i 0.0828754i
\(185\) −4287.04 5957.18i −0.125260 0.174059i
\(186\) 5934.43 0.171535
\(187\) −11890.7 11890.7i −0.340034 0.340034i
\(188\) 21142.2 21142.2i 0.598183 0.598183i
\(189\) 8817.14i 0.246833i
\(190\) −15623.3 + 11243.2i −0.432777 + 0.311445i
\(191\) 39949.0 1.09506 0.547531 0.836785i \(-0.315568\pi\)
0.547531 + 0.836785i \(0.315568\pi\)
\(192\) 1881.21 + 1881.21i 0.0510310 + 0.0510310i
\(193\) −23749.1 + 23749.1i −0.637577 + 0.637577i −0.949957 0.312380i \(-0.898874\pi\)
0.312380 + 0.949957i \(0.398874\pi\)
\(194\) 42755.5i 1.13603i
\(195\) 6610.39 40546.5i 0.173843 1.06631i
\(196\) −12389.6 −0.322511
\(197\) −2725.09 2725.09i −0.0702181 0.0702181i 0.671126 0.741344i \(-0.265811\pi\)
−0.741344 + 0.671126i \(0.765811\pi\)
\(198\) −9041.72 + 9041.72i −0.230633 + 0.230633i
\(199\) 63212.5i 1.59624i 0.602502 + 0.798118i \(0.294171\pi\)
−0.602502 + 0.798118i \(0.705829\pi\)
\(200\) 12658.4 6305.94i 0.316460 0.157649i
\(201\) −20818.2 −0.515288
\(202\) 3526.19 + 3526.19i 0.0864177 + 0.0864177i
\(203\) 37321.5 37321.5i 0.905665 0.905665i
\(204\) 4174.80i 0.100317i
\(205\) −34208.1 5577.04i −0.813995 0.132708i
\(206\) 9657.07 0.227568
\(207\) −2367.42 2367.42i −0.0552502 0.0552502i
\(208\) 14311.7 14311.7i 0.330800 0.330800i
\(209\) 45578.9i 1.04345i
\(210\) 13488.0 + 18742.6i 0.305849 + 0.425002i
\(211\) 15470.2 0.347480 0.173740 0.984792i \(-0.444415\pi\)
0.173740 + 0.984792i \(0.444415\pi\)
\(212\) −11029.1 11029.1i −0.245396 0.245396i
\(213\) −19616.8 + 19616.8i −0.432384 + 0.432384i
\(214\) 17116.1i 0.373747i
\(215\) 16311.1 11738.2i 0.352864 0.253936i
\(216\) 3174.54 0.0680414
\(217\) 17944.0 + 17944.0i 0.381065 + 0.381065i
\(218\) 23639.1 23639.1i 0.497413 0.497413i
\(219\) 50449.0i 1.05188i
\(220\) −5388.47 + 33051.5i −0.111332 + 0.682882i
\(221\) 31760.8 0.650289
\(222\) −3050.93 3050.93i −0.0619050 0.0619050i
\(223\) 28817.8 28817.8i 0.579496 0.579496i −0.355268 0.934764i \(-0.615611\pi\)
0.934764 + 0.355268i \(0.115611\pi\)
\(224\) 11376.5i 0.226731i
\(225\) 5359.89 16001.2i 0.105874 0.316072i
\(226\) −6482.41 −0.126917
\(227\) 884.237 + 884.237i 0.0171600 + 0.0171600i 0.715635 0.698475i \(-0.246138\pi\)
−0.698475 + 0.715635i \(0.746138\pi\)
\(228\) −8001.34 + 8001.34i −0.153919 + 0.153919i
\(229\) 12076.4i 0.230285i −0.993349 0.115143i \(-0.963268\pi\)
0.993349 0.115143i \(-0.0367325\pi\)
\(230\) −8653.96 1410.88i −0.163591 0.0266706i
\(231\) −54679.1 −1.02470
\(232\) −13437.3 13437.3i −0.249653 0.249653i
\(233\) −24695.8 + 24695.8i −0.454894 + 0.454894i −0.896975 0.442081i \(-0.854240\pi\)
0.442081 + 0.896975i \(0.354240\pi\)
\(234\) 24151.1i 0.441067i
\(235\) −54577.3 75839.5i −0.988271 1.37328i
\(236\) 2620.02 0.0470415
\(237\) −17146.5 17146.5i −0.305267 0.305267i
\(238\) −12623.4 + 12623.4i −0.222855 + 0.222855i
\(239\) 48187.8i 0.843608i 0.906687 + 0.421804i \(0.138603\pi\)
−0.906687 + 0.421804i \(0.861397\pi\)
\(240\) 6748.11 4856.23i 0.117155 0.0843095i
\(241\) −55184.2 −0.950125 −0.475062 0.879952i \(-0.657574\pi\)
−0.475062 + 0.879952i \(0.657574\pi\)
\(242\) −26789.8 26789.8i −0.457445 0.457445i
\(243\) 2678.52 2678.52i 0.0453609 0.0453609i
\(244\) 33645.3i 0.565125i
\(245\) −6229.96 + 38213.0i −0.103789 + 0.636618i
\(246\) −20375.7 −0.336699
\(247\) 60872.1 + 60872.1i 0.997756 + 0.997756i
\(248\) 6460.59 6460.59i 0.105043 0.105043i
\(249\) 30216.7i 0.487359i
\(250\) −13084.2 42212.9i −0.209347 0.675407i
\(251\) −69667.8 −1.10582 −0.552910 0.833241i \(-0.686483\pi\)
−0.552910 + 0.833241i \(0.686483\pi\)
\(252\) 9598.89 + 9598.89i 0.151154 + 0.151154i
\(253\) 14681.4 14681.4i 0.229365 0.229365i
\(254\) 46289.8i 0.717494i
\(255\) 12876.2 + 2099.25i 0.198020 + 0.0322837i
\(256\) 4096.00 0.0625000
\(257\) −11614.4 11614.4i −0.175846 0.175846i 0.613696 0.789542i \(-0.289682\pi\)
−0.789542 + 0.613696i \(0.789682\pi\)
\(258\) 8353.63 8353.63i 0.125498 0.125498i
\(259\) 18450.2i 0.275044i
\(260\) −36944.9 51337.9i −0.546522 0.759436i
\(261\) −22675.5 −0.332870
\(262\) −131.246 131.246i −0.00191198 0.00191198i
\(263\) 86811.6 86811.6i 1.25507 1.25507i 0.301646 0.953420i \(-0.402464\pi\)
0.953420 0.301646i \(-0.0975360\pi\)
\(264\) 19686.8i 0.282466i
\(265\) −39562.6 + 28470.9i −0.563370 + 0.405425i
\(266\) −48387.5 −0.683864
\(267\) 36417.6 + 36417.6i 0.510845 + 0.510845i
\(268\) −22663.9 + 22663.9i −0.315548 + 0.315548i
\(269\) 93439.3i 1.29129i 0.763636 + 0.645647i \(0.223412\pi\)
−0.763636 + 0.645647i \(0.776588\pi\)
\(270\) 1596.28 9791.16i 0.0218968 0.134310i
\(271\) −10856.5 −0.147826 −0.0739131 0.997265i \(-0.523549\pi\)
−0.0739131 + 0.997265i \(0.523549\pi\)
\(272\) 4544.95 + 4544.95i 0.0614315 + 0.0614315i
\(273\) 73025.8 73025.8i 0.979831 0.979831i
\(274\) 2317.76i 0.0308721i
\(275\) 99230.5 + 33239.1i 1.31214 + 0.439525i
\(276\) −5154.64 −0.0676675
\(277\) 65214.7 + 65214.7i 0.849935 + 0.849935i 0.990125 0.140189i \(-0.0447711\pi\)
−0.140189 + 0.990125i \(0.544771\pi\)
\(278\) 72316.5 72316.5i 0.935724 0.935724i
\(279\) 10902.2i 0.140058i
\(280\) 35088.2 + 5720.51i 0.447553 + 0.0729657i
\(281\) −8669.34 −0.109793 −0.0548963 0.998492i \(-0.517483\pi\)
−0.0548963 + 0.998492i \(0.517483\pi\)
\(282\) −38840.7 38840.7i −0.488414 0.488414i
\(283\) −23747.0 + 23747.0i −0.296508 + 0.296508i −0.839645 0.543136i \(-0.817237\pi\)
