Properties

Label 30.5.b.a.29.8
Level $30$
Weight $5$
Character 30.29
Analytic conductor $3.101$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,5,Mod(29,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.29"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 30.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.10109889252\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 80x^{6} + 2612x^{4} + 38240x^{2} + 256036 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 29.8
Root \(1.41421 - 3.69234i\) of defining polynomial
Character \(\chi\) \(=\) 30.29
Dual form 30.5.b.a.29.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{2} +(7.33029 + 5.22176i) q^{3} +8.00000 q^{4} +(-10.6772 + 22.6053i) q^{5} +(20.7332 + 14.7694i) q^{6} -65.2135i q^{7} +22.6274 q^{8} +(26.4664 + 76.5541i) q^{9} +(-30.1996 + 63.9373i) q^{10} -43.4057i q^{11} +(58.6423 + 41.7741i) q^{12} -156.653i q^{13} -184.452i q^{14} +(-196.306 + 109.950i) q^{15} +64.0000 q^{16} -185.403 q^{17} +(74.8583 + 216.528i) q^{18} -503.597 q^{19} +(-85.4174 + 180.842i) q^{20} +(340.530 - 478.034i) q^{21} -122.770i q^{22} +285.809 q^{23} +(165.866 + 118.155i) q^{24} +(-396.996 - 482.721i) q^{25} -443.081i q^{26} +(-205.741 + 699.365i) q^{27} -521.708i q^{28} +1220.68i q^{29} +(-555.238 + 310.984i) q^{30} +1781.99 q^{31} +181.019 q^{32} +(226.654 - 318.177i) q^{33} -524.399 q^{34} +(1474.17 + 696.296i) q^{35} +(211.731 + 612.433i) q^{36} +663.047i q^{37} -1424.39 q^{38} +(818.004 - 1148.31i) q^{39} +(-241.597 + 511.499i) q^{40} -1331.05i q^{41} +(963.163 - 1352.09i) q^{42} +1701.36i q^{43} -347.246i q^{44} +(-2013.11 - 219.101i) q^{45} +808.391 q^{46} +91.2182 q^{47} +(469.139 + 334.193i) q^{48} -1851.81 q^{49} +(-1122.87 - 1365.34i) q^{50} +(-1359.06 - 968.131i) q^{51} -1253.22i q^{52} -3268.39 q^{53} +(-581.923 + 1978.10i) q^{54} +(981.198 + 463.450i) q^{55} -1475.61i q^{56} +(-3691.51 - 2629.66i) q^{57} +3452.62i q^{58} -1891.53i q^{59} +(-1570.45 + 879.597i) q^{60} +757.194 q^{61} +5040.23 q^{62} +(4992.36 - 1725.97i) q^{63} +512.000 q^{64} +(3541.18 + 1672.61i) q^{65} +(641.075 - 899.939i) q^{66} +3597.91i q^{67} -1483.22 q^{68} +(2095.07 + 1492.43i) q^{69} +(4169.58 + 1969.42i) q^{70} +8210.27i q^{71} +(598.866 + 1732.22i) q^{72} -6988.31i q^{73} +1875.38i q^{74} +(-389.445 - 5611.50i) q^{75} -4028.77 q^{76} -2830.64 q^{77} +(2313.66 - 3247.92i) q^{78} +2211.58 q^{79} +(-683.339 + 1446.74i) q^{80} +(-5160.06 + 4052.22i) q^{81} -3764.77i q^{82} -432.656 q^{83} +(2724.24 - 3824.28i) q^{84} +(1979.58 - 4191.09i) q^{85} +4812.17i q^{86} +(-6374.12 + 8947.97i) q^{87} -982.159i q^{88} -4694.86i q^{89} +(-5693.94 - 619.712i) q^{90} -10215.9 q^{91} +2286.48 q^{92} +(13062.5 + 9305.14i) q^{93} +258.004 q^{94} +(5376.99 - 11383.9i) q^{95} +(1326.92 + 945.240i) q^{96} +3923.02i q^{97} -5237.70 q^{98} +(3322.88 - 1148.79i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 64 q^{4} + 32 q^{6} - 56 q^{9} + 160 q^{10} - 760 q^{15} + 512 q^{16} - 816 q^{19} - 1024 q^{21} + 256 q^{24} + 840 q^{25} - 1600 q^{30} + 6224 q^{31} - 3392 q^{34} - 448 q^{36} + 10560 q^{39} + 1280 q^{40}+ \cdots - 22144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.82843 0.707107
\(3\) 7.33029 + 5.22176i 0.814477 + 0.580196i
\(4\) 8.00000 0.500000
\(5\) −10.6772 + 22.6053i −0.427087 + 0.904211i
\(6\) 20.7332 + 14.7694i 0.575922 + 0.410260i
\(7\) 65.2135i 1.33089i −0.746447 0.665444i \(-0.768242\pi\)
0.746447 0.665444i \(-0.231758\pi\)
\(8\) 22.6274 0.353553
\(9\) 26.4664 + 76.5541i 0.326746 + 0.945112i
\(10\) −30.1996 + 63.9373i −0.301996 + 0.639373i
\(11\) 43.4057i 0.358725i −0.983783 0.179362i \(-0.942597\pi\)
0.983783 0.179362i \(-0.0574035\pi\)
\(12\) 58.6423 + 41.7741i 0.407239 + 0.290098i
\(13\) 156.653i 0.926940i −0.886113 0.463470i \(-0.846604\pi\)
0.886113 0.463470i \(-0.153396\pi\)
\(14\) 184.452i 0.941080i
\(15\) −196.306 + 109.950i −0.872472 + 0.488665i
\(16\) 64.0000 0.250000
\(17\) −185.403 −0.641533 −0.320767 0.947158i \(-0.603941\pi\)
−0.320767 + 0.947158i \(0.603941\pi\)
\(18\) 74.8583 + 216.528i 0.231044 + 0.668295i
\(19\) −503.597 −1.39501 −0.697503 0.716582i \(-0.745705\pi\)
−0.697503 + 0.716582i \(0.745705\pi\)
\(20\) −85.4174 + 180.842i −0.213543 + 0.452105i
\(21\) 340.530 478.034i 0.772176 1.08398i
\(22\) 122.770i 0.253657i
\(23\) 285.809 0.540283 0.270141 0.962821i \(-0.412930\pi\)
0.270141 + 0.962821i \(0.412930\pi\)
\(24\) 165.866 + 118.155i 0.287961 + 0.205130i
\(25\) −396.996 482.721i −0.635194 0.772353i
\(26\) 443.081i 0.655446i
\(27\) −205.741 + 699.365i −0.282223 + 0.959349i
\(28\) 521.708i 0.665444i
\(29\) 1220.68i 1.45147i 0.687976 + 0.725734i \(0.258500\pi\)
−0.687976 + 0.725734i \(0.741500\pi\)
\(30\) −555.238 + 310.984i −0.616931 + 0.345538i
\(31\) 1781.99 1.85431 0.927155 0.374678i \(-0.122247\pi\)
0.927155 + 0.374678i \(0.122247\pi\)
\(32\) 181.019 0.176777
\(33\) 226.654 318.177i 0.208131 0.292173i
\(34\) −524.399 −0.453633
\(35\) 1474.17 + 696.296i 1.20340 + 0.568405i
\(36\) 211.731 + 612.433i 0.163373 + 0.472556i
\(37\) 663.047i 0.484329i 0.970235 + 0.242165i \(0.0778574\pi\)
−0.970235 + 0.242165i \(0.922143\pi\)
\(38\) −1424.39 −0.986418
\(39\) 818.004 1148.31i 0.537807 0.754971i
\(40\) −241.597 + 511.499i −0.150998 + 0.319687i
\(41\) 1331.05i 0.791819i −0.918289 0.395910i \(-0.870429\pi\)
0.918289 0.395910i \(-0.129571\pi\)
\(42\) 963.163 1352.09i 0.546011 0.766488i
\(43\) 1701.36i 0.920151i 0.887880 + 0.460075i \(0.152178\pi\)
−0.887880 + 0.460075i \(0.847822\pi\)
\(44\) 347.246i 0.179362i
\(45\) −2013.11 219.101i −0.994129 0.108198i
\(46\) 808.391 0.382037
\(47\) 91.2182 0.0412939 0.0206469 0.999787i \(-0.493427\pi\)
0.0206469 + 0.999787i \(0.493427\pi\)
\(48\) 469.139 + 334.193i 0.203619 + 0.145049i
\(49\) −1851.81 −0.771265
\(50\) −1122.87 1365.34i −0.449150 0.546136i
\(51\) −1359.06 968.131i −0.522514 0.372215i
\(52\) 1253.22i 0.463470i
\(53\) −3268.39 −1.16354 −0.581771 0.813353i \(-0.697640\pi\)
−0.581771 + 0.813353i \(0.697640\pi\)
\(54\) −581.923 + 1978.10i −0.199562 + 0.678362i
\(55\) 981.198 + 463.450i 0.324363 + 0.153207i
\(56\) 1475.61i 0.470540i
\(57\) −3691.51 2629.66i −1.13620 0.809376i
\(58\) 3452.62i 1.02634i
\(59\) 1891.53i 0.543388i −0.962384 0.271694i \(-0.912416\pi\)
0.962384 0.271694i \(-0.0875838\pi\)
\(60\) −1570.45 + 879.597i −0.436236 + 0.244332i
\(61\) 757.194 0.203492 0.101746 0.994810i \(-0.467557\pi\)
0.101746 + 0.994810i \(0.467557\pi\)
\(62\) 5040.23 1.31120
\(63\) 4992.36 1725.97i 1.25784 0.434862i
\(64\) 512.000 0.125000
\(65\) 3541.18 + 1672.61i 0.838149 + 0.395884i
\(66\) 641.075 899.939i 0.147171 0.206598i
