Properties

Label 2970.2.t.a.791.5
Level $2970$
Weight $2$
Character 2970.791
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 791.5
Character \(\chi\) \(=\) 2970.791
Dual form 2970.2.t.a.2771.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(0.700188 + 0.404254i) q^{7} +1.00000 q^{8} -1.00000i q^{10} +(3.25169 + 0.653075i) q^{11} +(-1.59171 + 0.918976i) q^{13} +(-0.700188 + 0.404254i) q^{14} +(-0.500000 + 0.866025i) q^{16} +6.50173 q^{17} +1.87055i q^{19} +(0.866025 + 0.500000i) q^{20} +(-2.19142 + 2.48951i) q^{22} +(4.50121 - 2.59877i) q^{23} +(0.500000 - 0.866025i) q^{25} -1.83795i q^{26} -0.808507i q^{28} +(-0.0530153 + 0.0918253i) q^{29} +(-3.25998 - 5.64645i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-3.25087 + 5.63067i) q^{34} -0.808507 q^{35} -4.15951 q^{37} +(-1.61995 - 0.935276i) q^{38} +(-0.866025 + 0.500000i) q^{40} +(-1.74087 - 3.01528i) q^{41} +(-1.09708 - 0.633401i) q^{43} +(-1.06027 - 3.14258i) q^{44} +5.19755i q^{46} +(4.05652 + 2.34204i) q^{47} +(-3.17316 - 5.49607i) q^{49} +(0.500000 + 0.866025i) q^{50} +(1.59171 + 0.918976i) q^{52} -11.0936i q^{53} +(-3.14258 + 1.06027i) q^{55} +(0.700188 + 0.404254i) q^{56} +(-0.0530153 - 0.0918253i) q^{58} +(1.38435 - 0.799257i) q^{59} +(10.7598 + 6.21219i) q^{61} +6.51996 q^{62} +1.00000 q^{64} +(0.918976 - 1.59171i) q^{65} +(-0.221611 - 0.383842i) q^{67} +(-3.25087 - 5.63067i) q^{68} +(0.404254 - 0.700188i) q^{70} +8.87630i q^{71} +14.6450i q^{73} +(2.07976 - 3.60224i) q^{74} +(1.61995 - 0.935276i) q^{76} +(2.01279 + 1.77178i) q^{77} +(10.8062 + 6.23895i) q^{79} -1.00000i q^{80} +3.48175 q^{82} +(-5.77334 + 9.99972i) q^{83} +(-5.63067 + 3.25087i) q^{85} +(1.09708 - 0.633401i) q^{86} +(3.25169 + 0.653075i) q^{88} +7.20794i q^{89} -1.48600 q^{91} +(-4.50121 - 2.59877i) q^{92} +(-4.05652 + 2.34204i) q^{94} +(-0.935276 - 1.61995i) q^{95} +(5.63450 - 9.75924i) q^{97} +6.34632 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} + 12 q^{11} - 24 q^{13} - 24 q^{16} - 12 q^{17} - 6 q^{22} - 36 q^{23} + 24 q^{25} - 24 q^{32} + 6 q^{34} + 6 q^{38} - 6 q^{41} - 30 q^{43} - 6 q^{44} + 24 q^{49} + 24 q^{50}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) 0.700188 + 0.404254i 0.264646 + 0.152793i 0.626452 0.779460i \(-0.284506\pi\)
−0.361806 + 0.932253i \(0.617840\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 3.25169 + 0.653075i 0.980422 + 0.196910i
\(12\) 0 0
\(13\) −1.59171 + 0.918976i −0.441462 + 0.254878i −0.704218 0.709984i \(-0.748702\pi\)
0.262756 + 0.964862i \(0.415369\pi\)
\(14\) −0.700188 + 0.404254i −0.187133 + 0.108041i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 6.50173 1.57690 0.788451 0.615098i \(-0.210883\pi\)
0.788451 + 0.615098i \(0.210883\pi\)
\(18\) 0 0
\(19\) 1.87055i 0.429134i 0.976709 + 0.214567i \(0.0688340\pi\)
−0.976709 + 0.214567i \(0.931166\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0 0
\(22\) −2.19142 + 2.48951i −0.467213 + 0.530765i
\(23\) 4.50121 2.59877i 0.938567 0.541882i 0.0490560 0.998796i \(-0.484379\pi\)
0.889511 + 0.456914i \(0.151045\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 1.83795i 0.360452i