0.543136 + 0.839645i \(0.317237\pi\)
\(284\) 42712.2i 0.529560i
\(285\) 20655.0 + 28701.8i 0.254294 + 0.353361i
\(286\) 149772. 1.83104
\(287\) −61610.2 61610.2i −0.747978 0.747978i
\(288\) 3456.00 3456.00i 0.0416667 0.0416667i
\(289\) 73434.8i 0.879238i
\(290\) −48201.2 + 34687.6i −0.573142 + 0.412457i
\(291\) 78546.9 0.927562
\(292\) 54921.9 + 54921.9i 0.644139 + 0.644139i
\(293\) −55077.2 + 55077.2i −0.641559 + 0.641559i −0.950939 0.309380i \(-0.899879\pi\)
0.309380 + 0.950939i \(0.399879\pi\)
\(294\) 22761.1i 0.263330i
\(295\) 1317.45 8080.88i 0.0151387 0.0928569i
\(296\) −6642.86 −0.0758178
\(297\) 16610.7 + 16610.7i 0.188311 + 0.188311i
\(298\) −4287.88 + 4287.88i −0.0482847 + 0.0482847i
\(299\) 39215.1i 0.438643i
\(300\) −11584.8 23255.0i −0.128720 0.258389i
\(301\) 50517.9 0.557587
\(302\) 17881.2 + 17881.2i 0.196057 + 0.196057i
\(303\) 6478.02 6478.02i 0.0705597 0.0705597i
\(304\) 17421.5i 0.188512i
\(305\) −103771. 16918.1i −1.11552 0.181866i
\(306\) 7669.60 0.0819086
\(307\) 11961.1 + 11961.1i 0.126910 + 0.126910i 0.767709 0.640799i \(-0.221397\pi\)
−0.640799 + 0.767709i \(0.721397\pi\)
\(308\) −59527.1 + 59527.1i −0.627499 + 0.627499i
\(309\) 17741.2i 0.185808i
\(310\) −16677.6 23174.9i −0.173545 0.241154i
\(311\) −65284.5 −0.674977 −0.337489 0.941330i \(-0.609577\pi\)
−0.337489 + 0.941330i \(0.609577\pi\)
\(312\) −26292.3 26292.3i −0.270097 0.270097i
\(313\) −6418.45 + 6418.45i −0.0655151 + 0.0655151i −0.739105 0.673590i \(-0.764751\pi\)
0.673590 + 0.739105i \(0.264751\pi\)
\(314\) 72131.4i 0.731586i
\(315\) 34432.3 24779.0i 0.347013 0.249725i
\(316\) −37333.5 −0.373874
\(317\) 22100.1 + 22100.1i 0.219926 + 0.219926i 0.808467 0.588541i \(-0.200298\pi\)
−0.588541 + 0.808467i \(0.700298\pi\)
\(318\) −20261.7 + 20261.7i −0.200365 + 0.200365i
\(319\) 140621.i 1.38187i
\(320\) 2059.62 12633.2i 0.0201135 0.123371i
\(321\) −31444.3 −0.305163
\(322\) −15586.1 15586.1i −0.150323 0.150323i
\(323\) −19331.0 + 19331.0i −0.185289 + 0.185289i
\(324\) 5832.00i 0.0555556i
\(325\) −176918. + 88133.8i −1.67496 + 0.834403i
\(326\) 27436.0 0.258158
\(327\) −43427.7 43427.7i −0.406136 0.406136i
\(328\) −22182.3 + 22182.3i −0.206185 + 0.206185i
\(329\) 234886.i 2.17003i
\(330\) 60719.5 + 9899.25i 0.557571 + 0.0909022i
\(331\) −49108.7 −0.448231 −0.224116 0.974563i \(-0.571949\pi\)
−0.224116 + 0.974563i \(0.571949\pi\)
\(332\) 32895.8 + 32895.8i 0.298445 + 0.298445i
\(333\) −5604.91 + 5604.91i −0.0505452 + 0.0505452i
\(334\) 149757.i 1.34244i
\(335\) 58505.6 + 81298.2i 0.521324 + 0.724422i
\(336\) 20899.9 0.185125
\(337\) −142816. 142816.i −1.25753 1.25753i −0.952269 0.305260i \(-0.901257\pi\)
−0.305260 0.952269i \(-0.598743\pi\)
\(338\) −142903. + 142903.i −1.25086 + 1.25086i
\(339\) 11909.0i 0.103627i
\(340\) 16303.3 11732.5i 0.141032 0.101492i
\(341\) 67609.8 0.581434
\(342\) 14699.4 + 14699.4i 0.125675 + 0.125675i
\(343\) 37875.6 37875.6i 0.321937 0.321937i
\(344\) 18188.6i 0.153703i
\(345\) −2591.95 + 15898.3i −0.0217765 + 0.133571i
\(346\) 130553. 1.09052
\(347\) −21400.3 21400.3i −0.177730 0.177730i 0.612635 0.790366i \(-0.290109\pi\)
−0.790366 + 0.612635i \(0.790109\pi\)
\(348\) −24685.9 + 24685.9i −0.203841 + 0.203841i
\(349\) 34091.2i 0.279893i −0.990159 0.139946i \(-0.955307\pi\)
0.990159 0.139946i \(-0.0446930\pi\)
\(350\) 35287.3 105345.i 0.288060 0.859961i
\(351\) −44368.3 −0.360130
\(352\) 21432.2 + 21432.2i 0.172974 + 0.172974i
\(353\) 28.7539 28.7539i 0.000230753 0.000230753i −0.706991 0.707222i \(-0.749948\pi\)
0.707222 + 0.706991i \(0.249948\pi\)
\(354\) 4813.29i 0.0384092i
\(355\) 131736. + 21477.3i 1.04532 + 0.170421i
\(356\) 79292.9 0.625654
\(357\) 23190.6 + 23190.6i 0.181960 + 0.181960i
\(358\) −12792.4 + 12792.4i −0.0998126 + 0.0998126i
\(359\) 173943.i 1.34964i 0.737984 + 0.674818i \(0.235778\pi\)
−0.737984 + 0.674818i \(0.764222\pi\)
\(360\) −8921.46 12397.1i −0.0688384 0.0956565i
\(361\) 56222.1 0.431412
\(362\) −98051.9 98051.9i −0.748236 0.748236i
\(363\) −49216.1 + 49216.1i −0.373503 + 0.373503i
\(364\) 159001.i 1.20004i
\(365\) 197011. 141778.i 1.47879 1.06420i
\(366\) −61810.3 −0.461423
\(367\) −41954.1 41954.1i −0.311489 0.311489i 0.533997 0.845486i \(-0.320689\pi\)
−0.845486 + 0.533997i \(0.820689\pi\)
\(368\) −5611.66 + 5611.66i −0.0414377 + 0.0414377i
\(369\) 37432.6i 0.274914i
\(370\) −3340.28 + 20488.4i −0.0243994 + 0.149660i
\(371\) −122531. −0.890223
\(372\) −11868.9 11868.9i −0.0857676 0.0857676i
\(373\) −65875.2 + 65875.2i −0.473483 + 0.473483i −0.903040 0.429557i \(-0.858670\pi\)
0.429557 + 0.903040i \(0.358670\pi\)
\(374\) 47562.7i 0.340034i
\(375\) −77550.1 + 24037.1i −0.551467 + 0.170931i
\(376\) −84568.7 −0.598183
\(377\) 187804. + 187804.i 1.32136 + 1.32136i
\(378\) 17634.3 17634.3i 0.123417 0.123417i
\(379\) 10837.0i 0.0754448i −0.999288 0.0377224i \(-0.987990\pi\)
0.999288 0.0377224i \(-0.0120103\pi\)
\(380\) 53732.8 + 8760.20i 0.372111 + 0.0606662i
\(381\) 85039.9 0.585831
\(382\) −79898.0 79898.0i −0.547531 0.547531i
\(383\) 22327.5 22327.5i 0.152210 0.152210i −0.626894 0.779104i \(-0.715674\pi\)
0.779104 + 0.626894i \(0.215674\pi\)
\(384\) 7524.83i 0.0510310i
\(385\) 153666. + 213531.i 1.03671 + 1.44058i
\(386\) 94996.5 0.637577
\(387\) −15346.6 15346.6i −0.102469 0.102469i
