Properties

Label 2970.2.t.b.2771.24
Level $2970$
Weight $2$
Character 2970.2771
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2771.24
Character \(\chi\) \(=\) 2970.2771
Dual form 2970.2.t.b.791.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(-3.18423 + 1.83842i) q^{7} -1.00000 q^{8} +1.00000i q^{10} +(-0.851809 - 3.20537i) q^{11} +(1.88953 + 1.09092i) q^{13} +(-3.18423 - 1.83842i) q^{14} +(-0.500000 - 0.866025i) q^{16} -1.68359 q^{17} -7.86116i q^{19} +(-0.866025 + 0.500000i) q^{20} +(2.35003 - 2.34038i) q^{22} +(4.34269 + 2.50725i) q^{23} +(0.500000 + 0.866025i) q^{25} +2.18184i q^{26} -3.67683i q^{28} +(-3.65719 - 6.33444i) q^{29} +(2.78313 - 4.82052i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.841796 - 1.45803i) q^{34} -3.67683 q^{35} -9.84289 q^{37} +(6.80796 - 3.93058i) q^{38} +(-0.866025 - 0.500000i) q^{40} +(2.91945 - 5.05664i) q^{41} +(-2.89355 + 1.67059i) q^{43} +(3.20184 + 0.864999i) q^{44} +5.01450i q^{46} +(-4.46479 + 2.57775i) q^{47} +(3.25955 - 5.64570i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(-1.88953 + 1.09092i) q^{52} +4.66886i q^{53} +(0.864999 - 3.20184i) q^{55} +(3.18423 - 1.83842i) q^{56} +(3.65719 - 6.33444i) q^{58} +(12.1117 + 6.99268i) q^{59} +(7.93110 - 4.57903i) q^{61} +5.56625 q^{62} +1.00000 q^{64} +(1.09092 + 1.88953i) q^{65} +(6.87891 - 11.9146i) q^{67} +(0.841796 - 1.45803i) q^{68} +(-1.83842 - 3.18423i) q^{70} -7.93786i q^{71} +4.80281i q^{73} +(-4.92145 - 8.52419i) q^{74} +(6.80796 + 3.93058i) q^{76} +(8.60517 + 8.64067i) q^{77} +(12.4035 - 7.16118i) q^{79} -1.00000i q^{80} +5.83891 q^{82} +(2.79143 + 4.83489i) q^{83} +(-1.45803 - 0.841796i) q^{85} +(-2.89355 - 1.67059i) q^{86} +(0.851809 + 3.20537i) q^{88} +12.9841i q^{89} -8.02226 q^{91} +(-4.34269 + 2.50725i) q^{92} +(-4.46479 - 2.57775i) q^{94} +(3.93058 - 6.80796i) q^{95} +(-7.38202 - 12.7860i) q^{97} +6.51910 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{2} - 24 q^{4} - 48 q^{8} + 6 q^{11} + 24 q^{13} - 24 q^{16} + 12 q^{17} + 12 q^{22} - 36 q^{23} + 24 q^{25} + 24 q^{32} + 6 q^{34} + 6 q^{38} + 6 q^{41} + 30 q^{43} + 6 q^{44} + 24 q^{49} - 24 q^{50}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) 0 0
\(7\) −3.18423 + 1.83842i −1.20353 + 0.694856i −0.961337 0.275373i \(-0.911199\pi\)
−0.242188 + 0.970229i \(0.577865\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −0.851809 3.20537i −0.256830 0.966457i
\(12\) 0 0
\(13\) 1.88953 + 1.09092i 0.524061 + 0.302567i 0.738595 0.674150i \(-0.235490\pi\)
−0.214534 + 0.976717i \(0.568823\pi\)
\(14\) −3.18423 1.83842i −0.851021 0.491337i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.68359 −0.408331 −0.204166 0.978936i \(-0.565448\pi\)
−0.204166 + 0.978936i \(0.565448\pi\)
\(18\) 0 0
\(19\) 7.86116i 1.80347i −0.432285 0.901737i \(-0.642293\pi\)
0.432285 0.901737i \(-0.357707\pi\)
\(20\) −0.866025 + 0.500000i −0.193649 + 0.111803i
\(21\) 0 0
\(22\) 2.35003 2.34038i 0.501028 0.498970i
\(23\) 4.34269 + 2.50725i 0.905513 + 0.522798i 0.878985 0.476850i \(-0.158222\pi\)
0.0265280 + 0.999648i \(0.491555\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 2.18184i 0.427894i
\(27\) 0 0
\(28\) 3.67683i 0.694856i
\(29\) −3.65719 6.33444i −0.679124 1.17628i −0.975245 0.221126i \(-0.929027\pi\)
0.296122 0.955150i \(-0.404307\pi\)
\(30\) 0 0
\(31\) 2.78313 4.82052i 0.499864 0.865790i −0.500136 0.865947i \(-0.666717\pi\)
1.00000 0.000156599i \(4.98469e-5\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −0.841796 1.45803i −0.144367 0.250051i
\(35\) −3.67683 −0.621498
\(36\) 0 0
\(37\) −9.84289 −1.61816 −0.809081 0.587698i \(-0.800034\pi\)
−0.809081 + 0.587698i \(0.800034\pi\)
\(38\) 6.80796 3.93058i 1.10440 0.637624i
\(39\) 0 0
\(40\) −0.866025 0.500000i −0.136931 0.0790569i
\(41\) 2.91945 5.05664i 0.455942 0.789715i −0.542800 0.839862i \(-0.682636\pi\)
0.998742 + 0.0501472i \(0.0159691\pi\)
\(42\) 0 0
\(43\) −2.89355 + 1.67059i −0.441262 + 0.254763i −0.704133 0.710068i \(-0.748664\pi\)
0.262871 + 0.964831i \(0.415331\pi\)
\(44\) 3.20184 + 0.864999i 0.482695 + 0.130403i
\(45\) 0 0
\(46\) 5.01450i 0.739348i
\(47\) −4.46479 + 2.57775i −0.651256 + 0.376003i −0.788937 0.614474i \(-0.789368\pi\)
0.137681 + 0.990477i \(0.456035\pi\)
\(48\) 0 0
\(49\) 3.25955 5.64570i 0.465650 0.806529i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −1.88953 + 1.09092i −0.262030 + 0.151283i
\(53\) 4.66886i 0.641317i 0.947195 + 0.320658i \(0.103904\pi\)
−0.947195 + 0.320658i \(0.896096\pi\)
\(54\) 0 0
\(55\) 0.864999 3.20184i 0.116636 0.431736i
\(56\) 3.18423 1.83842i 0.425511 0.245669i
\(57\) 0 0
\(58\) 3.65719 6.33444i 0.480213 0.831753i
\(59\) 12.1117 + 6.99268i 1.57681 + 0.910370i 0.995301 + 0.0968274i \(0.0308695\pi\)
0.581506 + 0.813542i \(0.302464\pi\)
\(60\) 0 0
\(61\) 7.93110 4.57903i 1.01547 0.586284i 0.102684 0.994714i \(-0.467257\pi\)
0.912790 + 0.408430i \(0.133924\pi\)
\(62\) 5.56625 0.706915
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.09092 + 1.88953i 0.135312 + 0.234367i
\(66\) 0 0
\(67\) 6.87891 11.9146i 0.840393 1.45560i −0.0491705 0.998790i \(-0.515658\pi\)
0.889563 0.456812i \(-0.151009\pi\)
\(68\) 0.841796 1.45803i 0.102083 0.176813i
\(69\) 0 0
\(70\) −1.83842 3.18423i −0.219733 0.380588i
\(71\) 7.93786i 0.942050i −0.882120 0.471025i \(-0.843884\pi\)
0.882120 0.471025i \(-0.156116\pi\)
\(72\) 0 0
\(73\) 4.80281i 0.562127i 0.959689 + 0.281063i \(0.0906871\pi\)
−0.959689 + 0.281063i \(0.909313\pi\)
\(74\) −4.92145 8.52419i −0.572106 0.990917i
\(75\) 0 0
\(76\) 6.80796 + 3.93058i 0.780927 + 0.450868i
\(77\) 8.60517 + 8.64067i 0.980650 + 0.984696i
\(78\) 0 0
\(79\) 12.4035 7.16118i 1.39551 0.805695i 0.401588 0.915821i \(-0.368459\pi\)
0.993918 + 0.110125i \(0.0351252\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) 5.83891 0.644800
