Properties

Label 30.14.c.a
Level $30$
Weight $14$
Character orbit 30.c
Analytic conductor $32.169$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [30,14,Mod(19,30)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(30, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 14, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("30.19"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 30.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.1692786856\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 366974x^{4} + 33667479169x^{2} + 601699608148356 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 64 \beta_1 q^{2} - 729 \beta_1 q^{3} - 4096 q^{4} + ( - 2 \beta_{5} + \beta_{4} + \cdots + 9322) q^{5} - 46656 q^{6} + (9 \beta_{5} - 3 \beta_{4} + 14 \beta_{3} + \cdots + 3) q^{7} + 262144 \beta_1 q^{8}+ \cdots + ( - 52612659 \beta_{5} + \cdots + 398716267455) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24576 q^{4} + 55930 q^{5} - 279936 q^{6} - 3188646 q^{9} + 2384640 q^{10} - 4500760 q^{11} + 35695616 q^{14} + 27162540 q^{15} + 100663296 q^{16} + 177283344 q^{19} - 229089280 q^{20} + 406595376 q^{21}+ \cdots + 2391888395160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 366974x^{4} + 33667479169x^{2} + 601699608148356 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 183487\nu ) / 24529566 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 377\nu^{4} - 305807\nu^{3} - 93704165\nu^{2} - 13196483458\nu - 3000456513120 ) / 343413924 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 377\nu^{4} - 305807\nu^{3} + 93704165\nu^{2} - 13196483458\nu + 3000456513120 ) / 343413924 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} - 625\nu^{4} - 305821\nu^{3} - 237327205\nu^{2} - 23501469996\nu - 15002625979524 ) / 686827848 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{5} + 43\nu^{4} + 1529049\nu^{3} - 16639625\nu^{2} + 96892239268\nu - 3000799927044 ) / 686827848 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 6\beta_{5} - 2\beta_{4} + 7\beta_{3} + 9\beta_{2} - 4\beta _1 + 2 ) / 300 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -754\beta_{5} - 2262\beta_{4} - 1293\beta_{3} + 539\beta_{2} - 754\beta _1 - 36697508 ) / 300 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -1100922\beta_{5} + 366974\beta_{4} - 1284409\beta_{3} - 1651383\beta_{2} + 7359603748\beta _1 - 366974 ) / 300 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 37481666 \beta_{5} + 112444998 \beta_{4} + 91602957 \beta_{3} - 54121291 \beta_{2} + \cdots + 1346722753732 ) / 60 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 257490753306 \beta_{5} - 85830251102 \beta_{4} + 248893790257 \beta_{3} + 334724041359 \beta_{2} + \cdots + 85830251102 ) / 300 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/30\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
330.585i
153.333i
483.918i
330.585i
153.333i
483.918i
64.0000i 729.000i −4096.00 −15564.3 + 31280.3i −46656.0 297517.i 262144.i −531441. 2.00194e6 + 996118.i
19.2 64.0000i 729.000i −4096.00 14344.4 31858.1i −46656.0 141453.i 262144.i −531441. −2.03892e6 918042.i
19.3 64.0000i 729.000i −4096.00 29184.9 + 19207.9i −46656.0 160098.i 262144.i −531441. 1.22930e6 1.86784e6i
19.4 64.0000i 729.000i −4096.00 −15564.3 31280.3i −46656.0 297517.i 262144.i −531441. 2.00194e6 996118.i
19.5 64.0000i 729.000i −4096.00 14344.4 + 31858.1i −46656.0 141453.i 262144.i −531441. −2.03892e6 + 918042.i
19.6 64.0000i 729.000i −4096.00 29184.9 19207.9i −46656.0 160098.i 262144.i −531441. 1.22930e6 + 1.86784e6i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.14.c.a 6
3.b odd 2 1 90.14.c.a 6
5.b even 2 1 inner 30.14.c.a 6
5.c odd 4 1 150.14.a.r 3
5.c odd 4 1 150.14.a.s 3
15.d odd 2 1 90.14.c.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.14.c.a 6 1.a even 1 1 trivial
30.14.c.a 6 5.b even 2 1 inner
90.14.c.a 6 3.b odd 2 1
90.14.c.a 6 15.d odd 2 1
150.14.a.r 3 5.c odd 4 1
150.14.a.s 3 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} + 134156846328T_{7}^{4} + 4552793367422436250128T_{7}^{2} + 45396625856112668562548436818176 \) acting on \(S_{14}^{\mathrm{new}}(30, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4096)^{3} \) Copy content Toggle raw display
$3$ \( (T^{2} + 531441)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 18\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 45\!\cdots\!76 \) Copy content Toggle raw display
$11$ \( (T^{3} + \cdots + 18\!\cdots\!00)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 31\!\cdots\!56 \) Copy content Toggle raw display
$19$ \( (T^{3} + \cdots + 61\!\cdots\!76)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 76\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots + 19\!\cdots\!84)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + \cdots + 44\!\cdots\!68)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 26\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots + 34\!\cdots\!96)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 37\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( (T^{3} + \cdots + 47\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots - 22\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 78\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots + 49\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 26\!\cdots\!04 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 22\!\cdots\!08)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 97\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( (T^{3} + \cdots + 63\!\cdots\!52)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 34\!\cdots\!44 \) Copy content Toggle raw display
show more
show less