\(388\) 85511.0 85511.0i 0.568013 0.568013i
\(389\) 203884.i 1.34736i −0.739023 0.673680i \(-0.764713\pi\)
0.739023 0.673680i \(-0.235287\pi\)
\(390\) −94313.7 + 67872.1i −0.620077 + 0.446234i
\(391\) −12453.5 −0.0814585
\(392\) 24779.2 + 24779.2i 0.161256 + 0.161256i
\(393\) −241.114 + 241.114i −0.00156113 + 0.00156113i
\(394\) 10900.4i 0.0702181i
\(395\) −18772.7 + 115147.i −0.120319 + 0.738004i
\(396\) 36166.9 0.230633
\(397\) 117299. + 117299.i 0.744238 + 0.744238i 0.973390 0.229153i \(-0.0735955\pi\)
−0.229153 + 0.973390i \(0.573596\pi\)
\(398\) 126425. 126425.i 0.798118 0.798118i
\(399\) 88893.5i 0.558373i
\(400\) −37928.7 12704.9i −0.237054 0.0794057i
\(401\) 43093.1 0.267990 0.133995 0.990982i \(-0.457219\pi\)
0.133995 + 0.990982i \(0.457219\pi\)
\(402\) 41636.3 + 41636.3i 0.257644 + 0.257644i
\(403\) −90295.2 + 90295.2i −0.555974 + 0.555974i
\(404\) 14104.7i 0.0864177i
\(405\) −17987.5 2932.55i −0.109663 0.0178787i
\(406\) −149286. −0.905665
\(407\) −34758.6 34758.6i −0.209833 0.209833i
\(408\) 8349.60 8349.60i 0.0501586 0.0501586i
\(409\) 186090.i 1.11244i 0.831036 + 0.556219i \(0.187748\pi\)
−0.831036 + 0.556219i \(0.812252\pi\)
\(410\) 57262.2 + 79570.3i 0.340644 + 0.473351i
\(411\) −4257.99 −0.0252070
\(412\) −19314.1 19314.1i −0.113784 0.113784i
\(413\) 14554.0 14554.0i 0.0853261 0.0853261i
\(414\) 9469.67i 0.0552502i
\(415\) 118001. 84918.6i 0.685157 0.493068i
\(416\) −57247.0 −0.330800
\(417\) −132854. 132854.i −0.764015 0.764015i
\(418\) −91157.7 + 91157.7i −0.521724 + 0.521724i
\(419\) 101699.i 0.579278i −0.957136 0.289639i \(-0.906465\pi\)
0.957136 0.289639i \(-0.0935352\pi\)
\(420\) 10509.3 64461.1i 0.0595763 0.365426i
\(421\) −22533.0 −0.127132 −0.0635659 0.997978i \(-0.520247\pi\)
−0.0635659 + 0.997978i \(0.520247\pi\)
\(422\) −30940.3 30940.3i −0.173740 0.173740i
\(423\) −71354.8 + 71354.8i −0.398789 + 0.398789i
\(424\) 44116.3i 0.245396i
\(425\) −27988.5 56183.4i −0.154953 0.311050i
\(426\) 78467.4 0.432384
\(427\) −186897. 186897.i −1.02505 1.02505i
\(428\) −34232.2 + 34232.2i −0.186873 + 0.186873i
\(429\) 275148.i 1.49504i
\(430\) −56098.6 9145.90i −0.303400 0.0494641i
\(431\) 210598. 1.13370 0.566852 0.823820i \(-0.308161\pi\)
0.566852 + 0.823820i \(0.308161\pi\)
\(432\) −6349.08 6349.08i −0.0340207 0.0340207i
\(433\) 123405. 123405.i 0.658201 0.658201i −0.296754 0.954954i \(-0.595904\pi\)
0.954954 + 0.296754i \(0.0959040\pi\)
\(434\) 71776.0i 0.381065i
\(435\) 63725.3 + 88551.3i 0.336770 + 0.467968i
\(436\) −94556.3 −0.497413
\(437\) −23868.1 23868.1i −0.124984 0.124984i
\(438\) 100898. 100898.i 0.525938 0.525938i
\(439\) 265180.i 1.37598i 0.725721 + 0.687989i \(0.241506\pi\)
−0.725721 + 0.687989i \(0.758494\pi\)
\(440\) 76879.9 55326.0i 0.397107 0.285775i
\(441\) 41814.9 0.215008
\(442\) −63521.6 63521.6i −0.325145 0.325145i
\(443\) −99815.9 + 99815.9i −0.508619 + 0.508619i −0.914102 0.405484i \(-0.867103\pi\)
0.405484 + 0.914102i \(0.367103\pi\)
\(444\) 12203.7i 0.0619050i
\(445\) 39871.5 244562.i 0.201346 1.23500i
\(446\) −115271. −0.579496
\(447\) 7877.34 + 7877.34i 0.0394243 + 0.0394243i
\(448\) 22752.9 22752.9i 0.113366 0.113366i
\(449\) 182934.i 0.907408i 0.891152 + 0.453704i \(0.149898\pi\)
−0.891152 + 0.453704i \(0.850102\pi\)
\(450\) −42722.1 + 21282.6i −0.210973 + 0.105099i
\(451\) −232136. −1.14127
\(452\) 12964.8 + 12964.8i 0.0634585 + 0.0634585i
\(453\) 32849.8 32849.8i 0.160080 0.160080i
\(454\) 3536.95i 0.0171600i
\(455\) −490403. 79951.7i −2.36881 0.386193i
\(456\) 32005.4 0.153919
\(457\) 147497. + 147497.i 0.706239 + 0.706239i 0.965742 0.259503i \(-0.0835588\pi\)
−0.259503 + 0.965742i \(0.583559\pi\)
\(458\) −24152.8 + 24152.8i −0.115143 + 0.115143i
\(459\) 14090.0i 0.0668781i
\(460\) 14486.2 + 20129.7i 0.0684601 + 0.0951308i
\(461\) −354912. −1.67001 −0.835006 0.550241i \(-0.814536\pi\)
−0.835006 + 0.550241i \(0.814536\pi\)
\(462\) 109358. + 109358.i 0.512351 + 0.512351i
\(463\) 182475. 182475.i 0.851221 0.851221i −0.139063 0.990284i \(-0.544409\pi\)
0.990284 + 0.139063i \(0.0444090\pi\)
\(464\) 53749.3i 0.249653i
\(465\) −42575.0 + 30638.8i −0.196901 + 0.141699i
\(466\) 98783.0 0.454894
\(467\) 4348.30 + 4348.30i 0.0199382 + 0.0199382i 0.717006 0.697067i \(-0.245512\pi\)
−0.697067 + 0.717006i \(0.745512\pi\)
\(468\) −48302.1 + 48302.1i −0.220533 + 0.220533i
\(469\) 251792.i 1.14471i
\(470\) −42524.4 + 260833.i −0.192505 + 1.18078i
\(471\) −132514. −0.597337
\(472\) −5240.04 5240.04i −0.0235207 0.0235207i
\(473\) 95171.3 95171.3i 0.425386 0.425386i
\(474\) 68586.1i 0.305267i
\(475\) 54037.8 161322.i 0.239503 0.715001i
\(476\) 50493.5 0.222855
\(477\) 37223.2 + 37223.2i 0.163597 + 0.163597i
\(478\) 96375.5 96375.5i 0.421804 0.421804i
\(479\) 77346.0i 0.337106i −0.985693 0.168553i \(-0.946091\pi\)
0.985693 0.168553i \(-0.0539095\pi\)
\(480\) −23208.7 3783.77i −0.100732 0.0164226i
\(481\) 92842.6 0.401289
\(482\) 110368. + 110368.i 0.475062 + 0.475062i
\(483\) −28633.5 + 28633.5i −0.122739 + 0.122739i
\(484\) 107159.i 0.457445i
\(485\) −220742. 306738.i −0.938428 1.30402i
\(486\) −10714.1 −0.0453609
\(487\) 77225.6 + 77225.6i 0.325614 + 0.325614i 0.850916 0.525302i \(-0.176048\pi\)
−0.525302 + 0.850916i \(0.676048\pi\)
\(488\) −67290.6 + 67290.6i −0.282562 + 0.282562i
\(489\) 50403.1i 0.210785i