\(67\) 3597.91i 0.801495i 0.916189 + 0.400747i \(0.131250\pi\)
−0.916189 + 0.400747i \(0.868750\pi\)
\(68\) −1483.22 −0.320767
\(69\) 2095.07 + 1492.43i 0.440048 + 0.313470i
\(70\) 4169.58 + 1969.42i 0.850935 + 0.401923i
\(71\) 8210.27i 1.62870i 0.580375 + 0.814349i \(0.302906\pi\)
−0.580375 + 0.814349i \(0.697094\pi\)
\(72\) 598.866 + 1732.22i 0.115522 + 0.334148i
\(73\) 6988.31i 1.31137i −0.755033 0.655687i \(-0.772379\pi\)
0.755033 0.655687i \(-0.227621\pi\)
\(74\) 1875.38i 0.342473i
\(75\) −389.445 5611.50i −0.0692347 0.997600i
\(76\) −4028.77 −0.697503
\(77\) −2830.64 −0.477423
\(78\) 2313.66 3247.92i 0.380287 0.533845i
\(79\) 2211.58 0.354363 0.177182 0.984178i \(-0.443302\pi\)
0.177182 + 0.984178i \(0.443302\pi\)
\(80\) −683.339 + 1446.74i −0.106772 + 0.226053i
\(81\) −5160.06 + 4052.22i −0.786475 + 0.617623i
\(82\) 3764.77i 0.559901i
\(83\) −432.656 −0.0628039 −0.0314020 0.999507i \(-0.509997\pi\)
−0.0314020 + 0.999507i \(0.509997\pi\)
\(84\) 2724.24 3824.28i 0.386088 0.541989i
\(85\) 1979.58 4191.09i 0.273990 0.580081i
\(86\) 4812.17i 0.650645i
\(87\) −6374.12 + 8947.97i −0.842135 + 1.18219i
\(88\) 982.159i 0.126828i
\(89\) 4694.86i 0.592710i −0.955078 0.296355i \(-0.904229\pi\)
0.955078 0.296355i \(-0.0957712\pi\)
\(90\) −5693.94 619.712i −0.702956 0.0765076i
\(91\) −10215.9 −1.23365
\(92\) 2286.48 0.270141
\(93\) 13062.5 + 9305.14i 1.51029 + 1.07586i
\(94\) 258.004 0.0291992
\(95\) 5376.99 11383.9i 0.595788 1.26138i
\(96\) 1326.92 + 945.240i 0.143981 + 0.102565i
\(97\) 3923.02i 0.416944i 0.978028 + 0.208472i \(0.0668489\pi\)
−0.978028 + 0.208472i \(0.933151\pi\)
\(98\) −5237.70 −0.545366
\(99\) 3322.88 1148.79i 0.339035 0.117212i
\(100\) −3175.97 3861.76i −0.317597 0.386176i
\(101\) 12399.7i 1.21554i −0.794114 0.607768i \(-0.792065\pi\)
0.794114 0.607768i \(-0.207935\pi\)
\(102\) −3844.00 2738.29i −0.369473 0.263196i
\(103\) 3794.25i 0.357645i −0.983881 0.178822i \(-0.942771\pi\)
0.983881 0.178822i \(-0.0572287\pi\)
\(104\) 3544.65i 0.327723i
\(105\) 7170.20 + 12801.8i 0.650358 + 1.16116i
\(106\) −9244.40 −0.822748
\(107\) 1689.85 0.147598 0.0737990 0.997273i \(-0.476488\pi\)
0.0737990 + 0.997273i \(0.476488\pi\)
\(108\) −1645.93 + 5594.92i −0.141112 + 0.479674i
\(109\) −703.533 −0.0592150 −0.0296075 0.999562i \(-0.509426\pi\)
−0.0296075 + 0.999562i \(0.509426\pi\)
\(110\) 2775.25 + 1310.84i 0.229359 + 0.108333i
\(111\) −3462.27 + 4860.33i −0.281006 + 0.394475i
\(112\) 4173.67i 0.332722i
\(113\) −23742.7 −1.85940 −0.929700 0.368319i \(-0.879933\pi\)
−0.929700 + 0.368319i \(0.879933\pi\)
\(114\) −10441.2 7437.81i −0.803414 0.572315i
\(115\) −3051.64 + 6460.80i −0.230748 + 0.488529i
\(116\) 9765.47i 0.725734i
\(117\) 11992.4 4146.04i 0.876062 0.302874i
\(118\) 5350.06i 0.384233i
\(119\) 12090.8i 0.853809i
\(120\) −4441.90 + 2487.87i −0.308465 + 0.172769i
\(121\) 12756.9 0.871316
\(122\) 2141.67 0.143891
\(123\) 6950.42 9756.98i 0.459410 0.644919i
\(124\) 14255.9 0.927155
\(125\) 15150.8 3820.11i 0.969653 0.244487i
\(126\) 14120.5 4881.77i 0.889427 0.307494i
\(127\) 26178.1i 1.62304i −0.584322 0.811522i \(-0.698640\pi\)
0.584322 0.811522i \(-0.301360\pi\)
\(128\) 1448.15 0.0883883
\(129\) −8884.09 + 12471.5i −0.533868 + 0.749442i
\(130\) 10016.0 + 4730.85i 0.592661 + 0.279932i
\(131\) 7156.89i 0.417044i 0.978018 + 0.208522i \(0.0668653\pi\)
−0.978018 + 0.208522i \(0.933135\pi\)
\(132\) 1813.23 2545.41i 0.104065 0.146087i
\(133\) 32841.3i 1.85660i
\(134\) 10176.4i 0.566743i
\(135\) −13612.6 12118.1i −0.746919 0.664915i
\(136\) −4195.19 −0.226816
\(137\) 12209.8 0.650532 0.325266 0.945623i \(-0.394546\pi\)
0.325266 + 0.945623i \(0.394546\pi\)
\(138\) 5925.74 + 4221.23i 0.311161 + 0.221657i
\(139\) 3973.15 0.205639 0.102819 0.994700i \(-0.467214\pi\)
0.102819 + 0.994700i \(0.467214\pi\)
\(140\) 11793.4 + 5570.37i 0.601702 + 0.284203i
\(141\) 668.656 + 476.320i 0.0336329 + 0.0239585i
\(142\) 23222.1i 1.15166i
\(143\) −6799.63 −0.332516
\(144\) 1693.85 + 4899.46i 0.0816864 + 0.236278i
\(145\) −27593.9 13033.5i −1.31243 0.619903i
\(146\) 19765.9i 0.927282i
\(147\) −13574.3 9669.69i −0.628177 0.447484i
\(148\) 5304.37i 0.242165i
\(149\) 19199.1i 0.864787i −0.901685 0.432393i \(-0.857669\pi\)
0.901685 0.432393i \(-0.142331\pi\)
\(150\) −1101.52 15871.7i −0.0489563 0.705410i
\(151\) 28956.9 1.26999 0.634993 0.772518i \(-0.281003\pi\)
0.634993 + 0.772518i \(0.281003\pi\)
\(152\) −11395.1 −0.493209
\(153\) −4906.95 14193.4i −0.209618 0.606321i
\(154\) −8006.26 −0.337589
\(155\) −19026.6 + 40282.4i −0.791951 + 1.67669i
\(156\) 6544.03 9186.49i 0.268903 0.377486i
\(157\) 27194.5i 1.10327i 0.834086 + 0.551635i \(0.185996\pi\)
−0.834086 + 0.551635i \(0.814004\pi\)
\(158\) 6255.30 0.250573
\(159\) −23958.2 17066.7i −0.947678 0.675082i
\(160\) −1932.77 + 4091.99i −0.0754990 + 0.159843i
\(161\) 18638.6i 0.719056i
\(162\) −14594.9 + 11461.4i −0.556121 + 0.436725i
\(163\) 25185.4i 0.947923i −0.880545 0.473962i \(-0.842824\pi\)
0.880545 0.473962i \(-0.157176\pi\)
\(164\) 10648.4i 0.395910i
\(165\) 4772.44 + 8520.81i 0.175296 + 0.312977i
\(166\) −1223.74 −0.0444091
\(167\) 6741.31 0.241719 0.120860 0.992670i \(-0.461435\pi\)
0.120860 + 0.992670i \(0.461435\pi\)
\(168\) 7705.31 10816.7i 0.273005 0.383244i
\(169\) 4020.88 0.140782
\(170\) 5599.10 11854.2i 0.193740 0.410179i
\(171\) −13328.4 38552.4i −0.455812 1.31844i
\(172\) 13610.9i 0.460075i
\(173\) −3467.43 −0.115855 −0.0579276 0.998321i \(-0.518449\pi\)
−0.0579276 + 0.998321i \(0.518449\pi\)
\(174\) −18028.7 + 25308.7i −0.595480 + 0.835933i
\(175\) −31479.9 + 25889.5i −1.02792 + 0.845372i
\(176\) 2777.97i 0.0896812i
\(177\) 9877.13 13865.5i 0.315271 0.442577i
\(178\) 13279.1i 0.419109i
\(179\) 13444.5i 0.419603i 0.977744 + 0.209801i \(0.0672817\pi\)
−0.977744 + 0.209801i \(0.932718\pi\)
\(180\) −16104.9 1752.81i −0.497065 0.0540991i
\(181\) 32861.3 1.00306 0.501530 0.865140i \(-0.332771\pi\)
0.501530 + 0.865140i \(0.332771\pi\)
\(182\) −28894.9 −0.872325
\(183\) 5550.45 + 3953.88i 0.165740 + 0.118065i
\(184\) 6467.13 0.191019
\(185\) −14988.3 7079.46i −0.437936 0.206851i
\(186\) 36946.4 + 26318.9i 1.06794 + 0.760750i
\(187\) 8047.55i 0.230134i
\(188\) 729.745 0.0206469
\(189\) 45608.1 + 13417.1i 1.27679 + 0.375608i
\(190\) 15208.4 32198.6i 0.421286 0.891929i
\(191\) 8070.03i 0.221212i 0.993864 + 0.110606i \(0.0352792\pi\)
−0.993864 + 0.110606i \(0.964721\pi\)
\(192\) 3753.11 + 2673.54i 0.101810 + 0.0725245i
\(193\) 12379.6i 0.332347i 0.986097 + 0.166174i \(0.0531412\pi\)
−0.986097 + 0.166174i \(0.946859\pi\)
\(194\) 11096.0i 0.294824i
\(195\) 17223.9 + 30751.9i 0.452963 + 0.808729i
