Properties

Label 3.38.a
Level $3$
Weight $38$
Character orbit 3.a
Rep. character $\chi_{3}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3 \)
Weight: \( k \) \(=\) \( 38 \)
Character orbit: \([\chi]\) \(=\) 3.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{38}(\Gamma_0(3))\).

Total New Old
Modular forms 13 7 6
Cusp forms 11 7 4
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(6\)\(3\)\(3\)\(5\)\(3\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(7\)\(4\)\(3\)\(6\)\(4\)\(2\)\(1\)\(0\)\(1\)

Trace form

\( 7 q + 126654 q^{2} + 387420489 q^{3} + 684575556340 q^{4} - 13728547643694 q^{5} + 289972613401830 q^{6} + 19\!\cdots\!40 q^{7} + 47\!\cdots\!88 q^{8} + 10\!\cdots\!47 q^{9} + 10\!\cdots\!64 q^{10} + 43\!\cdots\!96 q^{11}+ \cdots + 65\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{38}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
3.38.a.a 3.a 1.a $3$ $26.014$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 3.38.a.a \(-310908\) \(-1162261467\) \(-96\!\cdots\!90\) \(-46\!\cdots\!44\) $+$ $\mathrm{SU}(2)$ \(q+(-103636-\beta _{1})q^{2}-3^{18}q^{3}+(112825533616+\cdots)q^{4}+\cdots\)
3.38.a.b 3.a 1.a $4$ $26.014$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 3.38.a.b \(437562\) \(1549681956\) \(-40\!\cdots\!04\) \(66\!\cdots\!84\) $-$ $\mathrm{SU}(2)$ \(q+(109391-\beta _{1})q^{2}+3^{18}q^{3}+(86524834843+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{38}^{\mathrm{old}}(\Gamma_0(3))\) into lower level spaces

\( S_{38}^{\mathrm{old}}(\Gamma_0(3)) \simeq \) \(S_{38}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)