\(490\) 88885.9 63966.1i 0.370204 0.266414i
\(491\) 340217. 1.41121 0.705607 0.708603i \(-0.250674\pi\)
0.705607 + 0.708603i \(0.250674\pi\)
\(492\) 40751.4 + 40751.4i 0.168350 + 0.168350i
\(493\) −59640.5 + 59640.5i −0.245385 + 0.245385i
\(494\) 243488.i 0.997756i
\(495\) 18186.1 111549.i 0.0742213 0.455255i
\(496\) −25842.4 −0.105043
\(497\) 237263. + 237263.i 0.960542 + 0.960542i
\(498\) 60433.5 60433.5i 0.243679 0.243679i
\(499\) 331024.i 1.32941i −0.747108 0.664703i \(-0.768558\pi\)
0.747108 0.664703i \(-0.231442\pi\)
\(500\) −58257.5 + 110594.i −0.233030 + 0.442377i
\(501\) 275121. 1.09610
\(502\) 139336. + 139336.i 0.552910 + 0.552910i
\(503\) −123301. + 123301.i −0.487338 + 0.487338i −0.907465 0.420127i \(-0.861985\pi\)
0.420127 + 0.907465i \(0.361985\pi\)
\(504\) 38395.5i 0.151154i
\(505\) −43503.0 7092.40i −0.170583 0.0278106i
\(506\) −58725.7 −0.229365
\(507\) 262530. + 262530.i 1.02132 + 1.02132i
\(508\) 92579.7 92579.7i 0.358747 0.358747i
\(509\) 364729.i 1.40778i 0.710309 + 0.703890i \(0.248555\pi\)
−0.710309 + 0.703890i \(0.751445\pi\)
\(510\) −21554.0 29951.0i −0.0828681 0.115152i
\(511\) 610173. 2.33674
\(512\) −8192.00 8192.00i −0.0312500 0.0312500i
\(513\) 27004.5 27004.5i 0.102613 0.102613i
\(514\) 46457.8i 0.175846i
\(515\) −69282.1 + 49858.3i −0.261220 + 0.187985i
\(516\) −33414.5 −0.125498
\(517\) −442504. 442504.i −1.65553 1.65553i
\(518\) −36900.5 + 36900.5i −0.137522 + 0.137522i
\(519\) 239841.i 0.890408i
\(520\) −28785.9 + 176566.i −0.106457 + 0.652979i
\(521\) −203461. −0.749560 −0.374780 0.927114i \(-0.622282\pi\)
−0.374780 + 0.927114i \(0.622282\pi\)
\(522\) 45350.9 + 45350.9i 0.166435 + 0.166435i
\(523\) 72655.5 72655.5i 0.265623 0.265623i −0.561711 0.827334i \(-0.689857\pi\)
0.827334 + 0.561711i \(0.189857\pi\)
\(524\) 524.984i 0.00191198i
\(525\) −193532. 64827.0i −0.702155 0.235200i
\(526\) −347247. −1.25507
\(527\) −28674.8 28674.8i −0.103248 0.103248i
\(528\) 39373.5 39373.5i 0.141233 0.141233i
\(529\) 264465.i 0.945053i
\(530\) 136067. + 22183.4i 0.484397 + 0.0789725i
\(531\) −8842.57 −0.0313610
\(532\) 96775.0 + 96775.0i 0.341932 + 0.341932i
\(533\) 310026. 310026.i 1.09130 1.09130i
\(534\) 145670.i 0.510845i
\(535\) 88368.4 + 122795.i 0.308738 + 0.429015i
\(536\) 90655.8 0.315548
\(537\) 23501.1 + 23501.1i 0.0814966 + 0.0814966i
\(538\) 186879. 186879.i 0.645647 0.645647i
\(539\) 259313.i 0.892580i
\(540\) −22774.9 + 16389.8i −0.0781032 + 0.0562063i
\(541\) −91367.2 −0.312173 −0.156087 0.987743i \(-0.549888\pi\)
−0.156087 + 0.987743i \(0.549888\pi\)
\(542\) 21713.0 + 21713.0i 0.0739131 + 0.0739131i
\(543\) −180133. + 180133.i −0.610932 + 0.610932i
\(544\) 18179.8i 0.0614315i
\(545\) −47546.5 + 291638.i −0.160076 + 0.981863i
\(546\) −292103. −0.979831
\(547\) −9895.50 9895.50i −0.0330722 0.0330722i 0.690377 0.723450i \(-0.257445\pi\)
−0.723450 + 0.690377i \(0.757445\pi\)
\(548\) −4635.51 + 4635.51i −0.0154361 + 0.0154361i
\(549\) 113553.i 0.376750i
\(550\) −131983. 264939.i −0.436307 0.875832i
\(551\) −228612. −0.753001
\(552\) 10309.3 + 10309.3i 0.0338337 + 0.0338337i
\(553\) −207384. + 207384.i −0.678150 + 0.678150i
\(554\) 260859.i 0.849935i
\(555\) 37639.6 + 6136.49i 0.122197 + 0.0199220i
\(556\) −289266. −0.935724
\(557\) −306800. 306800.i −0.988883 0.988883i 0.0110558 0.999939i \(-0.496481\pi\)
−0.999939 + 0.0110558i \(0.996481\pi\)
\(558\) −21804.5 + 21804.5i −0.0700289 + 0.0700289i
\(559\) 254209.i 0.813518i
\(560\) −58735.3 81617.4i −0.187294 0.260259i
\(561\) 87378.2 0.277637
\(562\) 17338.7 + 17338.7i 0.0548963 + 0.0548963i
\(563\) 331132. 331132.i 1.04468 1.04468i 0.0457279 0.998954i \(-0.485439\pi\)
0.998954 0.0457279i \(-0.0145607\pi\)
\(564\) 155363.i 0.488414i
\(565\) 46506.4 33467.9i 0.145685 0.104841i
\(566\) 94988.2 0.296508
\(567\) −32396.2 32396.2i −0.100769 0.100769i
\(568\) 85424.5 85424.5i 0.264780 0.264780i
\(569\) 257399.i 0.795028i −0.917596 0.397514i \(-0.869873\pi\)
0.917596 0.397514i \(-0.130127\pi\)
\(570\) 16093.5 98713.5i 0.0495338 0.303827i
\(571\) −622495. −1.90925 −0.954626 0.297807i \(-0.903745\pi\)
−0.954626 + 0.297807i \(0.903745\pi\)
\(572\) −299543. 299543.i −0.915520 0.915520i
\(573\) −146782. + 146782.i −0.447057 + 0.447057i
\(574\) 246441.i 0.747978i
\(575\) 69369.7 34557.4i 0.209814 0.104521i
\(576\) −13824.0 −0.0416667
\(577\) −23928.8 23928.8i −0.0718736 0.0718736i 0.670256 0.742130i \(-0.266184\pi\)
−0.742130 + 0.670256i \(0.766184\pi\)
\(578\) −146870. + 146870.i −0.439619 + 0.439619i
\(579\) 174520.i 0.520580i
\(580\) 165778. + 27027.2i 0.492799 + 0.0803424i
\(581\) 365467. 1.08267
\(582\) −157094. 157094.i −0.463781 0.463781i
\(583\) −230838. + 230838.i −0.679156 + 0.679156i
\(584\) 219688.i 0.644139i
\(585\) 124689. + 173265.i 0.364348 + 0.506291i
\(586\) 220309. 0.641559
\(587\) 181136. + 181136.i 0.525690 + 0.525690i 0.919284 0.393595i \(-0.128769\pi\)
−0.393595 + 0.919284i \(0.628769\pi\)
\(588\) 45522.3 45522.3i 0.131665 0.131665i
\(589\) 109915.i 0.316831i
\(590\) −18796.6 + 13526.9i −0.0539978 + 0.0388591i
\(591\) 20025.3 0.0573328
\(592\) 13285.7 + 13285.7i 0.0379089 + 0.0379089i
\(593\) −235890. + 235890.i −0.670812 + 0.670812i −0.957903 0.287091i \(-0.907312\pi\)
0.287091 + 0.957903i \(0.407312\pi\)
\(594\) 66442.8i 0.188311i
\(595\) 25390.1 155736.i 0.0717183 0.439902i