\(196\) −14814.5 −0.385632
\(197\) 41058.6 1.05797 0.528983 0.848632i \(-0.322573\pi\)
0.528983 + 0.848632i \(0.322573\pi\)
\(198\) 9398.54 3249.28i 0.239734 0.0828813i
\(199\) −39044.9 −0.985957 −0.492978 0.870042i \(-0.664092\pi\)
−0.492978 + 0.870042i \(0.664092\pi\)
\(200\) −8982.99 10922.7i −0.224575 0.273068i
\(201\) −18787.4 + 26373.7i −0.465024 + 0.652799i
\(202\) 35071.6i 0.859514i
\(203\) 79605.2 1.93174
\(204\) −10872.5 7745.05i −0.261257 0.186107i
\(205\) 30088.7 + 14211.8i 0.715972 + 0.338176i
\(206\) 10731.8i 0.252893i
\(207\) 7564.35 + 21879.9i 0.176535 + 0.510628i
\(208\) 10025.8i 0.231735i
\(209\) 21859.0i 0.500423i
\(210\) 20280.4 + 36209.0i 0.459873 + 0.821066i
\(211\) 28248.5 0.634498 0.317249 0.948342i \(-0.397241\pi\)
0.317249 + 0.948342i \(0.397241\pi\)
\(212\) −26147.1 −0.581771
\(213\) −42872.1 + 60183.7i −0.944964 + 1.32654i
\(214\) 4779.62 0.104368
\(215\) −38459.7 18165.7i −0.832010 0.392984i
\(216\) −4655.38 + 15824.8i −0.0997810 + 0.339181i
\(217\) 116210.i 2.46788i
\(218\) −1989.89 −0.0418713
\(219\) 36491.3 51226.4i 0.760854 1.06808i
\(220\) 7849.58 + 3707.60i 0.162181 + 0.0766033i
\(221\) 29043.9i 0.594663i
\(222\) −9792.79 + 13747.1i −0.198701 + 0.278936i
\(223\) 22828.3i 0.459054i −0.973302 0.229527i \(-0.926282\pi\)
0.973302 0.229527i \(-0.0737180\pi\)
\(224\) 11804.9i 0.235270i
\(225\) 26447.2 43167.5i 0.522413 0.852692i
\(226\) −67154.4 −1.31479
\(227\) 2784.73 0.0540420 0.0270210 0.999635i \(-0.491398\pi\)
0.0270210 + 0.999635i \(0.491398\pi\)
\(228\) −29532.1 21037.3i −0.568100 0.404688i
\(229\) −41249.2 −0.786584 −0.393292 0.919414i \(-0.628664\pi\)
−0.393292 + 0.919414i \(0.628664\pi\)
\(230\) −8631.33 + 18273.9i −0.163163 + 0.345442i
\(231\) −20749.4 14780.9i −0.388850 0.276999i
\(232\) 27620.9i 0.513171i
\(233\) −79310.6 −1.46090 −0.730448 0.682968i \(-0.760689\pi\)
−0.730448 + 0.682968i \(0.760689\pi\)
\(234\) 33919.7 11726.8i 0.619470 0.214164i
\(235\) −973.952 + 2062.01i −0.0176361 + 0.0373384i
\(236\) 15132.3i 0.271694i
\(237\) 16211.5 + 11548.3i 0.288621 + 0.205600i
\(238\) 34197.9i 0.603734i
\(239\) 32220.9i 0.564082i 0.959402 + 0.282041i \(0.0910115\pi\)
−0.959402 + 0.282041i \(0.908989\pi\)
\(240\) −12563.6 + 7036.77i −0.218118 + 0.122166i
\(241\) −77790.4 −1.33934 −0.669672 0.742657i \(-0.733565\pi\)
−0.669672 + 0.742657i \(0.733565\pi\)
\(242\) 36082.1 0.616114
\(243\) −58984.5 + 2759.38i −0.998908 + 0.0467303i
\(244\) 6057.55 0.101746
\(245\) 19772.1 41860.6i 0.329397 0.697386i
\(246\) 19658.8 27596.9i 0.324852 0.456026i
\(247\) 78889.9i 1.29309i
\(248\) 40321.9 0.655598
\(249\) −3171.50 2259.23i −0.0511523 0.0364386i
\(250\) 42853.0 10804.9i 0.685648 0.172878i
\(251\) 728.156i 0.0115578i −0.999983 0.00577892i \(-0.998161\pi\)
0.999983 0.00577892i \(-0.00183950\pi\)
\(252\) 39938.9 13807.7i 0.628920 0.217431i
\(253\) 12405.8i 0.193813i
\(254\) 74042.8i 1.14767i
\(255\) 36395.8 20385.0i 0.559720 0.313495i
\(256\) 4096.00 0.0625000
\(257\) −90955.1 −1.37708 −0.688542 0.725196i \(-0.741749\pi\)
−0.688542 + 0.725196i \(0.741749\pi\)
\(258\) −25128.0 + 35274.6i −0.377501 + 0.529935i
\(259\) 43239.6 0.644588
\(260\) 28329.4 + 13380.9i 0.419074 + 0.197942i
\(261\) −93448.4 + 32307.1i −1.37180 + 0.474261i
\(262\) 20242.7i 0.294895i
\(263\) 131305. 1.89832 0.949160 0.314793i \(-0.101935\pi\)
0.949160 + 0.314793i \(0.101935\pi\)
\(264\) 5128.60 7199.51i 0.0735853 0.103299i
\(265\) 34897.1 73882.8i 0.496933 1.05209i
\(266\) 92889.3i 1.31281i
\(267\) 24515.4 34414.7i 0.343888 0.482749i
\(268\) 28783.3i 0.400747i
\(269\) 80994.3i 1.11931i −0.828726 0.559654i \(-0.810934\pi\)
0.828726 0.559654i \(-0.189066\pi\)
\(270\) −38502.3 34275.1i −0.528152 0.470166i
\(271\) 1408.64 0.0191806 0.00959030 0.999954i \(-0.496947\pi\)
0.00959030 + 0.999954i \(0.496947\pi\)
\(272\) −11865.8 −0.160383
\(273\) −74885.5 53344.9i −1.00478 0.715761i
\(274\) 34534.6 0.459996
\(275\) −20952.8 + 17231.9i −0.277062 + 0.227860i
\(276\) 16760.5 + 11939.4i 0.220024 + 0.156735i
\(277\) 35266.0i 0.459618i 0.973236 + 0.229809i \(0.0738102\pi\)
−0.973236 + 0.229809i \(0.926190\pi\)
\(278\) 11237.8 0.145409
\(279\) 47162.9 + 136419.i 0.605888 + 1.75253i
\(280\) 33356.6 + 15755.4i 0.425467 + 0.200962i
\(281\) 100028.i 1.26680i 0.773824 + 0.633401i \(0.218341\pi\)
−0.773824 + 0.633401i \(0.781659\pi\)
\(282\) 1891.24 + 1347.24i 0.0237821 + 0.0169412i
\(283\) 1114.06i 0.0139102i 0.999976 + 0.00695512i \(0.00221390\pi\)
−0.999976 + 0.00695512i \(0.997786\pi\)
\(284\) 65682.1i 0.814349i
\(285\) 98859.1 55370.3i 1.21710 0.681690i
\(286\) −19232.3 −0.235125
\(287\) −86802.4 −1.05382
\(288\) 4790.93 + 13857.8i 0.0577610 + 0.167074i
\(289\) −49146.7 −0.588435
\(290\) −78047.3 36864.2i −0.928030 0.438337i
\(291\) −20485.1 + 28756.9i −0.241909 + 0.339591i
\(292\) 55906.5i 0.655687i
\(293\) 37594.9 0.437919 0.218960 0.975734i \(-0.429734\pi\)
0.218960 + 0.975734i \(0.429734\pi\)
\(294\) −38393.9 27350.0i −0.444188 0.316419i
\(295\) 42758.6 + 20196.2i 0.491337 + 0.232074i
\(296\) 15003.0i 0.171236i
\(297\) 30356.4 + 8930.33i 0.344142 + 0.101241i
\(298\) 54303.4i 0.611497i
\(299\) 44772.9i 0.500810i
\(300\) −3115.56 44892.0i −0.0346174 0.498800i
\(301\) 110952. 1.22462
\(302\) 81902.6 0.898015
\(303\) 64748.2 90893.4i 0.705249 0.990027i
\(304\) −32230.2 −0.348751
\(305\) −8084.69 + 17116.6i −0.0869087 + 0.184000i
\(306\) −13879.0 40144.9i −0.148222 0.428734i
\(307\) 99842.1i 1.05934i 0.848203 + 0.529672i \(0.177685\pi\)
−0.848203 + 0.529672i \(0.822315\pi\)
\(308\) −22645.1 −0.238711
\(309\) 19812.7 27813.0i 0.207504 0.291293i
\(310\) −53815.4 + 113936.i −0.559994 + 1.18560i
\(311\) 186982.i 1.93321i −0.256273 0.966605i \(-0.582495\pi\)
0.256273 0.966605i \(-0.417505\pi\)
\(312\) 18509.3 25983.3i 0.190143 0.266923i
\(313\) 120168.i 1.22660i 0.789852 + 0.613298i \(0.210158\pi\)
−0.789852 + 0.613298i \(0.789842\pi\)
\(314\) 76917.6i 0.780129i
\(315\) −14288.4 + 131282.i −0.144000 + 1.32308i
\(316\) 17692.6 0.177182
\(317\) −5854.85 −0.0582636 −0.0291318 0.999576i \(-0.509274\pi\)
−0.0291318 + 0.999576i \(0.509274\pi\)
\(318\) −67764.2 48272.1i −0.670110 0.477355i
\(319\) 52984.7 0.520678
\(320\) −5466.71 + 11573.9i −0.0533859 + 0.113026i
\(321\) 12387.1 + 8823.99i 0.120215 + 0.0856357i
\(322\) 52718.1i 0.508449i
\(323\) 93368.4 0.894942
\(324\) −41280.5 + 32417.8i −0.393237 + 0.308811i
\(325\) −75619.6 + 62190.6i −0.715925 + 0.588786i
\(326\) 71235.0i 0.670283i
\(327\) −5157.10 3673.68i −0.0482292 0.0343563i
\(328\) 30118.2i 0.279950i
\(329\) 5948.66i 0.0549576i
\(330\) 13498.5 + 24100.5i 0.123953 + 0.221308i