\(27\) 0 0
\(28\) 0.808507i 0.152793i
\(29\) −0.0530153 + 0.0918253i −0.00984470 + 0.0170515i −0.870906 0.491450i \(-0.836467\pi\)
0.861061 + 0.508502i \(0.169800\pi\)
\(30\) 0 0
\(31\) −3.25998 5.64645i −0.585510 1.01413i −0.994812 0.101733i \(-0.967561\pi\)
0.409302 0.912399i \(-0.365772\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −3.25087 + 5.63067i −0.557519 + 0.965651i
\(35\) −0.808507 −0.136663
\(36\) 0 0
\(37\) −4.15951 −0.683820 −0.341910 0.939733i \(-0.611074\pi\)
−0.341910 + 0.939733i \(0.611074\pi\)
\(38\) −1.61995 0.935276i −0.262790 0.151722i
\(39\) 0 0
\(40\) −0.866025 + 0.500000i −0.136931 + 0.0790569i
\(41\) −1.74087 3.01528i −0.271879 0.470908i 0.697464 0.716620i \(-0.254312\pi\)
−0.969343 + 0.245712i \(0.920978\pi\)
\(42\) 0 0
\(43\) −1.09708 0.633401i −0.167304 0.0965928i 0.414010 0.910272i \(-0.364128\pi\)
−0.581314 + 0.813679i \(0.697461\pi\)
\(44\) −1.06027 3.14258i −0.159841 0.473762i
\(45\) 0 0
\(46\) 5.19755i 0.766336i
\(47\) 4.05652 + 2.34204i 0.591705 + 0.341621i 0.765771 0.643113i \(-0.222357\pi\)
−0.174066 + 0.984734i \(0.555691\pi\)
\(48\) 0 0
\(49\) −3.17316 5.49607i −0.453308 0.785153i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 1.59171 + 0.918976i 0.220731 + 0.127439i
\(53\) 11.0936i 1.52382i −0.647682 0.761911i \(-0.724261\pi\)
0.647682 0.761911i \(-0.275739\pi\)
\(54\) 0 0
\(55\) −3.14258 + 1.06027i −0.423746 + 0.142966i
\(56\) 0.700188 + 0.404254i 0.0935665 + 0.0540207i
\(57\) 0 0
\(58\) −0.0530153 0.0918253i −0.00696125 0.0120572i
\(59\) 1.38435 0.799257i 0.180228 0.104054i −0.407172 0.913351i \(-0.633485\pi\)
0.587400 + 0.809297i \(0.300152\pi\)
\(60\) 0 0
\(61\) 10.7598 + 6.21219i 1.37766 + 0.795390i 0.991877 0.127201i \(-0.0405994\pi\)
0.385779 + 0.922591i \(0.373933\pi\)
\(62\) 6.51996 0.828036
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.918976 1.59171i 0.113985 0.197428i
\(66\) 0 0
\(67\) −0.221611 0.383842i −0.0270741 0.0468937i 0.852171 0.523264i \(-0.175286\pi\)
−0.879245 + 0.476370i \(0.841952\pi\)
\(68\) −3.25087 5.63067i −0.394225 0.682819i
\(69\) 0 0
\(70\) 0.404254 0.700188i 0.0483175 0.0836884i
\(71\) 8.87630i 1.05342i 0.850044 + 0.526711i \(0.176575\pi\)
−0.850044 + 0.526711i \(0.823425\pi\)
\(72\) 0 0
\(73\) 14.6450i 1.71407i 0.515262 + 0.857033i \(0.327695\pi\)
−0.515262 + 0.857033i \(0.672305\pi\)
\(74\) 2.07976 3.60224i 0.241767 0.418752i
\(75\) 0 0
\(76\) 1.61995 0.935276i 0.185820 0.107283i
\(77\) 2.01279 + 1.77178i 0.229378 + 0.201913i
\(78\) 0 0
\(79\) 10.8062 + 6.23895i 1.21579 + 0.701937i 0.964015 0.265848i \(-0.0856521\pi\)
0.251776 + 0.967786i \(0.418985\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) 3.48175 0.384495
\(83\) −5.77334 + 9.99972i −0.633707 + 1.09761i 0.353081 + 0.935593i \(0.385134\pi\)
−0.986788 + 0.162019i \(0.948199\pi\)
\(84\) 0 0
\(85\) −5.63067 + 3.25087i −0.610732 + 0.352606i
\(86\) 1.09708 0.633401i 0.118302 0.0683014i
\(87\) 0 0
\(88\) 3.25169 + 0.653075i 0.346631 + 0.0696180i
\(89\) 7.20794i 0.764040i 0.924154 + 0.382020i \(0.124771\pi\)
−0.924154 + 0.382020i \(0.875229\pi\)