\(596\) 17151.5 0.0482847
\(597\) −232258. 232258.i −0.651660 0.651660i
\(598\) 78430.2 78430.2i 0.219322 0.219322i
\(599\) 141629.i 0.394728i 0.980330 + 0.197364i \(0.0632381\pi\)
−0.980330 + 0.197364i \(0.936762\pi\)
\(600\) −23340.4 + 69679.4i −0.0648345 + 0.193554i
\(601\) −564417. −1.56261 −0.781306 0.624148i \(-0.785446\pi\)
−0.781306 + 0.624148i \(0.785446\pi\)
\(602\) −101036. 101036.i −0.278794 0.278794i
\(603\) 76490.8 76490.8i 0.210366 0.210366i
\(604\) 71524.7i 0.196057i
\(605\) 330509. + 53883.8i 0.902969 + 0.147213i
\(606\) −25912.1 −0.0705597
\(607\) 247253. + 247253.i 0.671064 + 0.671064i 0.957961 0.286898i \(-0.0926240\pi\)
−0.286898 + 0.957961i \(0.592624\pi\)
\(608\) 34843.0 34843.0i 0.0942560 0.0942560i
\(609\) 274256.i 0.739472i
\(610\) 173707. + 241379.i 0.466828 + 0.648694i
\(611\) 1.18196e6 3.16606
\(612\) −15339.2 15339.2i −0.0409543 0.0409543i
\(613\) −163758. + 163758.i −0.435794 + 0.435794i −0.890594 0.454800i \(-0.849711\pi\)
0.454800 + 0.890594i \(0.349711\pi\)
\(614\) 47844.5i 0.126910i
\(615\) 146180. 105197.i 0.386490 0.278134i
\(616\) 238108. 0.627499
\(617\) 273782. + 273782.i 0.719176 + 0.719176i 0.968437 0.249260i \(-0.0801875\pi\)
−0.249260 + 0.968437i \(0.580188\pi\)
\(618\) −35482.3 + 35482.3i −0.0929042 + 0.0929042i
\(619\) 428345.i 1.11792i −0.829194 0.558962i \(-0.811200\pi\)
0.829194 0.558962i \(-0.188800\pi\)
\(620\) −12994.5 + 79705.0i −0.0338047 + 0.207349i
\(621\) 17396.9 0.0451116
\(622\) 130569. + 130569.i 0.337489 + 0.337489i
\(623\) 440465. 440465.i 1.13484 1.13484i
\(624\) 105169.i 0.270097i
\(625\) 311809. + 235293.i 0.798231 + 0.602351i
\(626\) 25673.8 0.0655151
\(627\) 167467. + 167467.i 0.425986 + 0.425986i
\(628\) −144263. + 144263.i −0.365793 + 0.365793i
\(629\) 29483.8i 0.0745216i
\(630\) −118423. 19306.7i −0.298369 0.0486438i
\(631\) 108870. 0.273432 0.136716 0.990610i \(-0.456345\pi\)
0.136716 + 0.990610i \(0.456345\pi\)
\(632\) 74667.1 + 74667.1i 0.186937 + 0.186937i
\(633\) −56841.0 + 56841.0i −0.141858 + 0.141858i
\(634\) 88400.5i 0.219926i
\(635\) −238989. 332094.i −0.592694 0.823595i
\(636\) 81046.9 0.200365
\(637\) −346322. 346322.i −0.853495 0.853495i
\(638\) −281242. + 281242.i −0.690937 + 0.690937i
\(639\) 144154.i 0.353040i
\(640\) −29385.7 + 21147.2i −0.0717423 + 0.0516288i
\(641\) −501643. −1.22090 −0.610448 0.792056i \(-0.709011\pi\)
−0.610448 + 0.792056i \(0.709011\pi\)
\(642\) 62888.6 + 62888.6i 0.152581 + 0.152581i
\(643\) −117251. + 117251.i −0.283592 + 0.283592i −0.834540 0.550948i \(-0.814266\pi\)
0.550948 + 0.834540i \(0.314266\pi\)
\(644\) 62344.5i 0.150323i
\(645\) −16802.1 + 103060.i −0.0403872 + 0.247725i
\(646\) 77324.1 0.185289
\(647\) −362031. 362031.i −0.864843 0.864843i 0.127053 0.991896i \(-0.459448\pi\)
−0.991896 + 0.127053i \(0.959448\pi\)
\(648\) −11664.0 + 11664.0i −0.0277778 + 0.0277778i
\(649\) 54836.8i 0.130192i
\(650\) 530103. + 177568.i 1.25468 + 0.420279i
\(651\) −131861. −0.311139
\(652\) −54872.0 54872.0i −0.129079 0.129079i
\(653\) −411293. + 411293.i −0.964552 + 0.964552i −0.999393 0.0348413i \(-0.988907\pi\)
0.0348413 + 0.999393i \(0.488907\pi\)
\(654\) 173711.i 0.406136i
\(655\) 1619.20 + 263.982i 0.00377413 + 0.000615306i
\(656\) 88729.0 0.206185
\(657\) −185361. 185361.i −0.429426 0.429426i
\(658\) −469772. + 469772.i −1.08501 + 1.08501i
\(659\) 291952.i 0.672265i 0.941815 + 0.336133i \(0.109119\pi\)
−0.941815 + 0.336133i \(0.890881\pi\)
\(660\) −101640. 141237.i −0.233334 0.324237i
\(661\) 757270. 1.73320 0.866599 0.499006i \(-0.166301\pi\)
0.866599 + 0.499006i \(0.166301\pi\)
\(662\) 98217.4 + 98217.4i 0.224116 + 0.224116i
\(663\) −116697. + 116697.i −0.265480 + 0.265480i
\(664\) 131583.i 0.298445i
\(665\) 347143. 249819.i 0.784992 0.564914i
\(666\) 22419.6 0.0505452
\(667\) −73638.3 73638.3i −0.165521 0.165521i
\(668\) 299514. 299514.i 0.671219 0.671219i
\(669\) 211766.i 0.473156i
\(670\) 45585.2 279608.i 0.101549 0.622873i
\(671\) −704193. −1.56404
\(672\) −41799.8 41799.8i −0.0925626 0.0925626i
\(673\) 310335. 310335.i 0.685173 0.685173i −0.275988 0.961161i \(-0.589005\pi\)
0.961161 + 0.275988i \(0.0890050\pi\)
\(674\) 571265.i 1.25753i
\(675\) 39098.6 + 78485.5i 0.0858130 + 0.172259i
\(676\) 571613. 1.25086
\(677\) 9203.97 + 9203.97i 0.0200816 + 0.0200816i 0.717076 0.696995i \(-0.245480\pi\)
−0.696995 + 0.717076i \(0.745480\pi\)
\(678\) 23817.9 23817.9i 0.0518137 0.0518137i
\(679\) 950012.i 2.06058i
\(680\) −56071.5 9141.49i −0.121262 0.0197697i
\(681\) −6497.79 −0.0140111
\(682\) −135220. 135220.i −0.290717 0.290717i
\(683\) −421590. + 421590.i −0.903750 + 0.903750i −0.995758 0.0920080i \(-0.970671\pi\)
0.0920080 + 0.995758i \(0.470671\pi\)
\(684\) 58797.6i 0.125675i
\(685\) 11966.3 + 16628.1i 0.0255023 + 0.0354374i
\(686\) −151502. −0.321937
\(687\) 44371.4 + 44371.4i 0.0940135 + 0.0940135i
\(688\) −36377.1 + 36377.1i −0.0768514 + 0.0768514i
\(689\) 616584.i 1.29883i
\(690\) 36980.6 26612.8i 0.0776740 0.0558975i
\(691\) 102275. 0.214197 0.107098 0.994248i \(-0.465844\pi\)
0.107098 + 0.994248i \(0.465844\pi\)
\(692\) −261106. 261106.i −0.545261 0.545261i
\(693\) 200904. 200904.i 0.418333 0.418333i
\(694\) 85601.3i 0.177730i
\(695\) −145454. + 892177.i −0.301131 + 1.84706i
\(696\) 98743.7 0.203841