\(331\) −31243.3 −0.285168 −0.142584 0.989783i \(-0.545541\pi\)
−0.142584 + 0.989783i \(0.545541\pi\)
\(332\) −3461.25 −0.0314020
\(333\) −50759.0 + 17548.5i −0.457746 + 0.158253i
\(334\) 19067.3 0.170921
\(335\) −81331.7 38415.5i −0.724720 0.342308i
\(336\) 21793.9 30594.2i 0.193044 0.270995i
\(337\) 32982.2i 0.290416i −0.989401 0.145208i \(-0.953615\pi\)
0.989401 0.145208i \(-0.0463851\pi\)
\(338\) 11372.8 0.0995480
\(339\) −174041. 123979.i −1.51444 1.07882i
\(340\) 15836.6 33528.7i 0.136995 0.290041i
\(341\) 77348.6i 0.665187i
\(342\) −37698.4 109043.i −0.322308 0.932275i
\(343\) 35814.9i 0.304421i
\(344\) 38497.4i 0.325322i
\(345\) −56106.1 + 31424.6i −0.471381 + 0.264017i
\(346\) −9807.37 −0.0819220
\(347\) −129786. −1.07788 −0.538939 0.842345i \(-0.681175\pi\)
−0.538939 + 0.842345i \(0.681175\pi\)
\(348\) −50993.0 + 71583.8i −0.421068 + 0.591094i
\(349\) −3795.88 −0.0311646 −0.0155823 0.999879i \(-0.504960\pi\)
−0.0155823 + 0.999879i \(0.504960\pi\)
\(350\) −89038.7 + 73226.6i −0.726846 + 0.597768i
\(351\) 109558. + 32229.9i 0.889259 + 0.261604i
\(352\) 7857.27i 0.0634142i
\(353\) 16832.0 0.135079 0.0675394 0.997717i \(-0.478485\pi\)
0.0675394 + 0.997717i \(0.478485\pi\)
\(354\) 27936.8 39217.5i 0.222930 0.312949i
\(355\) −185595. 87662.4i −1.47269 0.695596i
\(356\) 37558.8i 0.296355i
\(357\) −63135.3 + 88629.1i −0.495377 + 0.695408i
\(358\) 38026.8i 0.296704i
\(359\) 2886.79i 0.0223989i −0.999937 0.0111994i \(-0.996435\pi\)
0.999937 0.0111994i \(-0.00356496\pi\)
\(360\) −45551.5 4957.69i −0.351478 0.0382538i
\(361\) 123289. 0.946039
\(362\) 92945.7 0.709271
\(363\) 93512.1 + 66613.7i 0.709667 + 0.505534i
\(364\) −81727.1 −0.616827
\(365\) 157973. + 74615.4i 1.18576 + 0.560071i
\(366\) 15699.0 + 11183.3i 0.117196 + 0.0834847i
\(367\) 99428.8i 0.738210i −0.929388 0.369105i \(-0.879664\pi\)
0.929388 0.369105i \(-0.120336\pi\)
\(368\) 18291.8 0.135071
\(369\) 101897. 35228.1i 0.748358 0.258724i
\(370\) −42393.5 20023.7i −0.309667 0.146266i
\(371\) 213143.i 1.54854i
\(372\) 104500. + 74441.1i 0.755147 + 0.537931i
\(373\) 102544.i 0.737043i −0.929619 0.368522i \(-0.879864\pi\)
0.929619 0.368522i \(-0.120136\pi\)
\(374\) 22761.9i 0.162729i
\(375\) 131008. + 51111.5i 0.931610 + 0.363459i
\(376\) 2064.03 0.0145996
\(377\) 191224. 1.34542
\(378\) 128999. + 37949.3i 0.902824 + 0.265595i
\(379\) 83600.5 0.582010 0.291005 0.956722i \(-0.406010\pi\)
0.291005 + 0.956722i \(0.406010\pi\)
\(380\) 43015.9 91071.5i 0.297894 0.630689i
\(381\) 136696. 191893.i 0.941683 1.32193i
\(382\) 22825.5i 0.156420i
\(383\) −147151. −1.00315 −0.501575 0.865114i \(-0.667246\pi\)
−0.501575 + 0.865114i \(0.667246\pi\)
\(384\) 10615.4 + 7561.92i 0.0719903 + 0.0512825i
\(385\) 30223.2 63987.4i 0.203901 0.431691i
\(386\) 35014.8i 0.235005i
\(387\) −130246. + 45028.8i −0.869646 + 0.300655i
\(388\) 31384.2i 0.208472i
\(389\) 285084.i 1.88397i 0.335656 + 0.941985i \(0.391042\pi\)
−0.335656 + 0.941985i \(0.608958\pi\)
\(390\) 48716.6 + 86979.6i 0.320293 + 0.571858i
\(391\) −52990.0 −0.346609
\(392\) −41901.6 −0.272683
\(393\) −37371.6 + 52462.1i −0.241967 + 0.339673i
\(394\) 116131. 0.748095
\(395\) −23613.4 + 49993.4i −0.151344 + 0.320419i
\(396\) 26583.1 9190.34i 0.169518 0.0586059i
\(397\) 71798.3i 0.455547i 0.973714 + 0.227773i \(0.0731445\pi\)
−0.973714 + 0.227773i \(0.926855\pi\)
\(398\) −110436. −0.697177
\(399\) −171490. + 240737.i −1.07719 + 1.51216i
\(400\) −25407.7 30894.1i −0.158798 0.193088i
\(401\) 206979.i 1.28717i −0.765373 0.643586i \(-0.777446\pi\)
0.765373 0.643586i \(-0.222554\pi\)
\(402\) −53138.9 + 74596.2i −0.328822 + 0.461599i
\(403\) 279154.i 1.71883i
\(404\) 99197.5i 0.607768i
\(405\) −36506.7 159911.i −0.222568 0.974917i
\(406\) 225157. 1.36595
\(407\) 28780.0 0.173741
\(408\) −30752.0 21906.3i −0.184737 0.131598i
\(409\) −106404. −0.636078 −0.318039 0.948078i \(-0.603024\pi\)
−0.318039 + 0.948078i \(0.603024\pi\)
\(410\) 85103.7 + 40197.1i 0.506268 + 0.239126i
\(411\) 89501.7 + 63756.9i 0.529843 + 0.377436i
\(412\) 30354.0i 0.178822i
\(413\) −123354. −0.723189
\(414\) 21395.2 + 61885.7i 0.124829 + 0.361068i
\(415\) 4619.54 9780.31i 0.0268227 0.0567880i
\(416\) 28357.2i 0.163861i
\(417\) 29124.3 + 20746.8i 0.167488 + 0.119311i
\(418\) 61826.5i 0.353853i
\(419\) 226416.i 1.28967i −0.764322 0.644835i \(-0.776926\pi\)
0.764322 0.644835i \(-0.223074\pi\)
\(420\) 57361.6 + 102415.i 0.325179 + 0.580581i
\(421\) −220039. −1.24147 −0.620734 0.784021i \(-0.713165\pi\)
−0.620734 + 0.784021i \(0.713165\pi\)
\(422\) 79898.8 0.448658
\(423\) 2414.22 + 6983.13i 0.0134926 + 0.0390274i
\(424\) −73955.2 −0.411374
\(425\) 73604.3 + 89497.9i 0.407498 + 0.495490i
\(426\) −121261. + 170225.i −0.668190 + 0.938004i
\(427\) 49379.3i 0.270825i
\(428\) 13518.8 0.0737990
\(429\) −49843.3 35506.0i −0.270827 0.192925i
\(430\) −108780. 51380.4i −0.588320 0.277882i
\(431\) 56189.2i 0.302481i −0.988497 0.151241i \(-0.951673\pi\)
0.988497 0.151241i \(-0.0483268\pi\)
\(432\) −13167.4 + 44759.4i −0.0705558 + 0.239837i
\(433\) 353092.i 1.88327i 0.336638 + 0.941634i \(0.390710\pi\)
−0.336638 + 0.941634i \(0.609290\pi\)
\(434\) 328692.i 1.74505i
\(435\) −134214. 239628.i −0.709281 1.26636i
\(436\) −5628.26 −0.0296075
\(437\) −143933. −0.753697
\(438\) 103213. 144890.i 0.538005 0.755250i
\(439\) 213.447 0.00110754 0.000553772 1.00000i \(-0.499824\pi\)
0.000553772 1.00000i \(0.499824\pi\)
\(440\) 22202.0 + 10486.7i 0.114680 + 0.0541667i
\(441\) −49010.7 141763.i −0.252007 0.728932i
\(442\) 82148.6i 0.420490i
\(443\) −148410. −0.756232 −0.378116 0.925758i \(-0.623428\pi\)
−0.378116 + 0.925758i \(0.623428\pi\)
\(444\) −27698.2 + 38882.6i −0.140503 + 0.197238i
\(445\) 106128. + 50127.8i 0.535935 + 0.253139i
\(446\) 64568.2i 0.324600i
\(447\) 100253. 140735.i 0.501746 0.704349i
\(448\) 33389.3i 0.166361i
\(449\) 116611.i 0.578425i 0.957265 + 0.289212i \(0.0933934\pi\)
−0.957265 + 0.289212i \(0.906607\pi\)
\(450\) 74803.9 122096.i 0.369402 0.602945i
\(451\) −57775.1 −0.284045
\(452\) −189941. −0.929700
\(453\) 212263. + 151206.i 1.03437 + 0.736840i
\(454\) 7876.40 0.0382134
\(455\) 109077. 230933.i 0.526877 1.11548i
\(456\) −83529.4 59502.5i −0.401707 0.286158i
\(457\) 59420.0i 0.284512i −0.989830 0.142256i \(-0.954564\pi\)
0.989830 0.142256i \(-0.0454356\pi\)
\(458\) −116670. −0.556199
\(459\) 38145.0 129664.i 0.181056 0.615454i
\(460\) −24413.1 + 51686.4i −0.115374 + 0.244265i
\(461\) 248043.i 1.16715i 0.812060 + 0.583574i \(0.198346\pi\)
−0.812060 + 0.583574i \(0.801654\pi\)
\(462\) −58688.2 41806.8i −0.274958 0.195868i
\(463\) 68090.6i 0.317633i 0.987308 + 0.158816i \(0.0507678\pi\)