\(83\) 2.79143 + 4.83489i 0.306399 + 0.530698i 0.977572 0.210602i \(-0.0675426\pi\)
−0.671173 + 0.741301i \(0.734209\pi\)
\(84\) 0 0
\(85\) −1.45803 0.841796i −0.158146 0.0913056i
\(86\) −2.89355 1.67059i −0.312019 0.180144i
\(87\) 0 0
\(88\) 0.851809 + 3.20537i 0.0908031 + 0.341694i
\(89\) 12.9841i 1.37631i 0.725565 + 0.688153i \(0.241578\pi\)
−0.725565 + 0.688153i \(0.758422\pi\)
\(90\) 0 0
\(91\) −8.02226 −0.840961
\(92\) −4.34269 + 2.50725i −0.452756 + 0.261399i
\(93\) 0 0
\(94\) −4.46479 2.57775i −0.460508 0.265874i
\(95\) 3.93058 6.80796i 0.403269 0.698482i
\(96\) 0 0
\(97\) −7.38202 12.7860i −0.749531 1.29823i −0.948048 0.318128i \(-0.896946\pi\)
0.198517 0.980097i \(-0.436388\pi\)
\(98\) 6.51910 0.658528
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −0.670430 1.16122i −0.0667103 0.115546i 0.830741 0.556659i \(-0.187917\pi\)
−0.897451 + 0.441113i \(0.854584\pi\)
\(102\) 0 0
\(103\) −0.170406 + 0.295152i −0.0167906 + 0.0290822i −0.874299 0.485388i \(-0.838678\pi\)
0.857508 + 0.514471i \(0.172012\pi\)
\(104\) −1.88953 1.09092i −0.185283 0.106973i
\(105\) 0 0
\(106\) −4.04335 + 2.33443i −0.392725 + 0.226740i
\(107\) 6.18150 0.597588 0.298794 0.954318i \(-0.403416\pi\)
0.298794 + 0.954318i \(0.403416\pi\)
\(108\) 0 0
\(109\) 6.26500i 0.600078i −0.953927 0.300039i \(-0.903000\pi\)
0.953927 0.300039i \(-0.0969997\pi\)
\(110\) 3.20537 0.851809i 0.305620 0.0812168i
\(111\) 0 0
\(112\) 3.18423 + 1.83842i 0.300881 + 0.173714i
\(113\) −1.73318 1.00065i −0.163044 0.0941336i 0.416258 0.909247i \(-0.363341\pi\)
−0.579302 + 0.815113i \(0.696675\pi\)
\(114\) 0 0
\(115\) 2.50725 + 4.34269i 0.233802 + 0.404958i
\(116\) 7.31439 0.679124
\(117\) 0 0
\(118\) 13.9854i 1.28746i
\(119\) 5.36094 3.09514i 0.491437 0.283731i
\(120\) 0 0
\(121\) −9.54884 + 5.46073i −0.868077 + 0.496430i
\(122\) 7.93110 + 4.57903i 0.718048 + 0.414565i
\(123\) 0 0
\(124\) 2.78313 + 4.82052i 0.249932 + 0.432895i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 16.4881i 1.46308i −0.681797 0.731541i \(-0.738801\pi\)
0.681797 0.731541i \(-0.261199\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.09092 + 1.88953i −0.0956800 + 0.165723i
\(131\) −2.63052 + 4.55620i −0.229830 + 0.398077i −0.957758 0.287577i \(-0.907150\pi\)
0.727928 + 0.685654i \(0.240484\pi\)
\(132\) 0 0
\(133\) 14.4521 + 25.0317i 1.25315 + 2.17053i
\(134\) 13.7578 1.18849
\(135\) 0 0
\(136\) 1.68359 0.144367
\(137\) −1.72788 + 0.997591i −0.147623 + 0.0852300i −0.571992 0.820259i \(-0.693829\pi\)
0.424369 + 0.905489i \(0.360496\pi\)
\(138\) 0 0
\(139\) −13.3236 7.69241i −1.13010 0.652462i −0.186137 0.982524i \(-0.559597\pi\)
−0.943959 + 0.330062i \(0.892930\pi\)
\(140\) 1.83842 3.18423i 0.155375 0.269117i
\(141\) 0 0
\(142\) 6.87439 3.96893i 0.576886 0.333065i
\(143\) 1.88729 6.98590i 0.157823 0.584190i
\(144\) 0 0
\(145\) 7.31439i 0.607427i
\(146\) −4.15936 + 2.40141i −0.344231 + 0.198742i
\(147\) 0 0
\(148\) 4.92145 8.52419i 0.404540 0.700684i
\(149\) −10.8574 + 18.8056i −0.889476 + 1.54062i −0.0489799 + 0.998800i \(0.515597\pi\)
−0.840496 + 0.541818i \(0.817736\pi\)
\(150\) 0 0
\(151\) 0.961201 0.554950i 0.0782214 0.0451612i −0.460379 0.887722i \(-0.652287\pi\)
0.538601 + 0.842561i \(0.318953\pi\)
\(152\) 7.86116i 0.637624i
\(153\) 0 0
\(154\) −3.18046 + 11.7726i −0.256288 + 0.948665i
\(155\) 4.82052 2.78313i 0.387193 0.223546i
\(156\) 0 0
\(157\) 11.6455 20.1706i 0.929411 1.60979i 0.145102 0.989417i \(-0.453649\pi\)
0.784309 0.620371i \(-0.213018\pi\)
\(158\) 12.4035 + 7.16118i 0.986771 + 0.569713i
\(159\) 0 0
\(160\) 0.866025 0.500000i 0.0684653 0.0395285i
\(161\) −18.4375 −1.45308
\(162\) 0 0
\(163\) 8.91357 0.698165 0.349082 0.937092i \(-0.386493\pi\)
0.349082 + 0.937092i \(0.386493\pi\)
\(164\) 2.91945 + 5.05664i 0.227971 + 0.394857i
\(165\) 0 0
\(166\) −2.79143 + 4.83489i −0.216657 + 0.375260i
\(167\) 5.12001 8.86811i 0.396198 0.686235i −0.597055 0.802200i \(-0.703663\pi\)
0.993253 + 0.115965i \(0.0369961\pi\)
\(168\) 0 0
\(169\) −4.11979 7.13568i −0.316907 0.548899i
\(170\) 1.68359i 0.129126i
\(171\) 0 0
\(172\) 3.34118i 0.254763i
\(173\) −6.65243 11.5223i −0.505775 0.876027i −0.999978 0.00668085i \(-0.997873\pi\)
0.494203 0.869346i \(-0.335460\pi\)
\(174\) 0 0
\(175\) −3.18423 1.83842i −0.240705 0.138971i
\(176\) −2.35003 + 2.34038i −0.177140 + 0.176412i
\(177\) 0 0
\(178\) −11.2445 + 6.49203i −0.842812 + 0.486598i
\(179\) 21.7749i 1.62753i −0.581194 0.813765i \(-0.697414\pi\)
0.581194 0.813765i \(-0.302586\pi\)
\(180\) 0 0
\(181\) 17.9379 1.33331 0.666655 0.745366i \(-0.267725\pi\)
0.666655 + 0.745366i \(0.267725\pi\)
\(182\) −4.01113 6.94748i −0.297325 0.514981i
\(183\) 0 0
\(184\) −4.34269 2.50725i −0.320147 0.184837i
\(185\) −8.52419 4.92145i −0.626711 0.361832i
\(186\) 0 0
\(187\) 1.43410 + 5.39654i 0.104872 + 0.394634i
\(188\) 5.15549i 0.376003i
\(189\) 0 0
\(190\) 7.86116 0.570309
\(191\) 4.55854 2.63187i 0.329844 0.190436i −0.325928 0.945395i \(-0.605677\pi\)
0.655772 + 0.754959i \(0.272343\pi\)
\(192\) 0 0
\(193\) −2.26126 1.30554i −0.162769 0.0939748i 0.416403 0.909180i \(-0.363291\pi\)
−0.579172 + 0.815205i \(0.696624\pi\)
\(194\) 7.38202 12.7860i 0.529998 0.917984i
\(195\) 0 0
\(196\) 3.25955 + 5.64570i 0.232825 + 0.403264i
\(197\) −12.7694 −0.909780 −0.454890 0.890548i \(-0.650321\pi\)
−0.454890 + 0.890548i \(0.650321\pi\)
\(198\) 0 0
\(199\) −2.16043 −0.153149 −0.0765744 0.997064i \(-0.524398\pi\)
−0.0765744 + 0.997064i \(0.524398\pi\)
\(200\) −0.500000 0.866025i −0.0353553 0.0612372i
\(201\) 0 0
\(202\) 0.670430 1.16122i 0.0471713 0.0817031i
\(203\) 23.2907 + 13.4469i 1.63469 + 0.943786i
\(204\) 0 0
\(205\) 5.05664 2.91945i 0.353171 0.203904i
\(206\) −0.340812 −0.0237455
\(207\) 0 0
\(208\) 2.18184i 0.151283i
\(209\) −25.1980 + 6.69621i −1.74298 + 0.463186i
\(210\) 0 0