\(90\) 0 0
\(91\) −1.48600 −0.155775
\(92\) −4.50121 2.59877i −0.469283 0.270941i
\(93\) 0 0
\(94\) −4.05652 + 2.34204i −0.418399 + 0.241563i
\(95\) −0.935276 1.61995i −0.0959573 0.166203i
\(96\) 0 0
\(97\) 5.63450 9.75924i 0.572097 0.990901i −0.424253 0.905543i \(-0.639463\pi\)
0.996350 0.0853575i \(-0.0272032\pi\)
\(98\) 6.34632 0.641075
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 5.71591 9.90025i 0.568755 0.985112i −0.427935 0.903810i \(-0.640759\pi\)
0.996689 0.0813024i \(-0.0259080\pi\)
\(102\) 0 0
\(103\) −6.50932 11.2745i −0.641382 1.11091i −0.985124 0.171842i \(-0.945028\pi\)
0.343742 0.939064i \(-0.388305\pi\)
\(104\) −1.59171 + 0.918976i −0.156080 + 0.0901130i
\(105\) 0 0
\(106\) 9.60733 + 5.54680i 0.933147 + 0.538753i
\(107\) 19.5145 1.88654 0.943268 0.332032i \(-0.107734\pi\)
0.943268 + 0.332032i \(0.107734\pi\)
\(108\) 0 0
\(109\) 3.12788i 0.299596i −0.988717 0.149798i \(-0.952138\pi\)
0.988717 0.149798i \(-0.0478624\pi\)
\(110\) 0.653075 3.25169i 0.0622683 0.310037i
\(111\) 0 0
\(112\) −0.700188 + 0.404254i −0.0661615 + 0.0381984i
\(113\) 0.700012 0.404152i 0.0658516 0.0380194i −0.466713 0.884409i \(-0.654562\pi\)
0.532564 + 0.846390i \(0.321228\pi\)
\(114\) 0 0
\(115\) −2.59877 + 4.50121i −0.242337 + 0.419740i
\(116\) 0.106031 0.00984470
\(117\) 0 0
\(118\) 1.59851i 0.147155i
\(119\) 4.55243 + 2.62835i 0.417321 + 0.240940i
\(120\) 0 0
\(121\) 10.1470 + 4.24720i 0.922453 + 0.386109i
\(122\) −10.7598 + 6.21219i −0.974150 + 0.562426i
\(123\) 0 0
\(124\) −3.25998 + 5.64645i −0.292755 + 0.507066i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 21.3573i 1.89516i −0.319523 0.947579i \(-0.603523\pi\)
0.319523 0.947579i \(-0.396477\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0.918976 + 1.59171i 0.0805995 + 0.139603i
\(131\) 3.08156 + 5.33742i 0.269237 + 0.466332i 0.968665 0.248371i \(-0.0798952\pi\)
−0.699428 + 0.714703i \(0.746562\pi\)
\(132\) 0 0
\(133\) −0.756177 + 1.30974i −0.0655689 + 0.113569i
\(134\) 0.443222 0.0382886
\(135\) 0 0
\(136\) 6.50173 0.557519
\(137\) 8.74723 + 5.05022i 0.747326 + 0.431469i 0.824727 0.565531i \(-0.191329\pi\)
−0.0774007 + 0.997000i \(0.524662\pi\)
\(138\) 0 0
\(139\) −10.7266 + 6.19303i −0.909821 + 0.525286i −0.880374 0.474281i \(-0.842708\pi\)
−0.0294478 + 0.999566i \(0.509375\pi\)
\(140\) 0.404254 + 0.700188i 0.0341657 + 0.0591767i
\(141\) 0 0
\(142\) −7.68710 4.43815i −0.645087 0.372441i
\(143\) −5.77592 + 1.94872i −0.483007 + 0.162960i
\(144\) 0 0
\(145\) 0.106031i 0.00880537i
\(146\) −12.6829 7.32249i −1.04965 0.606014i
\(147\) 0 0
\(148\) 2.07976 + 3.60224i 0.170955 + 0.296103i
\(149\) 10.3389 + 17.9074i 0.846992 + 1.46703i 0.883880 + 0.467714i \(0.154922\pi\)
−0.0368876 + 0.999319i \(0.511744\pi\)
\(150\) 0 0
\(151\) 17.5811 + 10.1504i 1.43073 + 0.826031i 0.997176 0.0750981i \(-0.0239270\pi\)
0.433551 + 0.901129i \(0.357260\pi\)
\(152\) 1.87055i 0.151722i
\(153\) 0 0
\(154\) −2.54080 + 0.857232i −0.204744 + 0.0690778i
\(155\) 5.64645 + 3.25998i 0.453534 + 0.261848i
\(156\) 0 0
\(157\) 1.07419 + 1.86056i 0.0857301 + 0.148489i 0.905702 0.423915i \(-0.139344\pi\)