\(697\) 98454.3 + 98454.3i 0.202660 + 0.202660i
\(698\) −68182.4 + 68182.4i −0.139946 + 0.139946i
\(699\) 181476.i 0.371420i
\(700\) −281265. + 140116.i −0.574010 + 0.285951i
\(701\) −685359. −1.39471 −0.697353 0.716728i \(-0.745639\pi\)
−0.697353 + 0.716728i \(0.745639\pi\)
\(702\) 88736.7 + 88736.7i 0.180065 + 0.180065i
\(703\) −56508.1 + 56508.1i −0.114341 + 0.114341i
\(704\) 85728.9i 0.172974i
\(705\) 479182. + 78122.2i 0.964100 + 0.157180i
\(706\) −115.016 −0.000230753
\(707\) −78350.6 78350.6i −0.156749 0.156749i
\(708\) −9626.57 + 9626.57i −0.0192046 + 0.0192046i
\(709\) 164715.i 0.327673i −0.986487 0.163837i \(-0.947613\pi\)
0.986487 0.163837i \(-0.0523870\pi\)
\(710\) −220518. 306428.i −0.437449 0.607871i
\(711\) 126001. 0.249249
\(712\) −158586. 158586.i −0.312827 0.312827i
\(713\) 35404.9 35404.9i 0.0696441 0.0696441i
\(714\) 92762.6i 0.181960i
\(715\) −1.07450e6 + 773254.i −2.10181 + 1.51255i
\(716\) 51169.5 0.0998126
\(717\) −177053. 177053.i −0.344402 0.344402i
\(718\) 347885. 347885.i 0.674818 0.674818i
\(719\) 782798.i 1.51423i −0.653282 0.757115i \(-0.726608\pi\)
0.653282 0.757115i \(-0.273392\pi\)
\(720\) −6951.23 + 42637.1i −0.0134090 + 0.0822474i
\(721\) −214577. −0.412774
\(722\) −112444. 112444.i −0.215706 0.215706i
\(723\) 202760. 202760.i 0.387887 0.387887i
\(724\) 392208.i 0.748236i
\(725\) 166719. 497715.i 0.317182 0.946900i
\(726\) 196864. 0.373503
\(727\) 659110. + 659110.i 1.24706 + 1.24706i 0.957010 + 0.290054i \(0.0936732\pi\)
0.290054 + 0.957010i \(0.406327\pi\)
\(728\) −318002. + 318002.i −0.600021 + 0.600021i
\(729\) 19683.0i 0.0370370i
\(730\) −677578. 110467.i −1.27149 0.207295i
\(731\) −80728.6 −0.151075
\(732\) 123621. + 123621.i 0.230711 + 0.230711i
\(733\) 356952. 356952.i 0.664358 0.664358i −0.292046 0.956404i \(-0.594336\pi\)
0.956404 + 0.292046i \(0.0943361\pi\)
\(734\) 167816.i 0.311489i
\(735\) −117513. 163294.i −0.217526 0.302270i
\(736\) 22446.6 0.0414377
\(737\) 474354. + 474354.i 0.873309 + 0.873309i
\(738\) 74865.1 74865.1i 0.137457 0.137457i
\(739\) 231725.i 0.424311i 0.977236 + 0.212156i \(0.0680483\pi\)
−0.977236 + 0.212156i \(0.931952\pi\)
\(740\) 47657.4 34296.3i 0.0870296 0.0626302i
\(741\) −447317. −0.814665
\(742\) 245062. + 245062.i 0.445111 + 0.445111i
\(743\) −35964.9 + 35964.9i −0.0651480 + 0.0651480i −0.738930 0.673782i \(-0.764669\pi\)
0.673782 + 0.738930i \(0.264669\pi\)
\(744\) 47475.4i 0.0857676i
\(745\) 8624.43 52900.1i 0.0155388 0.0953111i
\(746\) 263501. 0.473483
\(747\) −111023. 111023.i −0.198963 0.198963i
\(748\) 95125.3 95125.3i 0.170017 0.170017i
\(749\) 380314.i 0.677920i
\(750\) 203174. + 107026.i 0.361199 + 0.190268i
\(751\) 702045. 1.24476 0.622379 0.782716i \(-0.286166\pi\)
0.622379 + 0.782716i \(0.286166\pi\)
\(752\) 169137. + 169137.i 0.299091 + 0.299091i
\(753\) 255976. 255976.i 0.451449 0.451449i
\(754\) 751216.i 1.32136i
\(755\) −220602. 35965.3i −0.387004 0.0630943i
\(756\) −70537.1 −0.123417
\(757\) −111880. 111880.i −0.195236 0.195236i 0.602718 0.797954i \(-0.294084\pi\)
−0.797954 + 0.602718i \(0.794084\pi\)
\(758\) −21673.9 + 21673.9i −0.0377224 + 0.0377224i
\(759\) 107886.i 0.187276i
\(760\) −89945.3 124986.i −0.155722 0.216389i
\(761\) −579015. −0.999817 −0.499908 0.866078i \(-0.666633\pi\)
−0.499908 + 0.866078i \(0.666633\pi\)
\(762\) −170080. 170080.i −0.292916 0.292916i
\(763\) −525252. + 525252.i −0.902232 + 0.902232i
\(764\) 319592.i 0.547531i
\(765\) −55023.5 + 39597.2i −0.0940211 + 0.0676616i
\(766\) −89310.0 −0.152210
\(767\) 73236.4 + 73236.4i 0.124491 + 0.124491i
\(768\) −15049.7 + 15049.7i −0.0255155 + 0.0255155i
\(769\) 472110.i 0.798344i 0.916876 + 0.399172i \(0.130702\pi\)
−0.916876 + 0.399172i \(0.869298\pi\)
\(770\) 119730. 734392.i 0.201939 1.23864i
\(771\) 85348.4 0.143578
\(772\) −189993. 189993.i −0.318789 0.318789i
\(773\) −20353.7 + 20353.7i −0.0340631 + 0.0340631i −0.723933 0.689870i \(-0.757668\pi\)
0.689870 + 0.723933i \(0.257668\pi\)
\(774\) 61386.4i 0.102469i
\(775\) 239298. + 80157.4i 0.398416 + 0.133457i
\(776\) −342044. −0.568013
\(777\) 67790.5 + 67790.5i 0.112286 + 0.112286i
\(778\) −407768. + 407768.i −0.673680 + 0.673680i
\(779\) 377391.i 0.621895i
\(780\) 324372. + 52883.2i 0.533155 + 0.0869217i
\(781\) 893963. 1.46561
\(782\) 24906.9 + 24906.9i 0.0407293 + 0.0407293i
\(783\) 83315.0 83315.0i 0.135894 0.135894i
\(784\) 99116.8i 0.161256i
\(785\) 372406. + 517488.i 0.604335 + 0.839771i
\(786\) 964.457 0.00156113
\(787\) 640630. + 640630.i 1.03433 + 1.03433i 0.999390 + 0.0349373i \(0.0111232\pi\)
0.0349373 + 0.999390i \(0.488877\pi\)
\(788\) 21800.7 21800.7i 0.0351090 0.0351090i
\(789\) 637933.i 1.02476i
\(790\) 267840. 192749.i 0.429161 0.308843i
\(791\) 144037. 0.230208
\(792\) −72333.8 72333.8i −0.115316 0.115316i
\(793\) 940474. 940474.i 1.49555 1.49555i
\(794\) 469194.i 0.744238i
\(795\) 40753.5 249971.i 0.0644808 0.395509i
\(796\) −505700. −0.798118
\(797\) 542782. + 542782.i 0.854494 + 0.854494i 0.990683 0.136189i \(-0.0434854\pi\)
−0.136189 + 0.990683i \(0.543485\pi\)
\(798\) 177787. 177787.i 0.279186 0.279186i
\(799\) 375352.i 0.587956i
\(800\) 50447.5 + 101267.i 0.0788243 + 0.158230i
\(801\) −267614. −0.417103
\(802\) −86186.2 86186.2i −0.133995 0.133995i
\(803\) 1.14951e6 1.14951e6i 1.78271 1.78271i
\(804\) 166545.i 0.257644i