\(211\) 2.37810 + 1.37300i 0.163715 + 0.0945209i 0.579619 0.814888i \(-0.303201\pi\)
−0.415904 + 0.909409i \(0.636535\pi\)
\(212\) −4.04335 2.33443i −0.277698 0.160329i
\(213\) 0 0
\(214\) 3.09075 + 5.35334i 0.211279 + 0.365947i
\(215\) −3.34118 −0.227867
\(216\) 0 0
\(217\) 20.4662i 1.38933i
\(218\) 5.42565 3.13250i 0.367471 0.212160i
\(219\) 0 0
\(220\) 2.34038 + 2.35003i 0.157788 + 0.158439i
\(221\) −3.18119 1.83666i −0.213990 0.123547i
\(222\) 0 0
\(223\) 8.12070 + 14.0655i 0.543802 + 0.941893i 0.998681 + 0.0513397i \(0.0163491\pi\)
−0.454879 + 0.890553i \(0.650318\pi\)
\(224\) 3.67683i 0.245669i
\(225\) 0 0
\(226\) 2.00131i 0.133125i
\(227\) 0.0573427 + 0.0993205i 0.00380597 + 0.00659213i 0.867922 0.496700i \(-0.165455\pi\)
−0.864116 + 0.503292i \(0.832122\pi\)
\(228\) 0 0
\(229\) 6.68658 11.5815i 0.441862 0.765327i −0.555966 0.831205i \(-0.687651\pi\)
0.997828 + 0.0658780i \(0.0209848\pi\)
\(230\) −2.50725 + 4.34269i −0.165323 + 0.286348i
\(231\) 0 0
\(232\) 3.65719 + 6.33444i 0.240106 + 0.415877i
\(233\) 5.42880 0.355652 0.177826 0.984062i \(-0.443094\pi\)
0.177826 + 0.984062i \(0.443094\pi\)
\(234\) 0 0
\(235\) −5.15549 −0.336307
\(236\) −12.1117 + 6.99268i −0.788403 + 0.455185i
\(237\) 0 0
\(238\) 5.36094 + 3.09514i 0.347498 + 0.200628i
\(239\) −2.95156 + 5.11225i −0.190921 + 0.330684i −0.945556 0.325461i \(-0.894481\pi\)
0.754635 + 0.656145i \(0.227814\pi\)
\(240\) 0 0
\(241\) −25.7690 + 14.8778i −1.65993 + 0.958361i −0.687184 + 0.726483i \(0.741154\pi\)
−0.972745 + 0.231878i \(0.925513\pi\)
\(242\) −9.50355 5.53917i −0.610912 0.356072i
\(243\) 0 0
\(244\) 9.15805i 0.586284i
\(245\) 5.64570 3.25955i 0.360691 0.208245i
\(246\) 0 0
\(247\) 8.57589 14.8539i 0.545671 0.945130i
\(248\) −2.78313 + 4.82052i −0.176729 + 0.306103i
\(249\) 0 0
\(250\) −0.866025 + 0.500000i −0.0547723 + 0.0316228i
\(251\) 2.25143i 0.142109i −0.997472 0.0710545i \(-0.977364\pi\)
0.997472 0.0710545i \(-0.0226364\pi\)
\(252\) 0 0
\(253\) 4.33754 16.0556i 0.272699 1.00941i
\(254\) 14.2791 8.24405i 0.895952 0.517278i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −18.5247 10.6952i −1.15554 0.667151i −0.205308 0.978697i \(-0.565820\pi\)
−0.950231 + 0.311546i \(0.899153\pi\)
\(258\) 0 0
\(259\) 31.3420 18.0953i 1.94750 1.12439i
\(260\) −2.18184 −0.135312
\(261\) 0 0
\(262\) −5.26104 −0.325028
\(263\) −3.76673 6.52416i −0.232266 0.402297i 0.726208 0.687475i \(-0.241281\pi\)
−0.958475 + 0.285178i \(0.907947\pi\)
\(264\) 0 0
\(265\) −2.33443 + 4.04335i −0.143403 + 0.248381i
\(266\) −14.4521 + 25.0317i −0.886114 + 1.53479i
\(267\) 0 0
\(268\) 6.87891 + 11.9146i 0.420196 + 0.727801i
\(269\) 16.3429i 0.996446i 0.867049 + 0.498223i \(0.166014\pi\)
−0.867049 + 0.498223i \(0.833986\pi\)
\(270\) 0 0
\(271\) 0.605209i 0.0367638i 0.999831 + 0.0183819i \(0.00585148\pi\)
−0.999831 + 0.0183819i \(0.994149\pi\)
\(272\) 0.841796 + 1.45803i 0.0510414 + 0.0884063i
\(273\) 0 0
\(274\) −1.72788 0.997591i −0.104385 0.0602667i
\(275\) 2.35003 2.34038i 0.141712 0.141130i
\(276\) 0 0
\(277\) −10.2745 + 5.93197i −0.617333 + 0.356418i −0.775830 0.630942i \(-0.782669\pi\)
0.158497 + 0.987360i \(0.449335\pi\)
\(278\) 15.3848i 0.922720i
\(279\) 0 0
\(280\) 3.67683 0.219733
\(281\) −4.36042 7.55247i −0.260121 0.450543i 0.706153 0.708059i \(-0.250429\pi\)
−0.966274 + 0.257517i \(0.917096\pi\)
\(282\) 0 0
\(283\) −8.87392 5.12336i −0.527500 0.304552i 0.212498 0.977162i \(-0.431840\pi\)
−0.739998 + 0.672609i \(0.765174\pi\)
\(284\) 6.87439 + 3.96893i 0.407920 + 0.235513i
\(285\) 0 0
\(286\) 6.99361 1.85851i 0.413541 0.109896i
\(287\) 21.4687i 1.26726i
\(288\) 0 0
\(289\) −14.1655 −0.833266
\(290\) 6.33444 3.65719i 0.371971 0.214758i
\(291\) 0 0
\(292\) −4.15936 2.40141i −0.243408 0.140532i
\(293\) −7.99621 + 13.8498i −0.467143 + 0.809116i −0.999295 0.0375328i \(-0.988050\pi\)
0.532152 + 0.846649i \(0.321383\pi\)
\(294\) 0 0
\(295\) 6.99268 + 12.1117i 0.407130 + 0.705169i
\(296\) 9.84289 0.572106
\(297\) 0 0
\(298\) −21.7149 −1.25791
\(299\) 5.47042 + 9.47504i 0.316362 + 0.547956i
\(300\) 0 0
\(301\) 6.14248 10.6391i 0.354047 0.613227i
\(302\) 0.961201 + 0.554950i 0.0553109 + 0.0319338i
\(303\) 0 0
\(304\) −6.80796 + 3.93058i −0.390464 + 0.225434i
\(305\) 9.15805 0.524388
\(306\) 0 0
\(307\) 16.8203i 0.959986i 0.877272 + 0.479993i \(0.159361\pi\)
−0.877272 + 0.479993i \(0.840639\pi\)
\(308\) −11.7856 + 3.13196i −0.671548 + 0.178460i
\(309\) 0 0
\(310\) 4.82052 + 2.78313i 0.273787 + 0.158071i
\(311\) −6.39007 3.68931i −0.362348 0.209202i 0.307762 0.951463i \(-0.400420\pi\)
−0.670110 + 0.742262i \(0.733753\pi\)
\(312\) 0 0
\(313\) −12.2973 21.2995i −0.695082 1.20392i −0.970153 0.242493i \(-0.922035\pi\)
0.275071 0.961424i \(-0.411299\pi\)
\(314\) 23.2910 1.31439
\(315\) 0 0
\(316\) 14.3224i 0.805695i
\(317\) 0.940567 0.543036i 0.0528275 0.0305000i −0.473354 0.880872i \(-0.656957\pi\)
0.526181 + 0.850373i \(0.323623\pi\)
\(318\) 0 0
\(319\) −17.1890 + 17.1184i −0.962401 + 0.958447i
\(320\) 0.866025 + 0.500000i 0.0484123 + 0.0279508i
\(321\) 0 0
\(322\) −9.21874 15.9673i −0.513740 0.889824i
\(323\) 13.2350i 0.736414i
\(324\) 0 0
\(325\) 2.18184i 0.121027i
\(326\) 4.45679 + 7.71938i 0.246839 + 0.427537i
\(327\) 0 0
\(328\) −2.91945 + 5.05664i −0.161200 + 0.279206i
\(329\) 9.47794 16.4163i 0.522536 0.905058i
\(330\) 0 0
\(331\) −2.48198 4.29891i −0.136422 0.236290i 0.789718 0.613470i \(-0.210227\pi\)
−0.926140 + 0.377181i \(0.876894\pi\)
\(332\) −5.58285 −0.306399
\(333\) 0 0
\(334\) 10.2400 0.560309
\(335\) 11.9146 6.87891i 0.650965 0.375835i
\(336\) 0 0
\(337\) −15.0511 8.68976i −0.819886 0.473361i 0.0304911 0.999535i \(-0.490293\pi\)
−0.850377 + 0.526174i \(0.823626\pi\)
\(338\) 4.11979 7.13568i 0.224087 0.388130i
\(339\) 0 0
\(340\) 1.45803 0.841796i 0.0790730 0.0456528i