−0.987308 + 0.158816i \(0.949232\pi\)
\(464\) 78123.8i 0.362867i
\(465\) −349816. + 195929.i −1.61783 + 0.906136i
\(466\) −224324. −1.03301
\(467\) 288274. 1.32182 0.660908 0.750466i \(-0.270171\pi\)
0.660908 + 0.750466i \(0.270171\pi\)
\(468\) 95939.3 33168.3i 0.438031 0.151437i
\(469\) 234633. 1.06670
\(470\) −2754.75 + 5832.25i −0.0124706 + 0.0264022i
\(471\) −142003. + 199344.i −0.640112 + 0.898588i
\(472\) 42800.5i 0.192117i
\(473\) 73848.7 0.330081
\(474\) 45853.1 + 32663.7i 0.204086 + 0.145381i
\(475\) 199926. + 243097.i 0.886098 + 1.07744i
\(476\) 96726.4i 0.426905i
\(477\) −86502.5 250209.i −0.380182 1.09968i
\(478\) 91134.6i 0.398866i
\(479\) 12102.0i 0.0527455i 0.999652 + 0.0263728i \(0.00839569\pi\)
−0.999652 + 0.0263728i \(0.991604\pi\)
\(480\) −35535.2 + 19903.0i −0.154233 + 0.0863845i
\(481\) 103868. 0.448944
\(482\) −220025. −0.947059
\(483\) 97326.6 136627.i 0.417193 0.585655i
\(484\) 102056. 0.435658
\(485\) −88681.0 41886.8i −0.377005 0.178071i
\(486\) −166833. + 7804.71i −0.706334 + 0.0330433i
\(487\) 165539.i 0.697979i 0.937127 + 0.348989i \(0.113475\pi\)
−0.937127 + 0.348989i \(0.886525\pi\)
\(488\) 17133.3 0.0719453
\(489\) 131512. 184616.i 0.549981 0.772062i
\(490\) 55923.8 118400.i 0.232919 0.493126i
\(491\) 313129.i 1.29886i 0.760423 + 0.649428i \(0.224991\pi\)
−0.760423 + 0.649428i \(0.775009\pi\)
\(492\) 55603.3 78055.8i 0.229705 0.322459i
\(493\) 226319.i 0.931165i
\(494\) 223134.i 0.914350i
\(495\) −9510.24 + 87380.6i −0.0388134 + 0.356619i
\(496\) 114047. 0.463578
\(497\) 535421. 2.16762
\(498\) −8970.35 6390.06i −0.0361702 0.0257660i
\(499\) 156716. 0.629380 0.314690 0.949194i \(-0.398099\pi\)
0.314690 + 0.949194i \(0.398099\pi\)
\(500\) 121207. 30560.9i 0.484826 0.122244i
\(501\) 49415.8 + 35201.5i 0.196875 + 0.140244i
\(502\) 2059.54i 0.00817263i
\(503\) −123782. −0.489239 −0.244620 0.969619i \(-0.578663\pi\)
−0.244620 + 0.969619i \(0.578663\pi\)
\(504\) 112964. 39054.2i 0.444713 0.153747i
\(505\) 280298. + 132394.i 1.09910 + 0.519140i
\(506\) 35088.8i 0.137046i
\(507\) 29474.2 + 20996.1i 0.114664 + 0.0816812i
\(508\) 209425.i 0.811522i
\(509\) 88804.4i 0.342767i −0.985204 0.171383i \(-0.945176\pi\)
0.985204 0.171383i \(-0.0548237\pi\)
\(510\) 102943. 57657.5i 0.395782 0.221674i
\(511\) −455733. −1.74529
\(512\) 11585.2 0.0441942
\(513\) 103610. 352198.i 0.393703 1.33830i
\(514\) −257260. −0.973746
\(515\) 85770.1 + 40511.9i 0.323386 + 0.152745i
\(516\) −71072.7 + 99771.7i −0.266934 + 0.374721i
\(517\) 3959.39i 0.0148131i
\(518\) 122300. 0.455793
\(519\) −25417.3 18106.1i −0.0943614 0.0672187i
\(520\) 80127.7 + 37846.8i 0.296330 + 0.139966i
\(521\) 165146.i 0.608404i 0.952608 + 0.304202i \(0.0983898\pi\)
−0.952608 + 0.304202i \(0.901610\pi\)
\(522\) −264312. + 91378.3i −0.970009 + 0.335353i
\(523\) 419249.i 1.53274i 0.642400 + 0.766370i \(0.277939\pi\)
−0.642400 + 0.766370i \(0.722061\pi\)
\(524\) 57255.1i 0.208522i
\(525\) −365946. + 25397.1i −1.32770 + 0.0921437i
\(526\) 371386. 1.34232
\(527\) −330387. −1.18960
\(528\) 14505.9 20363.3i 0.0520327 0.0730433i
\(529\) −198154. −0.708095
\(530\) 98704.0 208972.i 0.351385 0.743938i
\(531\) 144805. 50062.1i 0.513562 0.177550i
\(532\) 262731.i 0.928298i
\(533\) −208513. −0.733969
\(534\) 69340.1 97339.4i 0.243165 0.341355i
\(535\) −18042.8 + 38199.5i −0.0630372 + 0.133460i
\(536\) 81411.4i 0.283371i
\(537\) −70203.9 + 98552.1i −0.243452 + 0.341757i
\(538\) 229086.i 0.791470i
\(539\) 80379.0i 0.276672i
\(540\) −108901. 96944.5i −0.373460 0.332457i
\(541\) −260252. −0.889200 −0.444600 0.895729i \(-0.646654\pi\)
−0.444600 + 0.895729i \(0.646654\pi\)
\(542\) 3984.24 0.0135627
\(543\) 240883. + 171594.i 0.816970 + 0.581972i
\(544\) −33561.5 −0.113408
\(545\) 7511.74 15903.6i 0.0252899 0.0535428i
\(546\) −211808. 150882.i −0.710489 0.506119i
\(547\) 348245.i 1.16388i −0.813230 0.581942i \(-0.802293\pi\)
0.813230 0.581942i \(-0.197707\pi\)
\(548\) 97678.7 0.325266
\(549\) 20040.2 + 57966.3i 0.0664901 + 0.192323i
\(550\) −59263.6 + 48739.2i −0.195913 + 0.161121i
\(551\) 614733.i 2.02480i
\(552\) 47406.0 + 33769.8i 0.155580 + 0.110828i
\(553\) 144225.i 0.471618i
\(554\) 99747.4i 0.324999i
\(555\) −72901.7 130160.i −0.236675 0.422564i
\(556\) 31785.2 0.102819
\(557\) −238645. −0.769205 −0.384602 0.923082i \(-0.625661\pi\)
−0.384602 + 0.923082i \(0.625661\pi\)
\(558\) 133397. + 385851.i 0.428427 + 1.23923i
\(559\) 266523. 0.852925
\(560\) 94346.8 + 44563.0i 0.300851 + 0.142101i
\(561\) −42022.4 + 58990.9i −0.133523 + 0.187439i
\(562\) 282922.i 0.895764i
\(563\) −217039. −0.684733 −0.342366 0.939566i \(-0.611228\pi\)
−0.342366 + 0.939566i \(0.611228\pi\)
\(564\) 5349.25 + 3810.56i 0.0168165 + 0.0119793i
\(565\) 253505. 536709.i 0.794125 1.68129i
\(566\) 3151.03i 0.00983603i
\(567\) 264260. + 336506.i 0.821987 + 1.04671i
\(568\) 185777.i 0.575832i
\(569\) 347873.i 1.07448i −0.843431 0.537238i \(-0.819468\pi\)
0.843431 0.537238i \(-0.180532\pi\)
\(570\) 279616. 156611.i 0.860621 0.482027i
\(571\) −52650.9 −0.161486 −0.0807428 0.996735i \(-0.525729\pi\)
−0.0807428 + 0.996735i \(0.525729\pi\)
\(572\) −54397.0 −0.166258
\(573\) −42139.8 + 59155.7i −0.128346 + 0.180172i
\(574\) −245514. −0.745166
\(575\) −113465. 137966.i −0.343184 0.417289i
\(576\) 13550.8 + 39195.7i 0.0408432 + 0.118139i
\(577\) 41833.2i 0.125652i 0.998024 + 0.0628260i \(0.0200113\pi\)
−0.998024 + 0.0628260i \(0.979989\pi\)
\(578\) −139008. −0.416086
\(579\) −64643.3 + 90746.1i −0.192826 + 0.270689i
\(580\) −220751. 104268.i −0.656216 0.309951i
\(581\) 28215.0i 0.0835850i
\(582\) −57940.6 + 81336.8i −0.171055 + 0.240127i
\(583\) 141867.i 0.417391i
\(584\) 158127.i 0.463641i
\(585\) −34322.8 + 315360.i −0.100293 + 0.921498i
\(586\) 106334. 0.309656
\(587\) 438588. 1.27286 0.636430 0.771335i \(-0.280410\pi\)
0.636430 + 0.771335i \(0.280410\pi\)
\(588\) −108594. 77357.5i −0.314089 0.223742i
\(589\) −897406. −2.58677
\(590\) 120940. + 57123.5i 0.347428 + 0.164101i
\(591\) 300972. + 214398.i 0.861689 + 0.613828i
\(592\) 42435.0i 0.121082i
\(593\) −191930. −0.545801 −0.272901 0.962042i \(-0.587983\pi\)
−0.272901 + 0.962042i \(0.587983\pi\)
\(594\) 85861.0 + 25258.8i 0.243345 + 0.0715879i
\(595\) −273316. 129095.i −0.772023 0.364651i
\(596\) 153593.i 0.432393i
\(597\) −286210. 203883.i −0.803039 0.572048i
\(598\) 126637.i 0.354126i
\(599\) 138898.i 0.387116i −0.981089 0.193558i \(-0.937997\pi\)
0.981089 0.193558i \(-0.0620028\pi\)
\(600\) −8812.14 126974.i −0.0244782 0.352705i
\(601\) 158349. 0.438396 0.219198 0.975680i \(-0.429656\pi\)
0.219198 + 0.975680i \(0.429656\pi\)
