Defining parameters
| Level: | \( N \) | \(=\) | \( 3 \) |
| Weight: | \( k \) | \(=\) | \( 38 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(12\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{38}(\Gamma_0(3))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 13 | 7 | 6 |
| Cusp forms | 11 | 7 | 4 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(6\) | \(3\) | \(3\) | \(5\) | \(3\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(7\) | \(4\) | \(3\) | \(6\) | \(4\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{38}^{\mathrm{new}}(\Gamma_0(3))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
| 3.38.a.a | $3$ | $26.014$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-310908\) | \(-1162261467\) | \(-96\!\cdots\!90\) | \(-46\!\cdots\!44\) | $+$ | \(q+(-103636-\beta _{1})q^{2}-3^{18}q^{3}+(112825533616+\cdots)q^{4}+\cdots\) | |
| 3.38.a.b | $4$ | $26.014$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(437562\) | \(1549681956\) | \(-40\!\cdots\!04\) | \(66\!\cdots\!84\) | $-$ | \(q+(109391-\beta _{1})q^{2}+3^{18}q^{3}+(86524834843+\cdots)q^{4}+\cdots\) | |
Decomposition of \(S_{38}^{\mathrm{old}}(\Gamma_0(3))\) into lower level spaces
\( S_{38}^{\mathrm{old}}(\Gamma_0(3)) \simeq \) \(S_{38}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)