\(805\) 192288. + 31349.2i 0.296729 + 0.0483765i
\(806\) 361181. 0.555974
\(807\) −343318. 343318.i −0.527168 0.527168i
\(808\) −28209.5 + 28209.5i −0.0432088 + 0.0432088i
\(809\) 1.09699e6i 1.67613i 0.545571 + 0.838065i \(0.316313\pi\)
−0.545571 + 0.838065i \(0.683687\pi\)
\(810\) 30109.9 + 41840.1i 0.0458923 + 0.0637710i
\(811\) −711398. −1.08161 −0.540805 0.841148i \(-0.681880\pi\)
−0.540805 + 0.841148i \(0.681880\pi\)
\(812\) 298572. + 298572.i 0.452832 + 0.452832i
\(813\) 39889.3 39889.3i 0.0603498 0.0603498i
\(814\) 139034.i 0.209833i
\(815\) −196832. + 141649.i −0.296334 + 0.213254i
\(816\) −33398.4 −0.0501586
\(817\) −154723. 154723.i −0.231798 0.231798i
\(818\) 372179. 372179.i 0.556219 0.556219i
\(819\) 536628.i 0.800028i
\(820\) 44616.3 273665.i 0.0663538 0.406997i
\(821\) −566243. −0.840071 −0.420036 0.907508i \(-0.637982\pi\)
−0.420036 + 0.907508i \(0.637982\pi\)
\(822\) 8515.98 + 8515.98i 0.0126035 + 0.0126035i
\(823\) −678523. + 678523.i −1.00176 + 1.00176i −0.00176504 + 0.999998i \(0.500562\pi\)
−0.999998 + 0.00176504i \(0.999438\pi\)
\(824\) 77256.6i 0.113784i
\(825\) −486724. + 242468.i −0.715114 + 0.356243i
\(826\) −58215.9 −0.0853261
\(827\) −822466. 822466.i −1.20256 1.20256i −0.973385 0.229174i \(-0.926397\pi\)
−0.229174 0.973385i \(-0.573603\pi\)
\(828\) 18939.3 18939.3i 0.0276251 0.0276251i
\(829\) 1.26805e6i 1.84514i −0.385832 0.922569i \(-0.626086\pi\)
0.385832 0.922569i \(-0.373914\pi\)
\(830\) −405839. 66165.0i −0.589112 0.0960445i
\(831\) −479228. −0.693969
\(832\) 114494. + 114494.i 0.165400 + 0.165400i
\(833\) 109981. 109981.i 0.158499 0.158499i
\(834\) 531415.i 0.764015i
\(835\) −773178. 1.07439e6i −1.10894 1.54095i
\(836\) 364631. 0.521724
\(837\) 40057.4 + 40057.4i 0.0571784 + 0.0571784i
\(838\) −203397. + 203397.i −0.289639 + 0.289639i
\(839\) 487091.i 0.691968i −0.938240 0.345984i \(-0.887545\pi\)
0.938240 0.345984i \(-0.112455\pi\)
\(840\) −149941. + 107904.i −0.212501 + 0.152925i
\(841\) 1962.99 0.00277541
\(842\) 45065.9 + 45065.9i 0.0635659 + 0.0635659i
\(843\) 31853.2 31853.2i 0.0448227 0.0448227i
\(844\) 123761.i 0.173740i
\(845\) 287429. 1.76301e6i 0.402547 2.46912i
\(846\) 285419. 0.398789
\(847\) 595260. + 595260.i 0.829736 + 0.829736i
\(848\) 88232.7 88232.7i 0.122698 0.122698i
\(849\) 174504.i 0.242098i
\(850\) −56389.8 + 168344.i −0.0780482 + 0.233002i
\(851\) −36403.7 −0.0502675
\(852\) −156935. 156935.i −0.216192 0.216192i
\(853\) 10645.4 10645.4i 0.0146307 0.0146307i −0.699754 0.714384i \(-0.746707\pi\)
0.714384 + 0.699754i \(0.246707\pi\)
\(854\) 747586.i 1.02505i
\(855\) −181348. 29565.7i −0.248074 0.0404441i
\(856\) 136929. 0.186873
\(857\) −692563. 692563.i −0.942970 0.942970i 0.0554896 0.998459i \(-0.482328\pi\)
−0.998459 + 0.0554896i \(0.982328\pi\)
\(858\) −550296. + 550296.i −0.747519 + 0.747519i
\(859\) 745974.i 1.01097i 0.862836 + 0.505484i \(0.168686\pi\)
−0.862836 + 0.505484i \(0.831314\pi\)
\(860\) 93905.5 + 130489.i 0.126968 + 0.176432i
\(861\) 452741. 0.610722
\(862\) −421196. 421196.i −0.566852 0.566852i
\(863\) 259362. 259362.i 0.348245 0.348245i −0.511211 0.859456i \(-0.670803\pi\)
0.859456 + 0.511211i \(0.170803\pi\)
\(864\) 25396.3i 0.0340207i
\(865\) −936618. + 674030.i −1.25179 + 0.900838i
\(866\) −493621. −0.658201
\(867\) 269817. + 269817.i 0.358947 + 0.358947i
\(868\) −143552. + 143552.i −0.190533 + 0.190533i
\(869\) 781388.i 1.03473i
\(870\) 49652.1 304553.i 0.0655993 0.402369i
\(871\) −1.26703e6 −1.67013
\(872\) 189113. + 189113.i 0.248707 + 0.248707i
\(873\) −288600. + 288600.i −0.378676 + 0.378676i
\(874\) 95472.3i 0.124984i
\(875\) 290725. + 937956.i 0.379723 + 1.22509i
\(876\) −403592. −0.525938
\(877\) −191986. 191986.i −0.249615 0.249615i 0.571197 0.820813i \(-0.306479\pi\)
−0.820813 + 0.571197i \(0.806479\pi\)
\(878\) 530360. 530360.i 0.687989 0.687989i
\(879\) 404733.i 0.523830i
\(880\) −264412. 43107.8i −0.341441 0.0556660i
\(881\) 1.08074e6 1.39241 0.696207 0.717841i \(-0.254870\pi\)
0.696207 + 0.717841i \(0.254870\pi\)
\(882\) −83629.8 83629.8i −0.107504 0.107504i
\(883\) 294604. 294604.i 0.377848 0.377848i −0.492477 0.870325i \(-0.663909\pi\)
0.870325 + 0.492477i \(0.163909\pi\)
\(884\) 254086.i 0.325145i
\(885\) 24850.4 + 34531.6i 0.0317283 + 0.0440890i
\(886\) 399264. 0.508619
\(887\) −373328. 373328.i −0.474507 0.474507i 0.428862 0.903370i \(-0.358915\pi\)
−0.903370 + 0.428862i \(0.858915\pi\)
\(888\) 24407.4 24407.4i 0.0309525 0.0309525i
\(889\) 1.02854e6i 1.30143i
\(890\) −568866. + 409380.i −0.718175 + 0.516829i
\(891\) −122063. −0.153755
\(892\) 230542. + 230542.i 0.289748 + 0.289748i
\(893\) −719392. + 719392.i −0.902117 + 0.902117i
\(894\) 31509.3i 0.0394243i
\(895\) 25730.0 157821.i 0.0321213 0.197024i
\(896\) −91011.7 −0.113366
\(897\) −144086. 144086.i −0.179075 0.179075i
\(898\) 365869. 365869.i 0.453704 0.453704i
\(899\) 339113.i 0.419590i
\(900\) 128009. + 42879.1i 0.158036 + 0.0529371i
\(901\) 195807. 0.241201
\(902\) 464273. + 464273.i 0.570637 + 0.570637i
\(903\) −185615. + 185615.i −0.227634 + 0.227634i
\(904\) 51859.3i 0.0634585i
\(905\) 1.20968e6 + 197217.i 1.47697 + 0.240795i
\(906\) −131399. −0.160080
\(907\) −342694. 342694.i −0.416574 0.416574i 0.467447 0.884021i \(-0.345174\pi\)
−0.884021 + 0.467447i \(0.845174\pi\)