\(341\) −17.8223 4.81480i −0.965129 0.260736i
\(342\) 0 0
\(343\) 1.76821i 0.0954742i
\(344\) 2.89355 1.67059i 0.156010 0.0900722i
\(345\) 0 0
\(346\) 6.65243 11.5223i 0.357637 0.619445i
\(347\) −5.68546 + 9.84750i −0.305211 + 0.528641i −0.977308 0.211822i \(-0.932060\pi\)
0.672097 + 0.740463i \(0.265394\pi\)
\(348\) 0 0
\(349\) 5.30746 3.06426i 0.284102 0.164026i −0.351177 0.936309i \(-0.614218\pi\)
0.635279 + 0.772283i \(0.280885\pi\)
\(350\) 3.67683i 0.196535i
\(351\) 0 0
\(352\) −3.20184 0.864999i −0.170659 0.0461046i
\(353\) 24.2020 13.9730i 1.28814 0.743708i 0.309818 0.950796i \(-0.399732\pi\)
0.978322 + 0.207088i \(0.0663985\pi\)
\(354\) 0 0
\(355\) 3.96893 6.87439i 0.210649 0.364855i
\(356\) −11.2445 6.49203i −0.595958 0.344077i
\(357\) 0 0
\(358\) 18.8576 10.8874i 0.996654 0.575419i
\(359\) 32.1274 1.69562 0.847809 0.530301i \(-0.177921\pi\)
0.847809 + 0.530301i \(0.177921\pi\)
\(360\) 0 0
\(361\) −42.7978 −2.25252
\(362\) 8.96893 + 15.5346i 0.471396 + 0.816483i
\(363\) 0 0
\(364\) 4.01113 6.94748i 0.210240 0.364147i
\(365\) −2.40141 + 4.15936i −0.125695 + 0.217711i
\(366\) 0 0
\(367\) 7.97900 + 13.8200i 0.416500 + 0.721400i 0.995585 0.0938681i \(-0.0299232\pi\)
−0.579084 + 0.815268i \(0.696590\pi\)
\(368\) 5.01450i 0.261399i
\(369\) 0 0
\(370\) 9.84289i 0.511708i
\(371\) −8.58330 14.8667i −0.445623 0.771842i
\(372\) 0 0
\(373\) 18.1064 + 10.4537i 0.937513 + 0.541273i 0.889180 0.457558i \(-0.151276\pi\)
0.0483331 + 0.998831i \(0.484609\pi\)
\(374\) −3.95649 + 3.94024i −0.204585 + 0.203745i
\(375\) 0 0
\(376\) 4.46479 2.57775i 0.230254 0.132937i
\(377\) 15.9588i 0.821921i
\(378\) 0 0
\(379\) −15.3751 −0.789767 −0.394884 0.918731i \(-0.629215\pi\)
−0.394884 + 0.918731i \(0.629215\pi\)
\(380\) 3.93058 + 6.80796i 0.201635 + 0.349241i
\(381\) 0 0
\(382\) 4.55854 + 2.63187i 0.233235 + 0.134658i
\(383\) 2.05066 + 1.18395i 0.104784 + 0.0604971i 0.551476 0.834191i \(-0.314065\pi\)
−0.446692 + 0.894688i \(0.647398\pi\)
\(384\) 0 0
\(385\) 3.13196 + 11.7856i 0.159619 + 0.600651i
\(386\) 2.61108i 0.132900i
\(387\) 0 0
\(388\) 14.7640 0.749531
\(389\) 30.7171 17.7345i 1.55742 0.899176i 0.559916 0.828549i \(-0.310833\pi\)
0.997503 0.0706272i \(-0.0225001\pi\)
\(390\) 0 0
\(391\) −7.31131 4.22119i −0.369749 0.213475i
\(392\) −3.25955 + 5.64570i −0.164632 + 0.285151i
\(393\) 0 0
\(394\) −6.38468 11.0586i −0.321656 0.557124i
\(395\) 14.3224 0.720636
\(396\) 0 0
\(397\) 13.9573 0.700495 0.350248 0.936657i \(-0.386097\pi\)
0.350248 + 0.936657i \(0.386097\pi\)
\(398\) −1.08022 1.87099i −0.0541463 0.0937842i
\(399\) 0 0
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) −5.40421 3.12012i −0.269873 0.155811i 0.358957 0.933354i \(-0.383133\pi\)
−0.628830 + 0.777543i \(0.716466\pi\)
\(402\) 0 0
\(403\) 10.5176 6.07234i 0.523919 0.302485i
\(404\) 1.34086 0.0667103
\(405\) 0 0
\(406\) 26.8938i 1.33472i
\(407\) 8.38426 + 31.5501i 0.415593 + 1.56388i
\(408\) 0 0
\(409\) 12.7021 + 7.33357i 0.628079 + 0.362622i 0.780008 0.625770i \(-0.215215\pi\)
−0.151929 + 0.988391i \(0.548548\pi\)
\(410\) 5.05664 + 2.91945i 0.249730 + 0.144182i
\(411\) 0 0
\(412\) −0.170406 0.295152i −0.00839530 0.0145411i
\(413\) −51.4218 −2.53030
\(414\) 0 0
\(415\) 5.58285i 0.274051i
\(416\) 1.88953 1.09092i 0.0926417 0.0534867i
\(417\) 0 0
\(418\) −18.3981 18.4740i −0.899879 0.903591i
\(419\) −26.1506 15.0981i −1.27754 0.737588i −0.301145 0.953578i \(-0.597369\pi\)
−0.976396 + 0.215990i \(0.930702\pi\)
\(420\) 0 0
\(421\) 4.66929 + 8.08745i 0.227567 + 0.394158i 0.957087 0.289802i \(-0.0935895\pi\)
−0.729519 + 0.683960i \(0.760256\pi\)
\(422\) 2.74599i 0.133673i
\(423\) 0 0
\(424\) 4.66886i 0.226740i
\(425\) −0.841796 1.45803i −0.0408331 0.0707250i
\(426\) 0 0
\(427\) −16.8363 + 29.1613i −0.814766 + 1.41122i
\(428\) −3.09075 + 5.35334i −0.149397 + 0.258763i
\(429\) 0 0
\(430\) −1.67059 2.89355i −0.0805631 0.139539i
\(431\) 24.4410 1.17728 0.588641 0.808394i \(-0.299663\pi\)
0.588641 + 0.808394i \(0.299663\pi\)
\(432\) 0 0
\(433\) 25.3732 1.21936 0.609680 0.792648i \(-0.291298\pi\)
0.609680 + 0.792648i \(0.291298\pi\)
\(434\) −17.7242 + 10.2331i −0.850790 + 0.491204i
\(435\) 0 0
\(436\) 5.42565 + 3.13250i 0.259841 + 0.150020i
\(437\) 19.7099 34.1386i 0.942853 1.63307i
\(438\) 0 0
\(439\) −17.5588 + 10.1376i −0.838034 + 0.483839i −0.856596 0.515988i \(-0.827425\pi\)
0.0185613 + 0.999828i \(0.494091\pi\)
\(440\) −0.864999 + 3.20184i −0.0412372 + 0.152642i
\(441\) 0 0
\(442\) 3.67333i 0.174722i
\(443\) −17.8653 + 10.3145i −0.848804 + 0.490057i −0.860247 0.509877i \(-0.829691\pi\)
0.0114429 + 0.999935i \(0.496358\pi\)
\(444\) 0 0
\(445\) −6.49203 + 11.2445i −0.307752 + 0.533041i
\(446\) −8.12070 + 14.0655i −0.384526 + 0.666019i
\(447\) 0 0
\(448\) −3.18423 + 1.83842i −0.150441 + 0.0868570i
\(449\) 29.2409i 1.37996i 0.723826 + 0.689982i \(0.242382\pi\)
−0.723826 + 0.689982i \(0.757618\pi\)
\(450\) 0 0
\(451\) −18.6952 5.05065i −0.880325 0.237826i
\(452\) 1.73318 1.00065i 0.0815221 0.0470668i
\(453\) 0 0
\(454\) −0.0573427 + 0.0993205i −0.00269123 + 0.00466134i
\(455\) −6.94748 4.01113i −0.325703 0.188045i
\(456\) 0 0
\(457\) −26.9068 + 15.5347i −1.25865 + 0.726681i −0.972812 0.231597i \(-0.925605\pi\)
−0.285837 + 0.958278i \(0.592272\pi\)
\(458\) 13.3732 0.624887
\(459\) 0 0
\(460\) −5.01450 −0.233802
\(461\) 14.4654 + 25.0548i 0.673722 + 1.16692i 0.976841 + 0.213968i \(0.0686387\pi\)
−0.303119 + 0.952953i \(0.598028\pi\)
\(462\) 0 0
\(463\) 1.25707 2.17732i 0.0584212 0.101188i −0.835336 0.549740i \(-0.814727\pi\)
0.893757 + 0.448552i \(0.148060\pi\)
\(464\) −3.65719 + 6.33444i −0.169781 + 0.294069i
\(465\) 0 0
\(466\) 2.71440 + 4.70148i 0.125742 + 0.217792i
\(467\) 2.01504i 0.0932448i −0.998913 0.0466224i \(-0.985154\pi\)
0.998913 0.0466224i \(-0.0148457\pi\)
\(468\) 0 0
\(469\) 50.5852i 2.33581i