\(602\) 313819. 0.865936
\(603\) −275435. + 95223.8i −0.757503 + 0.261885i
\(604\) 231656. 0.634993
\(605\) −136208. + 288374.i −0.372128 + 0.787854i
\(606\) 183136. 257085.i 0.498686 0.700055i
\(607\) 527256.i 1.43101i −0.698605 0.715507i \(-0.746196\pi\)
0.698605 0.715507i \(-0.253804\pi\)
\(608\) −91160.8 −0.246604
\(609\) 583529. + 415679.i 1.57336 + 1.12079i
\(610\) −22866.9 + 48412.9i −0.0614538 + 0.130107i
\(611\) 14289.6i 0.0382770i
\(612\) −39255.6 113547.i −0.104809 0.303160i
\(613\) 662019.i 1.76177i −0.473328 0.880886i \(-0.656948\pi\)
0.473328 0.880886i \(-0.343052\pi\)
\(614\) 282396.i 0.749069i
\(615\) 146348. + 261293.i 0.386934 + 0.690840i
\(616\) −64050.1 −0.168794
\(617\) −167926. −0.441111 −0.220556 0.975374i \(-0.570787\pi\)
−0.220556 + 0.975374i \(0.570787\pi\)
\(618\) 56038.7 78667.0i 0.146727 0.205976i
\(619\) 364804. 0.952091 0.476045 0.879421i \(-0.342070\pi\)
0.476045 + 0.879421i \(0.342070\pi\)
\(620\) −152213. + 322259.i −0.395976 + 0.838343i
\(621\) −58802.7 + 199885.i −0.152480 + 0.518319i
\(622\) 528865.i 1.36699i
\(623\) −306168. −0.788831
\(624\) 52352.3 73491.9i 0.134452 0.188743i
\(625\) −75413.3 + 383276.i −0.193058 + 0.981187i
\(626\) 339888.i 0.867334i
\(627\) −114142. + 160233.i −0.290343 + 0.407583i
\(628\) 217556.i 0.551635i
\(629\) 122931.i 0.310713i
\(630\) −40413.6 + 371322.i −0.101823 + 0.935556i
\(631\) 620870. 1.55934 0.779672 0.626188i \(-0.215386\pi\)
0.779672 + 0.626188i \(0.215386\pi\)
\(632\) 50042.4 0.125286
\(633\) 207070. + 147507.i 0.516784 + 0.368133i
\(634\) −16560.0 −0.0411986
\(635\) 591762. + 279508.i 1.46757 + 0.693181i
\(636\) −191666. 136534.i −0.473839 0.337541i
\(637\) 290091.i 0.714916i
\(638\) 149863. 0.368175
\(639\) −628530. + 217296.i −1.53930 + 0.532170i
\(640\) −15462.2 + 32735.9i −0.0377495 + 0.0799217i
\(641\) 194113.i 0.472430i −0.971701 0.236215i \(-0.924093\pi\)
0.971701 0.236215i \(-0.0759070\pi\)
\(642\) 35036.0 + 24958.0i 0.0850050 + 0.0605536i
\(643\) 413435.i 0.999966i 0.866035 + 0.499983i \(0.166660\pi\)
−0.866035 + 0.499983i \(0.833340\pi\)
\(644\) 149109.i 0.359528i
\(645\) −187064. 333987.i −0.449645 0.802805i
\(646\) 264086. 0.632820
\(647\) 530520. 1.26734 0.633670 0.773604i \(-0.281548\pi\)
0.633670 + 0.773604i \(0.281548\pi\)
\(648\) −116759. + 91691.3i −0.278061 + 0.218363i
\(649\) −82103.3 −0.194927
\(650\) −213884. + 175901.i −0.506235 + 0.416335i
\(651\) 606821. 851854.i 1.43185 2.01003i
\(652\) 201483.i 0.473962i
\(653\) 838855. 1.96725 0.983627 0.180218i \(-0.0576804\pi\)
0.983627 + 0.180218i \(0.0576804\pi\)
\(654\) −14586.5 10390.7i −0.0341032 0.0242936i
\(655\) −161783. 76415.4i −0.377096 0.178114i
\(656\) 85187.1i 0.197955i
\(657\) 534984. 184956.i 1.23940 0.428486i
\(658\) 16825.4i 0.0388609i
\(659\) 633895.i 1.45964i 0.683638 + 0.729821i \(0.260397\pi\)
−0.683638 + 0.729821i \(0.739603\pi\)
\(660\) 38179.5 + 68166.5i 0.0876481 + 0.156489i
\(661\) 315742. 0.722652 0.361326 0.932440i \(-0.382324\pi\)
0.361326 + 0.932440i \(0.382324\pi\)
\(662\) −88369.3 −0.201644
\(663\) −151660. + 212901.i −0.345021 + 0.484339i
\(664\) −9789.89 −0.0222045
\(665\) −742387. 350653.i −1.67875 0.792928i
\(666\) −143568. + 49634.5i −0.323675 + 0.111901i
\(667\) 348883.i 0.784203i
\(668\) 53930.5 0.120860
\(669\) 119204. 167338.i 0.266341 0.373889i
\(670\) −230041. 108655.i −0.512455 0.242048i
\(671\) 32866.5i 0.0729976i
\(672\) 61642.4 86533.5i 0.136503 0.191622i
\(673\) 293889.i 0.648863i 0.945909 + 0.324431i \(0.105173\pi\)
−0.945909 + 0.324431i \(0.894827\pi\)
\(674\) 93287.8i 0.205355i
\(675\) 419276. 178330.i 0.920222 0.391396i
\(676\) 32167.0 0.0703911
\(677\) −813804. −1.77559 −0.887794 0.460241i \(-0.847763\pi\)
−0.887794 + 0.460241i \(0.847763\pi\)
\(678\) −492261. 350664.i −1.07087 0.762838i
\(679\) 255834. 0.554905
\(680\) 44792.8 94833.5i 0.0968702 0.205090i
\(681\) 20412.9 + 14541.2i 0.0440159 + 0.0313549i
\(682\) 218775.i 0.470358i
\(683\) 376911. 0.807973 0.403987 0.914765i \(-0.367624\pi\)
0.403987 + 0.914765i \(0.367624\pi\)
\(684\) −106627. 308419.i −0.227906 0.659218i
\(685\) −130367. + 276007.i −0.277834 + 0.588218i
\(686\) 101300.i 0.215258i
\(687\) −302369. 215394.i −0.640654 0.456372i
\(688\) 108887.i 0.230038i
\(689\) 512002.i 1.07853i
\(690\) −158692. + 88882.3i −0.333317 + 0.186688i
\(691\) −559158. −1.17106 −0.585529 0.810652i \(-0.699113\pi\)
−0.585529 + 0.810652i \(0.699113\pi\)
\(692\) −27739.4 −0.0579276
\(693\) −74916.9 216697.i −0.155996 0.451218i
\(694\) −367091. −0.762174
\(695\) −42422.0 + 89814.0i −0.0878256 + 0.185941i
\(696\) −144230. + 202470.i −0.297740 + 0.417966i
\(697\) 246781.i 0.507979i
\(698\) −10736.4 −0.0220367
\(699\) −581370. 414141.i −1.18987 0.847606i
\(700\) −251839. + 207116.i −0.513958 + 0.422686i
\(701\) 441635.i 0.898727i −0.893349 0.449363i \(-0.851651\pi\)
0.893349 0.449363i \(-0.148349\pi\)
\(702\) 309876. + 91159.9i 0.628801 + 0.184982i
\(703\) 333908.i 0.675642i
\(704\) 22223.7i 0.0448406i
\(705\) −17906.7 + 10029.4i −0.0360277 + 0.0201789i
\(706\) 47608.2 0.0955152
\(707\) −808628. −1.61774
\(708\) 79017.1 110924.i 0.157636 0.221288i
\(709\) 143318. 0.285106 0.142553 0.989787i \(-0.454469\pi\)
0.142553 + 0.989787i \(0.454469\pi\)
\(710\) −524943. 247947.i −1.04135 0.491860i
\(711\) 58532.6 + 169306.i 0.115787 + 0.334913i
\(712\) 106232.i 0.209555i
\(713\) 509310. 1.00185
\(714\) −178573. + 250681.i −0.350284 + 0.491728i
\(715\) 72600.8 153707.i 0.142013 0.300665i
\(716\) 107556.i 0.209801i
\(717\) −168250. + 236189.i −0.327278 + 0.459432i
\(718\) 8165.07i 0.0158384i
\(719\) 348595.i 0.674317i −0.941448 0.337158i \(-0.890534\pi\)
0.941448 0.337158i \(-0.109466\pi\)
\(720\) −128839. 14022.5i −0.248532 0.0270495i
\(721\) −247437. −0.475985
\(722\) 348713. 0.668951
\(723\) −570227. 406203.i −1.09086 0.777082i
\(724\) 262890. 0.501530
\(725\) 589249. 484607.i 1.12105 0.921963i
\(726\) 264492. + 188412.i 0.501811 + 0.357467i
\(727\) 963450.i 1.82289i 0.411423 + 0.911444i \(0.365032\pi\)
−0.411423 + 0.911444i \(0.634968\pi\)
\(728\) −231159. −0.436163
\(729\) −446782. 287776.i −0.840700 0.541501i
\(730\) 446814. + 211044.i 0.838458 + 0.396030i
\(731\) 315437.i 0.590307i
\(732\) 44403.6 + 31631.1i 0.0828698 + 0.0590326i
\(733\) 481364.i 0.895912i −0.894056 0.447956i \(-0.852152\pi\)
0.894056 0.447956i \(-0.147848\pi\)
\(734\) 281227.i 0.521994i
\(735\) 363521. 203605.i 0.672907 0.376890i
\(736\) 51737.0 0.0955094
\(737\) 156170. 0.287516
\(738\) 288209. 99640.0i 0.529169 0.182945i
\(739\) −28527.3 −0.0522363 −0.0261181 0.999659i \(-0.508315\pi\)