−0.819972 + 0.572404i \(0.806011\pi\)
\(158\) −10.8062 + 6.23895i −0.859694 + 0.496345i
\(159\) 0 0
\(160\) 0.866025 + 0.500000i 0.0684653 + 0.0395285i
\(161\) 4.20225 0.331184
\(162\) 0 0
\(163\) −11.8388 −0.927287 −0.463643 0.886022i \(-0.653458\pi\)
−0.463643 + 0.886022i \(0.653458\pi\)
\(164\) −1.74087 + 3.01528i −0.135939 + 0.235454i
\(165\) 0 0
\(166\) −5.77334 9.99972i −0.448098 0.776129i
\(167\) 11.4316 + 19.8001i 0.884604 + 1.53218i 0.846167 + 0.532918i \(0.178905\pi\)
0.0384373 + 0.999261i \(0.487762\pi\)
\(168\) 0 0
\(169\) −4.81097 + 8.33284i −0.370074 + 0.640987i
\(170\) 6.50173i 0.498660i
\(171\) 0 0
\(172\) 1.26680i 0.0965928i
\(173\) 2.53267 4.38671i 0.192555 0.333515i −0.753541 0.657401i \(-0.771656\pi\)
0.946096 + 0.323886i \(0.104989\pi\)
\(174\) 0 0
\(175\) 0.700188 0.404254i 0.0529292 0.0305587i
\(176\) −2.19142 + 2.48951i −0.165185 + 0.187654i
\(177\) 0 0
\(178\) −6.24226 3.60397i −0.467877 0.270129i
\(179\) 0.683164i 0.0510621i −0.999674 0.0255310i \(-0.991872\pi\)
0.999674 0.0255310i \(-0.00812767\pi\)
\(180\) 0 0
\(181\) −9.74615 −0.724425 −0.362213 0.932095i \(-0.617979\pi\)
−0.362213 + 0.932095i \(0.617979\pi\)
\(182\) 0.742999 1.28691i 0.0550747 0.0953922i
\(183\) 0 0
\(184\) 4.50121 2.59877i 0.331833 0.191584i
\(185\) 3.60224 2.07976i 0.264842 0.152907i
\(186\) 0 0
\(187\) 21.1416 + 4.24612i 1.54603 + 0.310507i
\(188\) 4.68407i 0.341621i
\(189\) 0 0
\(190\) 1.87055 0.135704
\(191\) 5.09125 + 2.93944i 0.368390 + 0.212690i 0.672755 0.739865i \(-0.265111\pi\)
−0.304365 + 0.952556i \(0.598444\pi\)
\(192\) 0 0
\(193\) −1.52540 + 0.880691i −0.109801 + 0.0633935i −0.553895 0.832587i \(-0.686859\pi\)
0.444094 + 0.895980i \(0.353526\pi\)
\(194\) 5.63450 + 9.75924i 0.404534 + 0.700673i
\(195\) 0 0
\(196\) −3.17316 + 5.49607i −0.226654 + 0.392577i
\(197\) −2.26771 −0.161568 −0.0807839 0.996732i \(-0.525742\pi\)
−0.0807839 + 0.996732i \(0.525742\pi\)
\(198\) 0 0
\(199\) 23.0129 1.63134 0.815669 0.578519i \(-0.196369\pi\)
0.815669 + 0.578519i \(0.196369\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) 5.71591 + 9.90025i 0.402170 + 0.696579i
\(203\) −0.0742414 + 0.0428633i −0.00521072 + 0.00300841i
\(204\) 0 0
\(205\) 3.01528 + 1.74087i 0.210596 + 0.121588i
\(206\) 13.0186 0.907051
\(207\) 0 0
\(208\) 1.83795i 0.127439i
\(209\) −1.22161 + 6.08246i −0.0845006 + 0.420732i
\(210\) 0 0
\(211\) −6.07694 + 3.50852i −0.418354 + 0.241537i −0.694373 0.719616i \(-0.744318\pi\)
0.276019 + 0.961152i \(0.410985\pi\)
\(212\) −9.60733 + 5.54680i −0.659834 + 0.380956i
\(213\) 0 0
\(214\) −9.75724 + 16.9000i −0.666991 + 1.15526i
\(215\) 1.26680 0.0863952
\(216\) 0 0
\(217\) 5.27143i 0.357848i
\(218\) 2.70882 + 1.56394i 0.183465 + 0.105923i
\(219\) 0 0
\(220\) 2.48951 + 2.19142i 0.167843 + 0.147746i
\(221\) −10.3489 + 5.97494i −0.696142 + 0.401918i
\(222\) 0 0
\(223\) 8.66329 15.0053i 0.580136 1.00483i −0.415326 0.909673i \(-0.636333\pi\)
0.995463 0.0951533i \(-0.0303341\pi\)
\(224\) 0.808507i 0.0540207i
\(225\) 0 0
\(226\) 0.808304i 0.0537676i