\(908\) −7073.89 + 7073.89i −0.00857999 + 0.00857999i
\(909\) 47603.5i 0.0576118i
\(910\) 820903. + 1.14071e6i 0.991309 + 1.37750i
\(911\) 653388. 0.787290 0.393645 0.919263i \(-0.371214\pi\)
0.393645 + 0.919263i \(0.371214\pi\)
\(912\) −64010.7 64010.7i −0.0769597 0.0769597i
\(913\) 688506. 688506.i 0.825974 0.825974i
\(914\) 589989.i 0.706239i
\(915\) 443442. 319119.i 0.529657 0.381163i
\(916\) 96611.0 0.115143
\(917\) 2916.24 + 2916.24i 0.00346804 + 0.00346804i
\(918\) −28179.9 + 28179.9i −0.0334391 + 0.0334391i
\(919\) 316752.i 0.375050i −0.982260 0.187525i \(-0.939953\pi\)
0.982260 0.187525i \(-0.0600465\pi\)
\(920\) 11287.0 69231.7i 0.0133353 0.0817955i
\(921\) −87896.0 −0.103621
\(922\) 709825. + 709825.i 0.835006 + 0.835006i
\(923\) −1.19392e6 + 1.19392e6i −1.40143 + 1.40143i
\(924\) 437433.i 0.512351i
\(925\) −81815.4 164234.i −0.0956206 0.191947i
\(926\) −729901. −0.851221
\(927\) 65185.2 + 65185.2i 0.0758560 + 0.0758560i
\(928\) 107499. 107499.i 0.124826 0.124826i
\(929\) 1.39646e6i 1.61807i −0.587759 0.809036i \(-0.699990\pi\)
0.587759 0.809036i \(-0.300010\pi\)
\(930\) 146427. + 23872.4i 0.169300 + 0.0276014i
\(931\) 421574. 0.486378
\(932\) −197566. 197566.i −0.227447 0.227447i
\(933\) 239870. 239870.i 0.275558 0.275558i
\(934\) 17393.2i 0.0199382i
\(935\) −245560. 341226.i −0.280889 0.390318i
\(936\) 193208. 0.220533
\(937\) 81884.2 + 81884.2i 0.0932655 + 0.0932655i 0.752200 0.658935i \(-0.228993\pi\)
−0.658935 + 0.752200i \(0.728993\pi\)
\(938\) 503585. 503585.i 0.572357 0.572357i
\(939\) 47165.7i 0.0534928i
\(940\) 606716. 436618.i 0.686641 0.494136i
\(941\) 1.67094e6 1.88705 0.943524 0.331305i \(-0.107489\pi\)
0.943524 + 0.331305i \(0.107489\pi\)
\(942\) 265028. + 265028.i 0.298669 + 0.298669i
\(943\) −121562. + 121562.i −0.136702 + 0.136702i
\(944\) 20960.2i 0.0235207i
\(945\) −35468.7 + 217556.i −0.0397175 + 0.243617i
\(946\) −380685. −0.425386
\(947\) 689602. + 689602.i 0.768950 + 0.768950i 0.977922 0.208971i \(-0.0670116\pi\)
−0.208971 + 0.977922i \(0.567012\pi\)
\(948\) 137172. 137172.i 0.152633 0.152633i
\(949\) 3.07042e6i 3.40930i
\(950\) −430720. + 214569.i −0.477252 + 0.237749i
\(951\) −162402. −0.179569
\(952\) −100987. 100987.i −0.111427 0.111427i
\(953\) 150337. 150337.i 0.165532 0.165532i −0.619480 0.785012i \(-0.712657\pi\)
0.785012 + 0.619480i \(0.212657\pi\)
\(954\) 148893.i 0.163597i
\(955\) 985710. + 160703.i 1.08079 + 0.176204i
\(956\) −385502. −0.421804
\(957\) 516674. + 516674.i 0.564148 + 0.564148i
\(958\) −154692. + 154692.i −0.168553 + 0.168553i
\(959\) 51499.7i 0.0559974i
\(960\) 38849.8 + 53984.9i 0.0421548 + 0.0585774i
\(961\) −760477. −0.823454
\(962\) −185685. 185685.i −0.200644 0.200644i
\(963\) 115534. 115534.i 0.124582 0.124582i
\(964\) 441473.i 0.475062i
\(965\) −681527. + 490456.i −0.731861 + 0.526678i
\(966\) 114534. 0.122739
\(967\) −312723. 312723.i −0.334432 0.334432i 0.519835 0.854267i \(-0.325993\pi\)
−0.854267 + 0.519835i \(0.825993\pi\)
\(968\) 214319. 214319.i 0.228723 0.228723i
\(969\) 142053.i 0.151288i
\(970\) −171993. + 1.05496e6i −0.182796 + 1.12122i
\(971\) 1.16534e6 1.23598 0.617992 0.786185i \(-0.287946\pi\)
0.617992 + 0.786185i \(0.287946\pi\)
\(972\) 21428.1 + 21428.1i 0.0226805 + 0.0226805i
\(973\) −1.60685e6 + 1.60685e6i −1.69726 + 1.69726i
\(974\) 308903.i 0.325614i
\(975\) 326213. 973861.i 0.343156 1.02444i
\(976\) 269162. 0.282562
\(977\) −748461. 748461.i −0.784115 0.784115i 0.196407 0.980522i \(-0.437073\pi\)
−0.980522 + 0.196407i \(0.937073\pi\)
\(978\) −100806. + 100806.i −0.105393 + 0.105393i
\(979\) 1.65959e6i 1.73156i
\(980\) −305704. 49839.7i −0.318309 0.0518947i
\(981\) 319127. 0.331609
\(982\) −680434. 680434.i −0.705607 0.705607i
\(983\) −542812. + 542812.i −0.561749 + 0.561749i −0.929804 0.368055i \(-0.880024\pi\)
0.368055 + 0.929804i \(0.380024\pi\)
\(984\) 163006.i 0.168350i
\(985\) −56277.3 78201.8i −0.0580044 0.0806017i
\(986\) 238562. 0.245385
\(987\) 863025. + 863025.i 0.885909 + 0.885909i
\(988\) −486977. + 486977.i −0.498878 + 0.498878i
\(989\) 99675.8i 0.101905i
\(990\) −259470. + 186725.i −0.264738 + 0.190517i
\(991\) 1.08269e6 1.10245 0.551224 0.834357i \(-0.314161\pi\)
0.551224 + 0.834357i \(0.314161\pi\)
\(992\) 51684.7 + 51684.7i 0.0525217 + 0.0525217i
\(993\) 180437. 180437.i 0.182990 0.182990i
\(994\) 949050.i 0.960542i
\(995\) −254285. + 1.55972e6i −0.256847 + 1.57544i
\(996\) −241734. −0.243679
\(997\) 25593.2 + 25593.2i 0.0257475 + 0.0257475i 0.719863 0.694116i \(-0.244204\pi\)
−0.694116 + 0.719863i \(0.744204\pi\)
\(998\) −662047. + 662047.i −0.664703 + 0.664703i
\(999\) 41187.5i 0.0412700i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.5.f.a.7.1 4
3.2 odd 2 90.5.g.e.37.1 4
4.3 odd 2 240.5.bg.b.97.2 4
5.2 odd 4 150.5.f.e.43.2 4
5.3 odd 4 inner 30.5.f.a.13.1 yes 4
5.4 even 2 150.5.f.e.7.2 4
15.2 even 4 450.5.g.f.343.1 4
15.8 even 4 90.5.g.e.73.1 4
15.14 odd 2 450.5.g.f.307.1 4
20.3 even 4 240.5.bg.b.193.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.5.f.a.7.1 4 1.1 even 1 trivial
30.5.f.a.13.1 yes 4 5.3 odd 4 inner
90.5.g.e.37.1 4 3.2 odd 2
90.5.g.e.73.1 4 15.8 even 4
150.5.f.e.7.2 4 5.4 even 2
150.5.f.e.43.2 4 5.2 odd 4
240.5.bg.b.97.2 4 4.3 odd 2
240.5.bg.b.193.2 4 20.3 even 4
450.5.g.f.307.1 4 15.14 odd 2
450.5.g.f.343.1 4 15.2 even 4