−0.0261181 + 0.999659i \(0.508315\pi\)
\(740\) −119907. 56635.7i −0.218968 0.103425i
\(741\) −411944. + 578286.i −0.750243 + 1.05319i
\(742\) 602860.i 1.09499i
\(743\) 246998. 0.447420 0.223710 0.974656i \(-0.428183\pi\)
0.223710 + 0.974656i \(0.428183\pi\)
\(744\) 295571. + 210551.i 0.533969 + 0.380375i
\(745\) 434002. + 204992.i 0.781950 + 0.369339i
\(746\) 290038.i 0.521168i
\(747\) −11450.8 33121.6i −0.0205209 0.0593567i
\(748\) 64380.4i 0.115067i
\(749\) 110201.i 0.196437i
\(750\) 370546. + 144565.i 0.658748 + 0.257005i
\(751\) −3299.61 −0.00585037 −0.00292518 0.999996i \(-0.500931\pi\)
−0.00292518 + 0.999996i \(0.500931\pi\)
\(752\) 5837.96 0.0103235
\(753\) 3802.26 5337.60i 0.00670582 0.00941360i
\(754\) 540862. 0.951358
\(755\) −309178. + 654579.i −0.542394 + 1.14833i
\(756\) 364865. + 107337.i 0.638393 + 0.187804i
\(757\) 222016.i 0.387429i 0.981058 + 0.193714i \(0.0620535\pi\)
−0.981058 + 0.193714i \(0.937946\pi\)
\(758\) 236458. 0.411543
\(759\) 64779.9 90937.9i 0.112449 0.157856i
\(760\) 121667. 257589.i 0.210643 0.445965i
\(761\) 749263.i 1.29379i 0.762578 + 0.646896i \(0.223933\pi\)
−0.762578 + 0.646896i \(0.776067\pi\)
\(762\) 386634. 542755.i 0.665870 0.934747i
\(763\) 45879.9i 0.0788085i
\(764\) 64560.3i 0.110606i
\(765\) 373237. + 40622.0i 0.637767 + 0.0694127i
\(766\) −416206. −0.709334
\(767\) −296314. −0.503688
\(768\) 30024.9 + 21388.3i 0.0509048 + 0.0362622i
\(769\) 912266. 1.54265 0.771327 0.636439i \(-0.219593\pi\)
0.771327 + 0.636439i \(0.219593\pi\)
\(770\) 85484.2 180984.i 0.144180 0.305252i
\(771\) −666727. 474946.i −1.12160 0.798979i
\(772\) 99036.8i 0.166174i
\(773\) 820106. 1.37250 0.686248 0.727368i \(-0.259257\pi\)
0.686248 + 0.727368i \(0.259257\pi\)
\(774\) −368391. + 127361.i −0.614932 + 0.212595i
\(775\) −707444. 860204.i −1.17785 1.43218i
\(776\) 88767.9i 0.147412i
\(777\) 316959. + 225787.i 0.525002 + 0.373987i
\(778\) 806340.i 1.33217i
\(779\) 670312.i 1.10459i
\(780\) 137791. + 246015.i 0.226481 + 0.404364i
\(781\) 356373. 0.584255
\(782\) −149878. −0.245090
\(783\) −853704. 251145.i −1.39246 0.409638i
\(784\) −118516. −0.192816
\(785\) −614739. 290360.i −0.997588 0.471192i
\(786\) −105703. + 148385.i −0.171097 + 0.240185i
\(787\) 742100.i 1.19816i −0.800691 0.599078i \(-0.795534\pi\)
0.800691 0.599078i \(-0.204466\pi\)
\(788\) 328469. 0.528983
\(789\) 962504. + 685643.i 1.54614 + 1.10140i
\(790\) −66788.9 + 141403.i −0.107016 + 0.226570i
\(791\) 1.54834e6i 2.47465i
\(792\) 75188.3 25994.2i 0.119867 0.0414406i
\(793\) 118617.i 0.188625i
\(794\) 203076.i 0.322120i
\(795\) 641605. 359358.i 1.01516 0.568582i
\(796\) −312359. −0.492978
\(797\) −1.13919e6 −1.79341 −0.896704 0.442631i \(-0.854045\pi\)
−0.896704 + 0.442631i \(0.854045\pi\)
\(798\) −485046. + 680906.i −0.761688 + 1.06926i
\(799\) −16912.1 −0.0264914
\(800\) −71864.0 87381.8i −0.112287 0.136534i
\(801\) 359410. 124256.i 0.560178 0.193665i
\(802\) 585424.i 0.910169i
\(803\) −303333. −0.470423
\(804\) −150299. + 210990.i −0.232512 + 0.326400i
\(805\) 421332. + 199008.i 0.650178 + 0.307099i
\(806\) 789567.i 1.21540i
\(807\) 422933. 593712.i 0.649418 0.911651i
\(808\) 280573.i 0.429757i
\(809\) 1.01471e6i 1.55040i −0.631717 0.775199i \(-0.717650\pi\)
0.631717 0.775199i \(-0.282350\pi\)
\(810\) −103257. 452296.i −0.157379 0.689371i
\(811\) −850022. −1.29237 −0.646187 0.763179i \(-0.723637\pi\)
−0.646187 + 0.763179i \(0.723637\pi\)
\(812\) 636841. 0.965871
\(813\) 10325.8 + 7355.59i 0.0156222 + 0.0111285i
\(814\) 81402.2 0.122853
\(815\) 569322. + 268909.i 0.857122 + 0.404846i
\(816\) −86979.8 61960.4i −0.130629 0.0930537i
\(817\) 856799.i 1.28361i
\(818\) −300955. −0.449775
\(819\) −270378. 782068.i −0.403091 1.16594i
\(820\) 240710. + 113695.i 0.357986 + 0.169088i
\(821\) 376912.i 0.559183i 0.960119 + 0.279591i \(0.0901990\pi\)
−0.960119 + 0.279591i \(0.909801\pi\)
\(822\) 253149. + 180332.i 0.374656 + 0.266888i
\(823\) 517149.i 0.763512i 0.924263 + 0.381756i \(0.124681\pi\)
−0.924263 + 0.381756i \(0.875319\pi\)
\(824\) 85854.2i 0.126447i
\(825\) −243571. + 16904.1i −0.357864 + 0.0248362i
\(826\) −348897. −0.511372
\(827\) 894390. 1.30772 0.653861 0.756614i \(-0.273148\pi\)
0.653861 + 0.756614i \(0.273148\pi\)
\(828\) 60514.8 + 175039.i 0.0882675 + 0.255314i
\(829\) −485062. −0.705811 −0.352905 0.935659i \(-0.614806\pi\)
−0.352905 + 0.935659i \(0.614806\pi\)
\(830\) 13066.0 27662.9i 0.0189665 0.0401551i
\(831\) −184151. + 258510.i −0.266668 + 0.374348i
\(832\) 80206.3i 0.115868i
\(833\) 343331. 0.494792
\(834\) 82376.0 + 58680.9i 0.118432 + 0.0843654i
\(835\) −71978.1 + 152389.i −0.103235 + 0.218565i
\(836\) 174872.i 0.250212i
\(837\) −366628. + 1.24626e6i −0.523330 + 1.77893i
\(838\) 640400.i 0.911934i
\(839\) 1.15019e6i 1.63397i −0.576658 0.816986i \(-0.695643\pi\)
0.576658 0.816986i \(-0.304357\pi\)
\(840\) 162243. + 289672.i 0.229936 + 0.410533i
\(841\) −782789. −1.10676
\(842\) −622364. −0.877850
\(843\) −522322. + 733234.i −0.734993 + 1.03178i
\(844\) 225988. 0.317249
\(845\) −42931.6 + 90893.1i −0.0601262 + 0.127297i
\(846\) 6828.44 + 19751.3i 0.00954071 + 0.0275965i
\(847\) 831926.i 1.15963i
\(848\) −209177. −0.290885
\(849\) −5817.34 + 8166.37i −0.00807066 + 0.0113296i
\(850\) 208184. + 253138.i 0.288144 + 0.350364i
\(851\) 189505.i 0.261675i
\(852\) −342977. + 481469.i −0.472482 + 0.663269i
\(853\) 791788.i 1.08820i 0.839019 + 0.544102i \(0.183130\pi\)
−0.839019 + 0.544102i \(0.816870\pi\)
\(854\) 139666.i 0.191502i
\(855\) 1.01380e6 + 110339.i 1.38682 + 0.150937i
\(856\) 38236.9 0.0521838
\(857\) 1.35205e6 1.84090 0.920452 0.390857i \(-0.127821\pi\)
0.920452 + 0.390857i \(0.127821\pi\)
\(858\) −140978. 100426.i −0.191504 0.136418i
\(859\) 304256. 0.412338 0.206169 0.978516i \(-0.433900\pi\)
0.206169 + 0.978516i \(0.433900\pi\)
\(860\) −307677. 145326.i −0.416005 0.196492i
\(861\) −636287. 453261.i −0.858315 0.611424i
\(862\) 158927.i 0.213886i
\(863\) −797071. −1.07023 −0.535113 0.844780i \(-0.679731\pi\)
−0.535113 + 0.844780i \(0.679731\pi\)
\(864\) −37243.1 + 126599.i −0.0498905 + 0.169590i
\(865\) 37022.3 78382.1i 0.0494802 0.104757i
\(866\) 998695.i 1.33167i
\(867\) −360260. 256632.i −0.479267 0.341408i
\(868\) 929680.i 1.23394i
\(869\) 95995.2i 0.127119i
\(870\) −379614. 677770.i −0.501537 0.895455i
\(871\) 563623. 0.742938
\(872\) −15919.1 −0.0209357
\(873\) −300323. + 103828.i −0.394059 + 0.136235i
\(874\) −407103. −0.532944
\(875\) −249123. 988039.i −0.325385 1.29050i
\(876\) 291930. 409811.i 0.380427 0.534042i
\(877\) 1.04303e6i 1.35612i 0.735008 + 0.678058i \(0.237178\pi\)
−0.735008 + 0.678058i \(0.762822\pi\)