\(227\) −3.93984 + 6.82400i −0.261496 + 0.452925i −0.966640 0.256140i \(-0.917549\pi\)
0.705144 + 0.709065i \(0.250883\pi\)
\(228\) 0 0
\(229\) 3.92425 + 6.79701i 0.259322 + 0.449159i 0.966060 0.258316i \(-0.0831676\pi\)
−0.706739 + 0.707475i \(0.749834\pi\)
\(230\) −2.59877 4.50121i −0.171358 0.296801i
\(231\) 0 0
\(232\) −0.0530153 + 0.0918253i −0.00348063 + 0.00602862i
\(233\) 6.38805 0.418495 0.209247 0.977863i \(-0.432899\pi\)
0.209247 + 0.977863i \(0.432899\pi\)
\(234\) 0 0
\(235\) −4.68407 −0.305555
\(236\) −1.38435 0.799257i −0.0901138 0.0520272i
\(237\) 0 0
\(238\) −4.55243 + 2.62835i −0.295090 + 0.170371i
\(239\) −7.14471 12.3750i −0.462153 0.800472i 0.536915 0.843636i \(-0.319590\pi\)
−0.999068 + 0.0431641i \(0.986256\pi\)
\(240\) 0 0
\(241\) −5.57754 3.22019i −0.359281 0.207431i 0.309484 0.950905i \(-0.399844\pi\)
−0.668765 + 0.743474i \(0.733177\pi\)
\(242\) −8.75167 + 6.66395i −0.562579 + 0.428375i
\(243\) 0 0
\(244\) 12.4244i 0.795390i
\(245\) 5.49607 + 3.17316i 0.351131 + 0.202726i
\(246\) 0 0
\(247\) −1.71899 2.97738i −0.109377 0.189446i
\(248\) −3.25998 5.64645i −0.207009 0.358550i
\(249\) 0 0
\(250\) −0.866025 0.500000i −0.0547723 0.0316228i
\(251\) 3.07565i 0.194134i −0.995278 0.0970668i \(-0.969054\pi\)
0.995278 0.0970668i \(-0.0309460\pi\)
\(252\) 0 0
\(253\) 16.3337 5.51078i 1.02689 0.346460i
\(254\) 18.4960 + 10.6787i 1.16054 + 0.670039i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.2896 7.09539i 0.766603 0.442598i −0.0650588 0.997881i \(-0.520723\pi\)
0.831661 + 0.555283i \(0.187390\pi\)
\(258\) 0 0
\(259\) −2.91244 1.68150i −0.180970 0.104483i
\(260\) −1.83795 −0.113985
\(261\) 0 0
\(262\) −6.16312 −0.380759
\(263\) 13.1025 22.6943i 0.807938 1.39939i −0.106352 0.994329i \(-0.533917\pi\)
0.914290 0.405061i \(-0.132750\pi\)
\(264\) 0 0
\(265\) 5.54680 + 9.60733i 0.340737 + 0.590174i
\(266\) −0.756177 1.30974i −0.0463642 0.0803051i
\(267\) 0 0
\(268\) −0.221611 + 0.383842i −0.0135371 + 0.0234469i
\(269\) 6.72917i 0.410285i 0.978732 + 0.205142i \(0.0657658\pi\)
−0.978732 + 0.205142i \(0.934234\pi\)
\(270\) 0 0
\(271\) 11.8647i 0.720730i 0.932811 + 0.360365i \(0.117348\pi\)
−0.932811 + 0.360365i \(0.882652\pi\)
\(272\) −3.25087 + 5.63067i −0.197113 + 0.341409i
\(273\) 0 0
\(274\) −8.74723 + 5.05022i −0.528440 + 0.305095i
\(275\) 2.19142 2.48951i 0.132148 0.150123i
\(276\) 0 0
\(277\) −5.70227 3.29221i −0.342616 0.197810i 0.318812 0.947818i \(-0.396716\pi\)
−0.661428 + 0.750008i \(0.730049\pi\)
\(278\) 12.3861i 0.742866i
\(279\) 0 0
\(280\) −0.808507 −0.0483175
\(281\) −12.5438 + 21.7265i −0.748302 + 1.29610i 0.200334 + 0.979728i \(0.435797\pi\)
−0.948636 + 0.316369i \(0.897536\pi\)
\(282\) 0 0
\(283\) −18.9030 + 10.9137i −1.12367 + 0.648751i −0.942335 0.334671i \(-0.891375\pi\)
−0.181334 + 0.983421i \(0.558042\pi\)
\(284\) 7.68710 4.43815i 0.456145 0.263356i
\(285\) 0 0
\(286\) 1.20032 5.97645i 0.0709765 0.353395i
\(287\) 2.81502i 0.166165i
\(288\) 0 0
\(289\) 25.2725 1.48662
\(290\) 0.0918253 + 0.0530153i 0.00539216 + 0.00311317i
\(291\) 0 0
\(292\) 12.6829 7.32249i 0.742212 0.428516i