\(470\) −2.57775 4.46479i −0.118903 0.205945i
\(471\) 0 0
\(472\) −12.1117 6.99268i −0.557485 0.321864i
\(473\) 7.81962 + 7.85188i 0.359547 + 0.361030i
\(474\) 0 0
\(475\) 6.80796 3.93058i 0.312371 0.180347i
\(476\) 6.19029i 0.283731i
\(477\) 0 0
\(478\) −5.90312 −0.270002
\(479\) −3.15987 5.47305i −0.144378 0.250070i 0.784763 0.619796i \(-0.212785\pi\)
−0.929141 + 0.369726i \(0.879451\pi\)
\(480\) 0 0
\(481\) −18.5984 10.7378i −0.848015 0.489602i
\(482\) −25.7690 14.8778i −1.17375 0.677663i
\(483\) 0 0
\(484\) 0.0452884 10.9999i 0.00205856 0.499996i
\(485\) 14.7640i 0.670401i
\(486\) 0 0
\(487\) −13.1443 −0.595626 −0.297813 0.954624i \(-0.596257\pi\)
−0.297813 + 0.954624i \(0.596257\pi\)
\(488\) −7.93110 + 4.57903i −0.359024 + 0.207283i
\(489\) 0 0
\(490\) 5.64570 + 3.25955i 0.255047 + 0.147251i
\(491\) 7.95737 13.7826i 0.359111 0.621999i −0.628702 0.777647i \(-0.716413\pi\)
0.987813 + 0.155648i \(0.0497466\pi\)
\(492\) 0 0
\(493\) 6.15722 + 10.6646i 0.277307 + 0.480310i
\(494\) 17.1518 0.771695
\(495\) 0 0
\(496\) −5.56625 −0.249932
\(497\) 14.5931 + 25.2760i 0.654589 + 1.13378i
\(498\) 0 0
\(499\) 17.8573 30.9298i 0.799403 1.38461i −0.120602 0.992701i \(-0.538482\pi\)
0.920005 0.391906i \(-0.128184\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) 0 0
\(502\) 1.94980 1.12571i 0.0870236 0.0502431i
\(503\) −21.6640 −0.965951 −0.482975 0.875634i \(-0.660444\pi\)
−0.482975 + 0.875634i \(0.660444\pi\)
\(504\) 0 0
\(505\) 1.34086i 0.0596675i
\(506\) 16.0734 4.27140i 0.714548 0.189887i
\(507\) 0 0
\(508\) 14.2791 + 8.24405i 0.633534 + 0.365771i
\(509\) 1.67154 + 0.965064i 0.0740897 + 0.0427757i 0.536587 0.843845i \(-0.319713\pi\)
−0.462498 + 0.886621i \(0.653047\pi\)
\(510\) 0 0
\(511\) −8.82957 15.2933i −0.390597 0.676534i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 21.3905i 0.943494i
\(515\) −0.295152 + 0.170406i −0.0130059 + 0.00750898i
\(516\) 0 0
\(517\) 12.0658 + 12.1156i 0.530653 + 0.532842i
\(518\) 31.3420 + 18.0953i 1.37709 + 0.795063i
\(519\) 0 0
\(520\) −1.09092 1.88953i −0.0478400 0.0828613i
\(521\) 12.3020i 0.538960i 0.963006 + 0.269480i \(0.0868518\pi\)
−0.963006 + 0.269480i \(0.913148\pi\)
\(522\) 0 0
\(523\) 12.3025i 0.537949i 0.963147 + 0.268975i \(0.0866848\pi\)
−0.963147 + 0.268975i \(0.913315\pi\)
\(524\) −2.63052 4.55620i −0.114915 0.199038i
\(525\) 0 0
\(526\) 3.76673 6.52416i 0.164237 0.284467i
\(527\) −4.68565 + 8.11578i −0.204110 + 0.353529i
\(528\) 0 0
\(529\) 1.07262 + 1.85783i 0.0466355 + 0.0807750i
\(530\) −4.66886 −0.202802
\(531\) 0 0
\(532\) −28.9042 −1.25315
\(533\) 11.0328 6.36978i 0.477883 0.275906i
\(534\) 0 0
\(535\) 5.35334 + 3.09075i 0.231445 + 0.133625i
\(536\) −6.87891 + 11.9146i −0.297124 + 0.514633i
\(537\) 0 0
\(538\) −14.1534 + 8.17146i −0.610196 + 0.352297i
\(539\) −20.8731 5.63901i −0.899068 0.242889i
\(540\) 0 0
\(541\) 28.2186i 1.21321i −0.795003 0.606606i \(-0.792531\pi\)
0.795003 0.606606i \(-0.207469\pi\)
\(542\) −0.524126 + 0.302605i −0.0225132 + 0.0129980i
\(543\) 0 0
\(544\) −0.841796 + 1.45803i −0.0360917 + 0.0625127i
\(545\) 3.13250 5.42565i 0.134182 0.232409i
\(546\) 0 0
\(547\) −8.18909 + 4.72797i −0.350140 + 0.202154i −0.664747 0.747069i \(-0.731461\pi\)
0.314607 + 0.949222i \(0.398127\pi\)
\(548\) 1.99518i 0.0852300i
\(549\) 0 0
\(550\) 3.20184 + 0.864999i 0.136527 + 0.0368837i
\(551\) −49.7961 + 28.7498i −2.12138 + 1.22478i
\(552\) 0 0
\(553\) −26.3304 + 45.6057i −1.11968 + 1.93935i
\(554\) −10.2745 5.93197i −0.436521 0.252025i
\(555\) 0 0
\(556\) 13.3236 7.69241i 0.565048 0.326231i
\(557\) −25.6402 −1.08641 −0.543205 0.839600i \(-0.682789\pi\)
−0.543205 + 0.839600i \(0.682789\pi\)
\(558\) 0 0
\(559\) −7.28992 −0.308331
\(560\) 1.83842 + 3.18423i 0.0776873 + 0.134558i
\(561\) 0 0
\(562\) 4.36042 7.55247i 0.183933 0.318582i
\(563\) 9.85158 17.0634i 0.415194 0.719138i −0.580254 0.814435i \(-0.697047\pi\)
0.995449 + 0.0952975i \(0.0303802\pi\)
\(564\) 0 0
\(565\) −1.00065 1.73318i −0.0420978 0.0729156i
\(566\) 10.2467i 0.430702i
\(567\) 0 0
\(568\) 7.93786i 0.333065i
\(569\) 0.958507 + 1.66018i 0.0401827 + 0.0695985i 0.885417 0.464797i \(-0.153873\pi\)
−0.845235 + 0.534395i \(0.820539\pi\)
\(570\) 0 0
\(571\) 0.599207 + 0.345953i 0.0250760 + 0.0144777i 0.512486 0.858696i \(-0.328725\pi\)
−0.487410 + 0.873173i \(0.662058\pi\)
\(572\) 5.10632 + 5.12739i 0.213506 + 0.214387i
\(573\) 0 0
\(574\) −18.5924 + 10.7343i −0.776033 + 0.448043i
\(575\) 5.01450i 0.209119i
\(576\) 0 0
\(577\) −34.3382 −1.42952 −0.714760 0.699370i \(-0.753464\pi\)
−0.714760 + 0.699370i \(0.753464\pi\)
\(578\) −7.08276 12.2677i −0.294604 0.510269i
\(579\) 0 0
\(580\) 6.33444 + 3.65719i 0.263023 + 0.151857i
\(581\) −17.7771 10.2636i −0.737518 0.425806i
\(582\) 0 0
\(583\) 14.9654 3.97698i 0.619805 0.164709i
\(584\) 4.80281i 0.198742i
\(585\) 0 0
\(586\) −15.9924 −0.660640
\(587\) −21.0084 + 12.1292i −0.867108 + 0.500625i −0.866386 0.499375i \(-0.833563\pi\)
−0.000721891 1.00000i \(0.500230\pi\)
\(588\) 0 0
\(589\) −37.8949 21.8786i −1.56143 0.901492i
\(590\) −6.99268 + 12.1117i −0.287884 + 0.498630i
\(591\) 0 0
\(592\) 4.92145 + 8.52419i 0.202270 + 0.350342i
\(593\) 4.06153 0.166787 0.0833935 0.996517i \(-0.473424\pi\)
0.0833935 + 0.996517i \(0.473424\pi\)
\(594\) 0 0
\(595\) 6.19029 0.253777
\(596\) −10.8574 18.8056i −0.444738 0.770309i
\(597\) 0 0
\(598\) −5.47042 + 9.47504i −0.223702 + 0.387463i
\(599\) 5.16281 + 2.98075i 0.210947 + 0.121790i 0.601751 0.798683i \(-0.294470\pi\)
−0.390805 + 0.920474i \(0.627803\pi\)
\(600\) 0 0
\(601\) 9.95223 5.74592i 0.405960 0.234381i −0.283093 0.959093i \(-0.591360\pi\)
0.689052 + 0.724712i \(0.258027\pi\)
\(602\) 12.2850 0.500698
\(603\) 0 0
\(604\) 1.10990i 0.0451612i
\(605\) −10.9999 0.0452884i −0.447210 0.00184123i
\(606\) 0 0