\(878\) 603.719 0.000783152
\(879\) 275582. + 196312.i 0.356675 + 0.254079i
\(880\) 62796.6 + 29660.8i 0.0810907 + 0.0383017i
\(881\) 1.38766e6i 1.78785i −0.448220 0.893923i \(-0.647942\pi\)
0.448220 0.893923i \(-0.352058\pi\)
\(882\) −138623. 400967.i −0.178196 0.515433i
\(883\) 594968.i 0.763083i −0.924352 0.381542i \(-0.875393\pi\)
0.924352 0.381542i \(-0.124607\pi\)
\(884\) 232351.i 0.297331i
\(885\) 207973. + 371319.i 0.265534 + 0.474090i
\(886\) −419766. −0.534736
\(887\) −736966. −0.936699 −0.468350 0.883543i \(-0.655151\pi\)
−0.468350 + 0.883543i \(0.655151\pi\)
\(888\) −78342.3 + 109977.i −0.0993506 + 0.139468i
\(889\) −1.70716e6 −2.16009
\(890\) 300177. + 141783.i 0.378963 + 0.178996i
\(891\) 175890. + 223976.i 0.221557 + 0.282128i
\(892\) 182626.i 0.229527i
\(893\) −45937.2 −0.0576052
\(894\) 283559. 398060.i 0.354788 0.498050i
\(895\) −303916. 143549.i −0.379409 0.179207i
\(896\) 94439.3i 0.117635i
\(897\) 233793. 328198.i 0.290568 0.407898i
\(898\) 329826.i 0.409008i
\(899\) 2.17525e6i 2.69147i
\(900\) 211577. 345340.i 0.261207 0.426346i
\(901\) 605969. 0.746451
\(902\) −163413. −0.200850
\(903\) 813308. + 579363.i 0.997423 + 0.710518i
\(904\) −537235. −0.657397
\(905\) −350865. + 742838.i −0.428394 + 0.906978i
\(906\) 600370. + 427676.i 0.731413 + 0.521025i
\(907\) 767638.i 0.933130i 0.884487 + 0.466565i \(0.154509\pi\)
−0.884487 + 0.466565i \(0.845491\pi\)
\(908\) 22277.8 0.0270210
\(909\) 949247. 328175.i 1.14882 0.397171i
\(910\) 308516. 653177.i 0.372559 0.788766i
\(911\) 450574.i 0.542911i −0.962451 0.271456i \(-0.912495\pi\)
0.962451 0.271456i \(-0.0875051\pi\)
\(912\) −236257. 168298.i −0.284050 0.202344i
\(913\) 18779.7i 0.0225293i
\(914\) 168065.i 0.201180i
\(915\) −148642. + 83253.1i −0.177541 + 0.0994394i
\(916\) −329994. −0.393292
\(917\) 466726. 0.555039
\(918\) 107890. 366747.i 0.128026 0.435192i
\(919\) 1.41858e6 1.67967 0.839835 0.542842i \(-0.182652\pi\)
0.839835 + 0.542842i \(0.182652\pi\)
\(920\) −69050.7 + 146191.i −0.0815816 + 0.172721i
\(921\) −521352. + 731872.i −0.614627 + 0.862811i
\(922\) 701573.i 0.825298i
\(923\) 1.28616e6 1.50971
\(924\) −165995. 118247.i −0.194425 0.138499i
\(925\) 320066. 263227.i 0.374073 0.307643i
\(926\) 192589.i 0.224600i
\(927\) 290466. 100420.i 0.338014 0.116859i
\(928\) 220967.i 0.256586i
\(929\) 260143.i 0.301426i 0.988578 + 0.150713i \(0.0481569\pi\)
−0.988578 + 0.150713i \(0.951843\pi\)
\(930\) −989429. + 554172.i −1.14398 + 0.640735i
\(931\) 932564. 1.07592
\(932\) −634485. −0.730448
\(933\) 976375. 1.37063e6i 1.12164 1.57455i
\(934\) 815361. 0.934666
\(935\) −181917. 85925.1i −0.208090 0.0982872i
\(936\) 271357. 93814.1i 0.309735 0.107082i
\(937\) 1.27182e6i 1.44860i −0.689486 0.724299i \(-0.742164\pi\)
0.689486 0.724299i \(-0.257836\pi\)
\(938\) 663641. 0.754271
\(939\) −627491. + 880870.i −0.711666 + 0.999034i
\(940\) −7791.62 + 16496.1i −0.00881804 + 0.0186692i
\(941\) 1.06149e6i 1.19877i −0.800461 0.599385i \(-0.795412\pi\)
0.800461 0.599385i \(-0.204588\pi\)
\(942\) −401646. + 563829.i −0.452628 + 0.635398i
\(943\) 380426.i 0.427806i
\(944\) 121058.i 0.135847i
\(945\) −790262. + 887726.i −0.884927 + 0.994067i
\(946\) 208876. 0.233402
\(947\) 213920. 0.238535 0.119267 0.992862i \(-0.461945\pi\)
0.119267 + 0.992862i \(0.461945\pi\)
\(948\) 129692. + 92386.8i 0.144310 + 0.102800i
\(949\) −1.09474e6 −1.21557
\(950\) 565476. + 687581.i 0.626566 + 0.761862i
\(951\) −42917.7 30572.6i −0.0474543 0.0338043i
\(952\) 273583.i 0.301867i
\(953\) −1.50019e6 −1.65182 −0.825908 0.563804i \(-0.809337\pi\)
−0.825908 + 0.563804i \(0.809337\pi\)
\(954\) −244666. 707697.i −0.268829 0.777589i
\(955\) −182425. 86165.1i −0.200022 0.0944767i
\(956\) 257768.i 0.282041i
\(957\) 388393. + 276673.i 0.424080 + 0.302095i
\(958\) 34229.6i 0.0372967i
\(959\) 796247.i 0.865786i
\(960\) −100509. + 56294.2i −0.109059 + 0.0610831i
\(961\) 2.25197e6 2.43847
\(962\) 293784. 0.317452
\(963\) 44724.2 + 129365.i 0.0482270 + 0.139497i
\(964\) −622323. −0.669672
\(965\) −279844. 132179.i −0.300512 0.141941i
\(966\) 275281. 386439.i 0.295000 0.414120i
\(967\) 821125.i 0.878125i 0.898457 + 0.439062i \(0.144689\pi\)
−0.898457 + 0.439062i \(0.855311\pi\)
\(968\) 288657. 0.308057
\(969\) 684418. + 487548.i 0.728910 + 0.519242i
\(970\) −250828. 118474.i −0.266583 0.125915i
\(971\) 190589.i 0.202144i 0.994879 + 0.101072i \(0.0322272\pi\)
−0.994879 + 0.101072i \(0.967773\pi\)
\(972\) −471876. + 22075.0i −0.499454 + 0.0233652i
\(973\) 259103.i 0.273682i
\(974\) 468215.i 0.493545i
\(975\) −879058. + 61007.7i −0.924716 + 0.0641764i
\(976\) 48460.4 0.0508730
\(977\) −1.03085e6 −1.07996 −0.539978 0.841679i \(-0.681567\pi\)
−0.539978 + 0.841679i \(0.681567\pi\)
\(978\) 371972. 522173.i 0.388895 0.545930i
\(979\) −203784. −0.212620
\(980\) 158176. 334885.i 0.164698 0.348693i
\(981\) −18620.0 53858.3i −0.0193482 0.0559648i
\(982\) 885663.i 0.918429i
\(983\) −314101. −0.325059 −0.162529 0.986704i \(-0.551965\pi\)
−0.162529 + 0.986704i \(0.551965\pi\)
\(984\) 157270. 220775.i 0.162426 0.228013i
\(985\) −438390. + 928141.i −0.451843 + 0.956624i
\(986\) 640126.i 0.658433i
\(987\) 31062.5 43605.4i 0.0318861 0.0447617i
\(988\) 631119.i 0.646543i
\(989\) 486264.i 0.497141i
\(990\) −26899.0 + 247150.i −0.0274452 + 0.252168i
\(991\) −1.07730e6 −1.09695 −0.548476 0.836166i \(-0.684792\pi\)
−0.548476 + 0.836166i \(0.684792\pi\)
\(992\) 322575. 0.327799
\(993\) −229022. 163145.i −0.232263 0.165453i
\(994\) 1.51440e6 1.53274
\(995\) 416889. 882620.i 0.421089 0.891512i
\(996\) −25372.0 18073.8i −0.0255762 0.0182193i
\(997\) 146638.i 0.147522i 0.997276 + 0.0737608i \(0.0235001\pi\)
−0.997276 + 0.0737608i \(0.976500\pi\)
\(998\) 443261. 0.445039
\(999\) −463712. 136416.i −0.464641 0.136689i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.5.b.a.29.8 yes 8
3.2 odd 2 inner 30.5.b.a.29.2 yes 8
4.3 odd 2 240.5.c.d.209.1 8
5.2 odd 4 150.5.d.e.101.7 8
5.3 odd 4 150.5.d.e.101.2 8
5.4 even 2 inner 30.5.b.a.29.1 8
12.11 even 2 240.5.c.d.209.7 8
15.2 even 4 150.5.d.e.101.3 8
15.8 even 4 150.5.d.e.101.6 8
15.14 odd 2 inner 30.5.b.a.29.7 yes 8
20.19 odd 2 240.5.c.d.209.8 8
60.59 even 2 240.5.c.d.209.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.5.b.a.29.1 8 5.4 even 2 inner
30.5.b.a.29.2 yes 8 3.2 odd 2 inner
30.5.b.a.29.7 yes 8 15.14 odd 2 inner
30.5.b.a.29.8 yes 8 1.1 even 1 trivial
150.5.d.e.101.2 8 5.3 odd 4
150.5.d.e.101.3 8 15.2 even 4
150.5.d.e.101.6 8 15.8 even 4
150.5.d.e.101.7 8 5.2 odd 4
240.5.c.d.209.1 8 4.3 odd 2
240.5.c.d.209.2 8 60.59 even 2
240.5.c.d.209.7 8 12.11 even 2
240.5.c.d.209.8 8 20.19 odd 2