Properties

Label 3.38
Level 3
Weight 38
Dimension 7
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 25
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 3 \)
Weight: \( k \) = \( 38 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(25\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{38}(\Gamma_1(3))\).

Total New Old
Modular forms 13 7 6
Cusp forms 11 7 4
Eisenstein series 2 0 2

Trace form

\( 7 q + 126654 q^{2} + 387420489 q^{3} + 684575556340 q^{4} - 13728547643694 q^{5} + 289972613401830 q^{6} + 19\!\cdots\!40 q^{7} + 47\!\cdots\!88 q^{8} + 10\!\cdots\!47 q^{9} + 10\!\cdots\!64 q^{10} + 43\!\cdots\!96 q^{11}+ \cdots + 65\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{38}^{\mathrm{new}}(\Gamma_1(3))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
3.38.a \(\chi_{3}(1, \cdot)\) 3.38.a.a 3 1
3.38.a.b 4

Decomposition of \(S_{38}^{\mathrm{old}}(\Gamma_1(3))\) into lower level spaces

\( S_{38}^{\mathrm{old}}(\Gamma_1(3)) \cong \) \(S_{38}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)