\(607\) 8.52188 + 4.92011i 0.345892 + 0.199701i 0.662875 0.748730i \(-0.269336\pi\)
−0.316982 + 0.948431i \(0.602670\pi\)
\(608\) −6.80796 3.93058i −0.276099 0.159406i
\(609\) 0 0
\(610\) 4.57903 + 7.93110i 0.185399 + 0.321121i
\(611\) −11.2485 −0.455064
\(612\) 0 0
\(613\) 27.7570i 1.12109i −0.828123 0.560547i \(-0.810591\pi\)
0.828123 0.560547i \(-0.189409\pi\)
\(614\) −14.5668 + 8.41015i −0.587869 + 0.339406i
\(615\) 0 0
\(616\) −8.60517 8.64067i −0.346712 0.348142i
\(617\) −1.27815 0.737939i −0.0514563 0.0297083i 0.474051 0.880497i \(-0.342791\pi\)
−0.525507 + 0.850789i \(0.676125\pi\)
\(618\) 0 0
\(619\) −7.86282 13.6188i −0.316034 0.547386i 0.663623 0.748067i \(-0.269018\pi\)
−0.979657 + 0.200681i \(0.935685\pi\)
\(620\) 5.56625i 0.223546i
\(621\) 0 0
\(622\) 7.37862i 0.295856i
\(623\) −23.8701 41.3442i −0.956335 1.65642i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 12.2973 21.2995i 0.491497 0.851298i
\(627\) 0 0
\(628\) 11.6455 + 20.1706i 0.464706 + 0.804894i
\(629\) 16.5714 0.660746
\(630\) 0 0
\(631\) −40.8958 −1.62804 −0.814018 0.580840i \(-0.802724\pi\)
−0.814018 + 0.580840i \(0.802724\pi\)
\(632\) −12.4035 + 7.16118i −0.493386 + 0.284856i
\(633\) 0 0
\(634\) 0.940567 + 0.543036i 0.0373547 + 0.0215667i
\(635\) 8.24405 14.2791i 0.327155 0.566650i
\(636\) 0 0
\(637\) 12.3180 7.11181i 0.488057 0.281780i
\(638\) −23.4195 6.32693i −0.927186 0.250486i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) −38.6523 + 22.3159i −1.52667 + 0.881426i −0.527176 + 0.849756i \(0.676749\pi\)
−0.999498 + 0.0316702i \(0.989917\pi\)
\(642\) 0 0
\(643\) 0.176902 0.306403i 0.00697633 0.0120834i −0.862516 0.506030i \(-0.831113\pi\)
0.869492 + 0.493946i \(0.164446\pi\)
\(644\) 9.21874 15.9673i 0.363269 0.629201i
\(645\) 0 0
\(646\) −11.4618 + 6.61749i −0.450960 + 0.260362i
\(647\) 9.75059i 0.383335i 0.981460 + 0.191668i \(0.0613896\pi\)
−0.981460 + 0.191668i \(0.938610\pi\)
\(648\) 0 0
\(649\) 12.0973 44.7789i 0.474861 1.75773i
\(650\) −1.88953 + 1.09092i −0.0741134 + 0.0427894i
\(651\) 0 0
\(652\) −4.45679 + 7.71938i −0.174541 + 0.302314i
\(653\) 13.4942 + 7.79085i 0.528067 + 0.304880i 0.740229 0.672355i \(-0.234717\pi\)
−0.212162 + 0.977235i \(0.568050\pi\)
\(654\) 0 0
\(655\) −4.55620 + 2.63052i −0.178025 + 0.102783i
\(656\) −5.83891 −0.227971
\(657\) 0 0
\(658\) 18.9559 0.738977
\(659\) 20.3980 + 35.3304i 0.794594 + 1.37628i 0.923096 + 0.384569i \(0.125650\pi\)
−0.128502 + 0.991709i \(0.541017\pi\)
\(660\) 0 0
\(661\) 3.63429 6.29478i 0.141358 0.244839i −0.786650 0.617399i \(-0.788187\pi\)
0.928008 + 0.372560i \(0.121520\pi\)
\(662\) 2.48198 4.29891i 0.0964648 0.167082i
\(663\) 0 0
\(664\) −2.79143 4.83489i −0.108328 0.187630i
\(665\) 28.9042i 1.12086i
\(666\) 0 0
\(667\) 36.6780i 1.42018i
\(668\) 5.12001 + 8.86811i 0.198099 + 0.343117i
\(669\) 0 0
\(670\) 11.9146 + 6.87891i 0.460302 + 0.265755i
\(671\) −21.4333 21.5217i −0.827422 0.830836i
\(672\) 0 0
\(673\) −4.12089 + 2.37920i −0.158849 + 0.0917114i −0.577317 0.816520i \(-0.695900\pi\)
0.418468 + 0.908231i \(0.362567\pi\)
\(674\) 17.3795i 0.669434i
\(675\) 0 0
\(676\) 8.23958 0.316907
\(677\) −22.4648 38.9101i −0.863391 1.49544i −0.868636 0.495451i \(-0.835003\pi\)
0.00524449 0.999986i \(-0.498331\pi\)
\(678\) 0 0
\(679\) 47.0121 + 27.1425i 1.80416 + 1.04163i
\(680\) 1.45803 + 0.841796i 0.0559130 + 0.0322814i
\(681\) 0 0
\(682\) −4.74139 17.8419i −0.181557 0.683203i
\(683\) 5.30492i 0.202987i −0.994836 0.101494i \(-0.967638\pi\)
0.994836 0.101494i \(-0.0323621\pi\)
\(684\) 0 0
\(685\) −1.99518 −0.0762320
\(686\) 1.53131 0.884103i 0.0584658 0.0337552i
\(687\) 0 0
\(688\) 2.89355 + 1.67059i 0.110316 + 0.0636907i
\(689\) −5.09335 + 8.82194i −0.194041 + 0.336089i
\(690\) 0 0
\(691\) −11.9138 20.6354i −0.453224 0.785007i 0.545360 0.838202i \(-0.316393\pi\)
−0.998584 + 0.0531948i \(0.983060\pi\)
\(692\) 13.3049 0.505775
\(693\) 0 0
\(694\) −11.3709 −0.431634
\(695\) −7.69241 13.3236i −0.291790 0.505395i
\(696\) 0 0
\(697\) −4.91517 + 8.51332i −0.186175 + 0.322465i
\(698\) 5.30746 + 3.06426i 0.200890 + 0.115984i
\(699\) 0 0
\(700\) 3.18423 1.83842i 0.120353 0.0694856i
\(701\) 33.8438 1.27826 0.639132 0.769097i \(-0.279294\pi\)
0.639132 + 0.769097i \(0.279294\pi\)
\(702\) 0 0
\(703\) 77.3765i 2.91831i
\(704\) −0.851809 3.20537i −0.0321038 0.120807i
\(705\) 0 0
\(706\) 24.2020 + 13.9730i 0.910853 + 0.525881i
\(707\) 4.26961 + 2.46506i 0.160575 + 0.0927081i
\(708\) 0 0
\(709\) 15.7982 + 27.3632i 0.593313 + 1.02765i 0.993783 + 0.111338i \(0.0355136\pi\)
−0.400470 + 0.916310i \(0.631153\pi\)
\(710\) 7.93786 0.297903
\(711\) 0 0
\(712\) 12.9841i 0.486598i
\(713\) 24.1725 13.9560i 0.905267 0.522656i
\(714\) 0 0
\(715\) 5.12739 5.10632i 0.191753 0.190966i
\(716\) 18.8576 + 10.8874i 0.704741 + 0.406882i
\(717\) 0 0
\(718\) 16.0637 + 27.8231i 0.599492 + 1.03835i
\(719\) 18.7053i 0.697590i −0.937199 0.348795i \(-0.886591\pi\)
0.937199 0.348795i \(-0.113409\pi\)
\(720\) 0 0
\(721\) 1.25311i 0.0466682i
\(722\) −21.3989 37.0640i −0.796385 1.37938i
\(723\) 0 0
\(724\) −8.96893 + 15.5346i −0.333328 + 0.577340i
\(725\) 3.65719 6.33444i 0.135825 0.235255i
\(726\) 0 0
\(727\) −10.6707 18.4822i −0.395755 0.685468i 0.597442 0.801912i \(-0.296184\pi\)
−0.993197 + 0.116444i \(0.962850\pi\)
\(728\) 8.02226 0.297325
\(729\) 0 0
\(730\) −4.80281 −0.177760
\(731\) 4.87156 2.81259i 0.180181 0.104028i
\(732\) 0 0
\(733\) −16.3704 9.45144i −0.604654 0.349097i 0.166216 0.986089i \(-0.446845\pi\)
−0.770870 + 0.636992i \(0.780178\pi\)
\(734\) −7.97900 + 13.8200i −0.294510 + 0.510106i
\(735\) 0 0
\(736\) 4.34269 2.50725i 0.160074 0.0924185i
\(737\) −44.0503 11.9005i −1.62261 0.438360i
\(738\) 0 0
\(739\) 24.3579i 0.896019i 0.894029 + 0.448009i \(0.147867\pi\)
−0.894029 + 0.448009i \(0.852133\pi\)
\(740\) 8.52419 4.92145i 0.313356 0.180916i