\(293\) −5.87689 10.1791i −0.343331 0.594667i 0.641718 0.766941i \(-0.278222\pi\)
−0.985049 + 0.172274i \(0.944889\pi\)
\(294\) 0 0
\(295\) −0.799257 + 1.38435i −0.0465346 + 0.0806002i
\(296\) −4.15951 −0.241767
\(297\) 0 0
\(298\) −20.6777 −1.19783
\(299\) −4.77642 + 8.27301i −0.276228 + 0.478440i
\(300\) 0 0
\(301\) −0.512110 0.887000i −0.0295175 0.0511258i
\(302\) −17.5811 + 10.1504i −1.01168 + 0.584092i
\(303\) 0 0
\(304\) −1.61995 0.935276i −0.0929102 0.0536417i
\(305\) −12.4244 −0.711418
\(306\) 0 0
\(307\) 4.46253i 0.254690i −0.991858 0.127345i \(-0.959354\pi\)
0.991858 0.127345i \(-0.0406456\pi\)
\(308\) 0.528016 2.62902i 0.0300865 0.149802i
\(309\) 0 0
\(310\) −5.64645 + 3.25998i −0.320697 + 0.185154i
\(311\) −7.44194 + 4.29660i −0.421993 + 0.243638i −0.695930 0.718110i \(-0.745008\pi\)
0.273936 + 0.961748i \(0.411674\pi\)
\(312\) 0 0
\(313\) −1.02823 + 1.78094i −0.0581189 + 0.100665i −0.893621 0.448822i \(-0.851844\pi\)
0.835502 + 0.549487i \(0.185177\pi\)
\(314\) −2.14839 −0.121241
\(315\) 0 0
\(316\) 12.4779i 0.701937i
\(317\) −3.40370 1.96513i −0.191171 0.110373i 0.401360 0.915920i \(-0.368538\pi\)
−0.592531 + 0.805548i \(0.701871\pi\)
\(318\) 0 0
\(319\) −0.232358 + 0.263964i −0.0130096 + 0.0147792i
\(320\) −0.866025 + 0.500000i −0.0484123 + 0.0279508i
\(321\) 0 0
\(322\) −2.10113 + 3.63926i −0.117091 + 0.202808i
\(323\) 12.1618i 0.676702i
\(324\) 0 0
\(325\) 1.83795i 0.101951i
\(326\) 5.91940 10.2527i 0.327845 0.567845i
\(327\) 0 0
\(328\) −1.74087 3.01528i −0.0961237 0.166491i
\(329\) 1.89355 + 3.27973i 0.104395 + 0.180817i
\(330\) 0 0
\(331\) −7.61257 + 13.1854i −0.418424 + 0.724732i −0.995781 0.0917596i \(-0.970751\pi\)
0.577357 + 0.816492i \(0.304084\pi\)
\(332\) 11.5467 0.633707
\(333\) 0 0
\(334\) −22.8632 −1.25102
\(335\) 0.383842 + 0.221611i 0.0209715 + 0.0121079i
\(336\) 0 0
\(337\) −5.77401 + 3.33363i −0.314530 + 0.181594i −0.648952 0.760829i \(-0.724792\pi\)
0.334422 + 0.942424i \(0.391459\pi\)
\(338\) −4.81097 8.33284i −0.261682 0.453247i
\(339\) 0 0
\(340\) 5.63067 + 3.25087i 0.305366 + 0.176303i
\(341\) −6.91289 20.4895i −0.374354 1.10957i
\(342\) 0 0
\(343\) 10.7906i 0.582637i
\(344\) −1.09708 0.633401i −0.0591508 0.0341507i
\(345\) 0 0
\(346\) 2.53267 + 4.38671i 0.136157 + 0.235831i
\(347\) 3.74402 + 6.48484i 0.200990 + 0.348124i 0.948848 0.315735i \(-0.102251\pi\)
−0.747858 + 0.663859i \(0.768918\pi\)
\(348\) 0 0
\(349\) 13.6389 + 7.87442i 0.730073 + 0.421508i 0.818449 0.574579i \(-0.194834\pi\)
−0.0883758 + 0.996087i \(0.528168\pi\)
\(350\) 0.808507i 0.0432165i
\(351\) 0 0
\(352\) −1.06027 3.14258i −0.0565124 0.167500i
\(353\) −14.8221 8.55757i −0.788903 0.455473i 0.0506732 0.998715i \(-0.483863\pi\)
−0.839576 + 0.543242i \(0.817197\pi\)
\(354\) 0 0
\(355\) −4.43815 7.68710i −0.235552 0.407989i
\(356\) 6.24226 3.60397i 0.330839 0.191010i
\(357\) 0 0
\(358\) 0.591638 + 0.341582i 0.0312690 + 0.0180532i
\(359\) 10.8139 0.570738 0.285369 0.958418i \(-0.407884\pi\)
0.285369 + 0.958418i \(0.407884\pi\)
\(360\) 0 0
\(361\) 15.5010 0.815844
\(362\) 4.87307 8.44041i 0.256123 0.443618i
\(363\) 0 0
