Properties

Label 2997.1.v.a
Level $2997$
Weight $1$
Character orbit 2997.v
Analytic conductor $1.496$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2997,1,Mod(1565,2997)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2997.1565"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2997, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2997 = 3^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2997.v (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49569784286\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 111)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.624095613.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{4} - \zeta_{6} q^{7} + (\zeta_{6}^{2} + \zeta_{6}) q^{13} + q^{16} - q^{25} + \zeta_{6} q^{28} + ( - \zeta_{6}^{2} + 1) q^{31} + q^{37} + (\zeta_{6} + 1) q^{43} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{52} + \cdots + (\zeta_{6} + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - q^{7} + 2 q^{16} - 2 q^{25} + q^{28} + 3 q^{31} + 2 q^{37} + 3 q^{43} - 2 q^{64} + 2 q^{67} + 2 q^{73} + 3 q^{79} + 3 q^{91} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2997\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1703\)
\(\chi(n)\) \(-\zeta_{6}^{2}\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1565.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 −1.00000 0 0 −0.500000 0.866025i 0 0 0
2321.1 0 0 −1.00000 0 0 −0.500000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
333.k even 6 1 inner
333.v odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2997.1.v.a 2
3.b odd 2 1 CM 2997.1.v.a 2
9.c even 3 1 111.1.h.a 2
9.c even 3 1 2997.1.o.a 2
9.d odd 6 1 111.1.h.a 2
9.d odd 6 1 2997.1.o.a 2
36.f odd 6 1 1776.1.bq.a 2
36.h even 6 1 1776.1.bq.a 2
37.e even 6 1 2997.1.o.a 2
45.h odd 6 1 2775.1.w.a 2
45.j even 6 1 2775.1.w.a 2
45.k odd 12 2 2775.1.bb.a 4
45.l even 12 2 2775.1.bb.a 4
111.h odd 6 1 2997.1.o.a 2
333.k even 6 1 inner 2997.1.v.a 2
333.o odd 6 1 111.1.h.a 2
333.t even 6 1 111.1.h.a 2
333.v odd 6 1 inner 2997.1.v.a 2
1332.u even 6 1 1776.1.bq.a 2
1332.be odd 6 1 1776.1.bq.a 2
1665.bc even 6 1 2775.1.w.a 2
1665.bm odd 6 1 2775.1.w.a 2
1665.db odd 12 2 2775.1.bb.a 4
1665.dh even 12 2 2775.1.bb.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
111.1.h.a 2 9.c even 3 1
111.1.h.a 2 9.d odd 6 1
111.1.h.a 2 333.o odd 6 1
111.1.h.a 2 333.t even 6 1
1776.1.bq.a 2 36.f odd 6 1
1776.1.bq.a 2 36.h even 6 1
1776.1.bq.a 2 1332.u even 6 1
1776.1.bq.a 2 1332.be odd 6 1
2775.1.w.a 2 45.h odd 6 1
2775.1.w.a 2 45.j even 6 1
2775.1.w.a 2 1665.bc even 6 1
2775.1.w.a 2 1665.bm odd 6 1
2775.1.bb.a 4 45.k odd 12 2
2775.1.bb.a 4 45.l even 12 2
2775.1.bb.a 4 1665.db odd 12 2
2775.1.bb.a 4 1665.dh even 12 2
2997.1.o.a 2 9.c even 3 1
2997.1.o.a 2 9.d odd 6 1
2997.1.o.a 2 37.e even 6 1
2997.1.o.a 2 111.h odd 6 1
2997.1.v.a 2 1.a even 1 1 trivial
2997.1.v.a 2 3.b odd 2 1 CM
2997.1.v.a 2 333.k even 6 1 inner
2997.1.v.a 2 333.v odd 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(2997, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 3 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( (T - 1)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
show more
show less