\(741\) 0 0
\(742\) 8.58330 14.8667i 0.315103 0.545774i
\(743\) −4.94977 + 8.57325i −0.181589 + 0.314522i −0.942422 0.334426i \(-0.891457\pi\)
0.760833 + 0.648948i \(0.224791\pi\)
\(744\) 0 0
\(745\) −18.8056 + 10.8574i −0.688985 + 0.397786i
\(746\) 20.9074i 0.765476i
\(747\) 0 0
\(748\) −5.39059 1.45630i −0.197100 0.0532478i
\(749\) −19.6833 + 11.3642i −0.719213 + 0.415238i
\(750\) 0 0
\(751\) 4.08010 7.06694i 0.148885 0.257876i −0.781931 0.623365i \(-0.785765\pi\)
0.930816 + 0.365489i \(0.119098\pi\)
\(752\) 4.46479 + 2.57775i 0.162814 + 0.0940007i
\(753\) 0 0
\(754\) 13.8207 7.97941i 0.503322 0.290593i
\(755\) 1.10990 0.0403934
\(756\) 0 0
\(757\) −22.7954 −0.828515 −0.414257 0.910160i \(-0.635959\pi\)
−0.414257 + 0.910160i \(0.635959\pi\)
\(758\) −7.68756 13.3152i −0.279225 0.483632i
\(759\) 0 0
\(760\) −3.93058 + 6.80796i −0.142577 + 0.246951i
\(761\) −25.0265 + 43.3472i −0.907210 + 1.57133i −0.0892860 + 0.996006i \(0.528459\pi\)
−0.817924 + 0.575327i \(0.804875\pi\)
\(762\) 0 0
\(763\) 11.5177 + 19.9492i 0.416968 + 0.722210i
\(764\) 5.26374i 0.190436i
\(765\) 0 0
\(766\) 2.36790i 0.0855558i
\(767\) 15.2569 + 26.4257i 0.550895 + 0.954178i
\(768\) 0 0
\(769\) 8.34447 + 4.81768i 0.300909 + 0.173730i 0.642851 0.765991i \(-0.277751\pi\)
−0.341942 + 0.939721i \(0.611085\pi\)
\(770\) −8.64067 + 8.60517i −0.311388 + 0.310109i
\(771\) 0 0
\(772\) 2.26126 1.30554i 0.0813846 0.0469874i
\(773\) 2.06723i 0.0743530i 0.999309 + 0.0371765i \(0.0118364\pi\)
−0.999309 + 0.0371765i \(0.988164\pi\)
\(774\) 0 0
\(775\) 5.56625 0.199946
\(776\) 7.38202 + 12.7860i 0.264999 + 0.458992i
\(777\) 0 0
\(778\) 30.7171 + 17.7345i 1.10126 + 0.635814i
\(779\) −39.7511 22.9503i −1.42423 0.822280i
\(780\) 0 0
\(781\) −25.4438 + 6.76154i −0.910451 + 0.241947i
\(782\) 8.44238i 0.301899i
\(783\) 0 0
\(784\) −6.51910 −0.232825
\(785\) 20.1706 11.6455i 0.719919 0.415645i
\(786\) 0 0
\(787\) 37.8141 + 21.8320i 1.34793 + 0.778225i 0.987955 0.154739i \(-0.0494536\pi\)
0.359970 + 0.932964i \(0.382787\pi\)
\(788\) 6.38468 11.0586i 0.227445 0.393946i
\(789\) 0 0
\(790\) 7.16118 + 12.4035i 0.254783 + 0.441298i
\(791\) 7.35847 0.261637
\(792\) 0 0
\(793\) 19.9814 0.709560
\(794\) 6.97864 + 12.0874i 0.247663 + 0.428964i
\(795\) 0 0
\(796\) 1.08022 1.87099i 0.0382872 0.0663154i
\(797\) 16.2279 + 9.36918i 0.574822 + 0.331873i 0.759073 0.651006i \(-0.225653\pi\)
−0.184251 + 0.982879i \(0.558986\pi\)
\(798\) 0 0
\(799\) 7.51688 4.33987i 0.265928 0.153534i
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 6.24024i 0.220351i
\(803\) 15.3948 4.09108i 0.543271 0.144371i
\(804\) 0 0
\(805\) −15.9673 9.21874i −0.562774 0.324918i
\(806\) 10.5176 + 6.07234i 0.370466 + 0.213889i
\(807\) 0 0
\(808\) 0.670430 + 1.16122i 0.0235856 + 0.0408515i
\(809\) −14.1963 −0.499117 −0.249558 0.968360i \(-0.580285\pi\)
−0.249558 + 0.968360i \(0.580285\pi\)
\(810\) 0 0
\(811\) 19.6216i 0.689008i 0.938785 + 0.344504i \(0.111953\pi\)
−0.938785 + 0.344504i \(0.888047\pi\)
\(812\) −23.2907 + 13.4469i −0.817343 + 0.471893i
\(813\) 0 0
\(814\) −23.1311 + 23.0361i −0.810745 + 0.807413i
\(815\) 7.71938 + 4.45679i 0.270398 + 0.156114i
\(816\) 0 0
\(817\) 13.1328 + 22.7467i 0.459458 + 0.795805i
\(818\) 14.6671i 0.512824i
\(819\) 0 0
\(820\) 5.83891i 0.203904i
\(821\) −5.30945 9.19623i −0.185301 0.320951i 0.758377 0.651816i \(-0.225993\pi\)
−0.943678 + 0.330866i \(0.892659\pi\)
\(822\) 0 0
\(823\) −1.08143 + 1.87309i −0.0376962 + 0.0652917i −0.884258 0.466999i \(-0.845335\pi\)
0.846562 + 0.532290i \(0.178669\pi\)
\(824\) 0.170406 0.295152i 0.00593637 0.0102821i
\(825\) 0 0
\(826\) −25.7109 44.5326i −0.894597 1.54949i
\(827\) 14.4361 0.501992 0.250996 0.967988i \(-0.419242\pi\)
0.250996 + 0.967988i \(0.419242\pi\)
\(828\) 0 0
\(829\) −26.4349 −0.918124 −0.459062 0.888404i \(-0.651814\pi\)
−0.459062 + 0.888404i \(0.651814\pi\)
\(830\) −4.83489 + 2.79143i −0.167822 + 0.0968918i
\(831\) 0 0
\(832\) 1.88953 + 1.09092i 0.0655076 + 0.0378208i
\(833\) −5.48775 + 9.50506i −0.190139 + 0.329331i
\(834\) 0 0
\(835\) 8.86811 5.12001i 0.306894 0.177185i
\(836\) 6.79989 25.1702i 0.235179 0.870529i
\(837\) 0 0
\(838\) 30.1961i 1.04311i
\(839\) 23.0961 13.3345i 0.797365 0.460359i −0.0451843 0.998979i \(-0.514387\pi\)
0.842549 + 0.538620i \(0.181054\pi\)
\(840\) 0 0
\(841\) −12.2501 + 21.2178i −0.422418 + 0.731649i
\(842\) −4.66929 + 8.08745i −0.160914 + 0.278712i
\(843\) 0 0
\(844\) −2.37810 + 1.37300i −0.0818575 + 0.0472605i
\(845\) 8.23958i 0.283450i
\(846\) 0 0
\(847\) 20.3666 34.9430i 0.699805 1.20065i
\(848\) 4.04335 2.33443i 0.138849 0.0801646i
\(849\) 0 0
\(850\) 0.841796 1.45803i 0.0288734 0.0500101i
\(851\) −42.7446 24.6786i −1.46527 0.845972i
\(852\) 0 0
\(853\) 40.4073 23.3291i 1.38352 0.798775i 0.390944 0.920414i \(-0.372149\pi\)
0.992574 + 0.121640i \(0.0388153\pi\)
\(854\) −33.6726 −1.15225
\(855\) 0 0
\(856\) −6.18150 −0.211279
\(857\) 20.5060 + 35.5175i 0.700473 + 1.21325i 0.968301 + 0.249788i \(0.0803608\pi\)
−0.267828 + 0.963467i \(0.586306\pi\)
\(858\) 0 0
\(859\) 25.7734 44.6409i 0.879379 1.52313i 0.0273545 0.999626i \(-0.491292\pi\)
0.852024 0.523503i \(-0.175375\pi\)
\(860\) 1.67059 2.89355i 0.0569667 0.0986692i
\(861\) 0 0
\(862\) 12.2205 + 21.1665i 0.416232 + 0.720935i
\(863\) 52.0631i 1.77225i −0.463446 0.886125i \(-0.653387\pi\)
0.463446 0.886125i \(-0.346613\pi\)
\(864\) 0 0
\(865\) 13.3049i 0.452379i
\(866\) 12.6866 + 21.9739i 0.431109 + 0.746703i
\(867\) 0 0
\(868\) −17.7242 10.2331i −0.601600 0.347334i
\(869\) −33.5197 33.6580i −1.13708 1.14177i
\(870\) 0 0
\(871\) 25.9958 15.0087i 0.880834 0.508550i
\(872\) 6.26500i 0.212160i
\(873\) 0 0
\(874\) 39.4198 1.33339
\(875\) −1.83842 3.18423i −0.0621498 0.107647i
\(876\) 0 0
\(877\) 25.4764 + 14.7088i 0.860278 + 0.496682i 0.864106 0.503311i \(-0.167885\pi\)