\(364\) 0.742999 + 1.28691i 0.0389437 + 0.0674525i
\(365\) −7.32249 12.6829i −0.383277 0.663855i
\(366\) 0 0
\(367\) −0.210501 + 0.364599i −0.0109881 + 0.0190319i −0.871467 0.490454i \(-0.836831\pi\)
0.860479 + 0.509486i \(0.170164\pi\)
\(368\) 5.19755i 0.270941i
\(369\) 0 0
\(370\) 4.15951i 0.216243i
\(371\) 4.48462 7.76760i 0.232830 0.403274i
\(372\) 0 0
\(373\) −26.9995 + 15.5882i −1.39798 + 0.807125i −0.994181 0.107721i \(-0.965645\pi\)
−0.403801 + 0.914847i \(0.632311\pi\)
\(374\) −14.2481 + 16.1861i −0.736750 + 0.836965i
\(375\) 0 0
\(376\) 4.05652 + 2.34204i 0.209199 + 0.120781i
\(377\) 0.194879i 0.0100368i
\(378\) 0 0
\(379\) −13.7409 −0.705820 −0.352910 0.935657i \(-0.614808\pi\)
−0.352910 + 0.935657i \(0.614808\pi\)
\(380\) −0.935276 + 1.61995i −0.0479786 + 0.0831014i
\(381\) 0 0
\(382\) −5.09125 + 2.93944i −0.260491 + 0.150395i
\(383\) 8.00915 4.62409i 0.409248 0.236280i −0.281218 0.959644i \(-0.590739\pi\)
0.690467 + 0.723364i \(0.257405\pi\)
\(384\) 0 0
\(385\) −2.62902 0.528016i −0.133987 0.0269102i
\(386\) 1.76138i 0.0896520i
\(387\) 0 0
\(388\) −11.2690 −0.572097
\(389\) −4.41058 2.54645i −0.223625 0.129110i 0.384003 0.923332i \(-0.374545\pi\)
−0.607628 + 0.794222i \(0.707879\pi\)
\(390\) 0 0
\(391\) 29.2657 16.8965i 1.48003 0.854494i
\(392\) −3.17316 5.49607i −0.160269 0.277594i
\(393\) 0 0
\(394\) 1.13386 1.96390i 0.0571228 0.0989396i
\(395\) −12.4779 −0.627832
\(396\) 0 0
\(397\) 18.0972 0.908273 0.454137 0.890932i \(-0.349948\pi\)
0.454137 + 0.890932i \(0.349948\pi\)
\(398\) −11.5064 + 19.9297i −0.576765 + 0.998987i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 6.36615 3.67550i 0.317910 0.183546i −0.332550 0.943085i \(-0.607909\pi\)
0.650461 + 0.759540i \(0.274576\pi\)
\(402\) 0 0
\(403\) 10.3779 + 5.99169i 0.516960 + 0.298467i
\(404\) −11.4318 −0.568755
\(405\) 0 0
\(406\) 0.0857266i 0.00425454i
\(407\) −13.5255 2.71647i −0.670432 0.134651i
\(408\) 0 0
\(409\) −7.31309 + 4.22222i −0.361609 + 0.208775i −0.669786 0.742554i \(-0.733614\pi\)
0.308177 + 0.951329i \(0.400281\pi\)
\(410\) −3.01528 + 1.74087i −0.148914 + 0.0859756i
\(411\) 0 0
\(412\) −6.50932 + 11.2745i −0.320691 + 0.555453i
\(413\) 1.29241 0.0635954
\(414\) 0 0
\(415\) 11.5467i 0.566804i
\(416\) 1.59171 + 0.918976i 0.0780402 + 0.0450565i
\(417\) 0 0
\(418\) −4.65676 4.09917i −0.227769 0.200497i
\(419\) −25.9408 + 14.9769i −1.26729 + 0.731672i −0.974475 0.224496i \(-0.927926\pi\)
−0.292818 + 0.956168i \(0.594593\pi\)
\(420\) 0 0
\(421\) 4.82963 8.36516i 0.235382 0.407693i −0.724002 0.689798i \(-0.757699\pi\)
0.959384 + 0.282105i \(0.0910326\pi\)
\(422\) 7.01704i 0.341584i
\(423\) 0 0
\(424\) 11.0936i 0.538753i
\(425\) 3.25087 5.63067i 0.157690 0.273127i
\(426\) 0 0
\(427\) 5.02260 + 8.69940i 0.243061 + 0.420994i
\(428\) −9.75724 16.9000i −0.471634 0.816894i
\(429\) 0 0
\(430\) −0.633401 + 1.09708i −0.0305453 + 0.0529061i
\(431\) 7.43225 0.357999 0.178999 0.983849i \(-0.442714\pi\)
0.178999 + 0.983849i \(0.442714\pi\)
\(432\) 0 0
\(433\) 38.6060 1.85529 0.927644 0.373466i \(-0.121831\pi\)
0.927644 + 0.373466i \(0.121831\pi\)