−0.00382706 + 0.999993i \(0.501218\pi\)
\(878\) −17.5588 10.1376i −0.592580 0.342126i
\(879\) 0 0
\(880\) −3.20537 + 0.851809i −0.108053 + 0.0287145i
\(881\) 10.8313i 0.364917i −0.983214 0.182459i \(-0.941594\pi\)
0.983214 0.182459i \(-0.0584056\pi\)
\(882\) 0 0
\(883\) −37.0003 −1.24516 −0.622580 0.782556i \(-0.713915\pi\)
−0.622580 + 0.782556i \(0.713915\pi\)
\(884\) 3.18119 1.83666i 0.106995 0.0617737i
\(885\) 0 0
\(886\) −17.8653 10.3145i −0.600195 0.346523i
\(887\) 19.9221 34.5061i 0.668918 1.15860i −0.309289 0.950968i \(-0.600091\pi\)
0.978207 0.207632i \(-0.0665757\pi\)
\(888\) 0 0
\(889\) 30.3120 + 52.5019i 1.01663 + 1.76086i
\(890\) −12.9841 −0.435226
\(891\) 0 0
\(892\) −16.2414 −0.543802
\(893\) 20.2641 + 35.0984i 0.678111 + 1.17452i
\(894\) 0 0
\(895\) 10.8874 18.8576i 0.363927 0.630339i
\(896\) −3.18423 1.83842i −0.106378 0.0614172i
\(897\) 0 0
\(898\) −25.3234 + 14.6205i −0.845052 + 0.487891i
\(899\) −40.7137 −1.35788
\(900\) 0 0
\(901\) 7.86045i 0.261870i
\(902\) −4.97363 18.7159i −0.165604 0.623171i
\(903\) 0 0
\(904\) 1.73318 + 1.00065i 0.0576448 + 0.0332812i
\(905\) 15.5346 + 8.96893i 0.516389 + 0.298137i
\(906\) 0 0
\(907\) 2.96024 + 5.12728i 0.0982931 + 0.170249i 0.910978 0.412454i \(-0.135328\pi\)
−0.812685 + 0.582703i \(0.801995\pi\)
\(908\) −0.114685 −0.00380597
\(909\) 0 0
\(910\) 8.02226i 0.265935i
\(911\) −4.43890 + 2.56280i −0.147067 + 0.0849093i −0.571728 0.820443i \(-0.693727\pi\)
0.424661 + 0.905353i \(0.360393\pi\)
\(912\) 0 0
\(913\) 13.1199 13.0660i 0.434204 0.432420i
\(914\) −26.9068 15.5347i −0.889999 0.513841i
\(915\) 0 0
\(916\) 6.68658 + 11.5815i 0.220931 + 0.382664i
\(917\) 19.3440i 0.638794i
\(918\) 0 0
\(919\) 44.4077i 1.46488i −0.680834 0.732438i \(-0.738383\pi\)
0.680834 0.732438i \(-0.261617\pi\)
\(920\) −2.50725 4.34269i −0.0826616 0.143174i
\(921\) 0 0
\(922\) −14.4654 + 25.0548i −0.476393 + 0.825137i
\(923\) 8.65957 14.9988i 0.285033 0.493692i
\(924\) 0 0
\(925\) −4.92145 8.52419i −0.161816 0.280274i
\(926\) 2.51415 0.0826200
\(927\) 0 0
\(928\) −7.31439 −0.240106
\(929\) 38.1637 22.0338i 1.25211 0.722906i 0.280581 0.959830i \(-0.409473\pi\)
0.971528 + 0.236925i \(0.0761395\pi\)
\(930\) 0 0
\(931\) −44.3818 25.6238i −1.45455 0.839787i
\(932\) −2.71440 + 4.70148i −0.0889131 + 0.154002i
\(933\) 0 0
\(934\) 1.74507 1.00752i 0.0571005 0.0329670i
\(935\) −1.45630 + 5.39059i −0.0476263 + 0.176291i
\(936\) 0 0
\(937\) 43.9178i 1.43473i 0.696697 + 0.717366i \(0.254652\pi\)
−0.696697 + 0.717366i \(0.745348\pi\)
\(938\) −43.8081 + 25.2926i −1.43038 + 0.825833i
\(939\) 0 0
\(940\) 2.57775 4.46479i 0.0840768 0.145625i
\(941\) 15.7681 27.3111i 0.514024 0.890316i −0.485843 0.874046i \(-0.661487\pi\)
0.999868 0.0162702i \(-0.00517921\pi\)
\(942\) 0 0
\(943\) 25.3565 14.6396i 0.825723 0.476731i
\(944\) 13.9854i 0.455185i
\(945\) 0 0
\(946\) −2.89012 + 10.6979i −0.0939659 + 0.347820i
\(947\) −14.2410 + 8.22205i −0.462770 + 0.267181i −0.713208 0.700952i \(-0.752759\pi\)
0.250438 + 0.968133i \(0.419425\pi\)
\(948\) 0 0
\(949\) −5.23948 + 9.07505i −0.170081 + 0.294589i
\(950\) 6.80796 + 3.93058i 0.220880 + 0.127525i
\(951\) 0 0
\(952\) −5.36094 + 3.09514i −0.173749 + 0.100314i
\(953\) −15.2230 −0.493121 −0.246561 0.969127i \(-0.579300\pi\)
−0.246561 + 0.969127i \(0.579300\pi\)
\(954\) 0 0
\(955\) 5.26374 0.170331
\(956\) −2.95156 5.11225i −0.0954603 0.165342i
\(957\) 0 0
\(958\) 3.15987 5.47305i 0.102091 0.176826i
\(959\) 3.66797 6.35312i 0.118445 0.205153i
\(960\) 0 0
\(961\) 0.00840758 + 0.0145623i 0.000271212 + 0.000469753i
\(962\) 21.4756i 0.692401i
\(963\) 0 0
\(964\) 29.7555i 0.958361i
\(965\) −1.30554 2.26126i −0.0420268 0.0727926i
\(966\) 0 0
\(967\) 32.1737 + 18.5755i 1.03464 + 0.597347i 0.918309 0.395864i \(-0.129555\pi\)
0.116326 + 0.993211i \(0.462888\pi\)
\(968\) 9.54884 5.46073i 0.306911 0.175515i
\(969\) 0 0
\(970\) 12.7860 7.38202i 0.410535 0.237022i
\(971\) 41.9406i 1.34594i 0.739671 + 0.672969i \(0.234981\pi\)
−0.739671 + 0.672969i \(0.765019\pi\)
\(972\) 0 0
\(973\) 56.5674 1.81347
\(974\) −6.57216 11.3833i −0.210586 0.364745i
\(975\) 0 0
\(976\) −7.93110 4.57903i −0.253868 0.146571i
\(977\) −16.4634 9.50512i −0.526709 0.304096i 0.212966 0.977060i \(-0.431688\pi\)
−0.739675 + 0.672964i \(0.765021\pi\)
\(978\) 0 0
\(979\) 41.6187 11.0599i 1.33014 0.353477i
\(980\) 6.51910i 0.208245i
\(981\) 0 0
\(982\) 15.9147 0.507860
\(983\) 3.18190 1.83707i 0.101487 0.0585935i −0.448397 0.893834i \(-0.648005\pi\)
0.549884 + 0.835241i \(0.314672\pi\)
\(984\) 0 0
\(985\) −11.0586 6.38468i −0.352356 0.203433i
\(986\) −6.15722 + 10.6646i −0.196086 + 0.339631i
\(987\) 0 0
\(988\) 8.57589 + 14.8539i 0.272836 + 0.472565i
\(989\) −16.7544 −0.532758
\(990\) 0 0
\(991\) 28.6189 0.909109 0.454555 0.890719i \(-0.349798\pi\)
0.454555 + 0.890719i \(0.349798\pi\)
\(992\) −2.78313 4.82052i −0.0883644 0.153052i
\(993\) 0 0
\(994\) −14.5931 + 25.2760i −0.462865 + 0.801705i
\(995\) −1.87099 1.08022i −0.0593143 0.0342451i
\(996\) 0 0
\(997\) −6.92740 + 3.99954i −0.219393 + 0.126667i −0.605669 0.795717i \(-0.707095\pi\)
0.386276 + 0.922383i \(0.373761\pi\)
\(998\) 35.7146 1.13053
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.b.2771.24 48
3.2 odd 2 990.2.t.a.131.4 48
9.2 odd 6 2970.2.t.a.791.24 48
9.7 even 3 990.2.t.b.461.4 yes 48
11.10 odd 2 2970.2.t.a.2771.24 48
33.32 even 2 990.2.t.b.131.4 yes 48
99.43 odd 6 990.2.t.a.461.4 yes 48
99.65 even 6 inner 2970.2.t.b.791.24 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.4 48 3.2 odd 2
990.2.t.a.461.4 yes 48 99.43 odd 6
990.2.t.b.131.4 yes 48 33.32 even 2
990.2.t.b.461.4 yes 48 9.7 even 3
2970.2.t.a.791.24 48 9.2 odd 6
2970.2.t.a.2771.24 48 11.10 odd 2
2970.2.t.b.791.24 48 99.65 even 6 inner
2970.2.t.b.2771.24 48 1.1 even 1 trivial