\(434\) 4.56519 + 2.63572i 0.219136 + 0.126518i
\(435\) 0 0
\(436\) −2.70882 + 1.56394i −0.129729 + 0.0748991i
\(437\) 4.86114 + 8.41974i 0.232540 + 0.402771i
\(438\) 0 0
\(439\) −30.8607 17.8174i −1.47290 0.850380i −0.473367 0.880865i \(-0.656961\pi\)
−0.999535 + 0.0304850i \(0.990295\pi\)
\(440\) −3.14258 + 1.06027i −0.149817 + 0.0505462i
\(441\) 0 0
\(442\) 11.9499i 0.568398i
\(443\) −19.2694 11.1252i −0.915517 0.528574i −0.0333149 0.999445i \(-0.510606\pi\)
−0.882202 + 0.470871i \(0.843940\pi\)
\(444\) 0 0
\(445\) −3.60397 6.24226i −0.170844 0.295911i
\(446\) 8.66329 + 15.0053i 0.410218 + 0.710519i
\(447\) 0 0
\(448\) 0.700188 + 0.404254i 0.0330808 + 0.0190992i
\(449\) 24.9351i 1.17676i 0.808585 + 0.588379i \(0.200234\pi\)
−0.808585 + 0.588379i \(0.799766\pi\)
\(450\) 0 0
\(451\) −3.69158 10.9417i −0.173830 0.515224i
\(452\) −0.700012 0.404152i −0.0329258 0.0190097i
\(453\) 0 0
\(454\) −3.93984 6.82400i −0.184906 0.320266i
\(455\) 1.28691 0.742999i 0.0603314 0.0348323i
\(456\) 0 0
\(457\) 3.35432 + 1.93662i 0.156909 + 0.0905912i 0.576398 0.817169i \(-0.304458\pi\)
−0.419490 + 0.907760i \(0.637791\pi\)
\(458\) −7.84851 −0.366737
\(459\) 0 0
\(460\) 5.19755 0.242337
\(461\) 4.36386 7.55843i 0.203245 0.352031i −0.746327 0.665580i \(-0.768184\pi\)
0.949572 + 0.313548i \(0.101518\pi\)
\(462\) 0 0
\(463\) −15.2101 26.3447i −0.706873 1.22434i −0.966011 0.258500i \(-0.916772\pi\)
0.259138 0.965840i \(-0.416562\pi\)
\(464\) −0.0530153 0.0918253i −0.00246118 0.00426288i
\(465\) 0 0
\(466\) −3.19402 + 5.53221i −0.147960 + 0.256275i
\(467\) 14.3264i 0.662946i 0.943465 + 0.331473i \(0.107546\pi\)
−0.943465 + 0.331473i \(0.892454\pi\)
\(468\) 0 0
\(469\) 0.358348i 0.0165470i
\(470\) 2.34204 4.05652i 0.108030 0.187114i
\(471\) 0 0
\(472\) 1.38435 0.799257i 0.0637201 0.0367888i
\(473\) −3.15372 2.77610i −0.145008 0.127645i
\(474\) 0 0
\(475\) 1.61995 + 0.935276i 0.0743282 + 0.0429134i
\(476\) 5.25670i 0.240940i
\(477\) 0 0
\(478\) 14.2894 0.653583
\(479\) −4.21713 + 7.30428i −0.192686 + 0.333741i −0.946139 0.323760i \(-0.895053\pi\)
0.753454 + 0.657501i \(0.228386\pi\)
\(480\) 0 0
\(481\) 6.62075 3.82249i 0.301880 0.174291i
\(482\) 5.57754 3.22019i 0.254050 0.146676i
\(483\) 0 0
\(484\) −1.39531 10.9111i −0.0634233 0.495961i
\(485\) 11.2690i 0.511699i
\(486\) 0 0
\(487\) 8.04981 0.364772 0.182386 0.983227i \(-0.441618\pi\)
0.182386 + 0.983227i \(0.441618\pi\)
\(488\) 10.7598 + 6.21219i 0.487075 + 0.281213i
\(489\) 0 0
\(490\) −5.49607 + 3.17316i −0.248287 + 0.143349i
\(491\) 0.370909 + 0.642433i 0.0167389 + 0.0289926i 0.874274 0.485434i \(-0.161338\pi\)
−0.857535 + 0.514426i \(0.828005\pi\)
\(492\) 0 0
\(493\) −0.344692 + 0.597023i −0.0155241 + 0.0268886i
\(494\) 3.43798 0.154682
\(495\) 0 0
\(496\) 6.51996 0.292755
\(497\) −3.58827 + 6.21507i −0.160956 + 0.278784i
\(498\) 0 0
\(499\) 2.80828 + 4.86409i 0.125716 + 0.217747i 0.922013 0.387160i \(-0.126544\pi\)
−0.796297 + 0.604906i \(0.793211\pi\)
\(500\) 0.866025 0.500000i 0.0387298 0.0223607i
\(501\) 0 0
\(502\) 2.66359 + 1.53783i 0.118882 + 0.0686366i
\(503\) −28.1297 −1.25424 −0.627121 0.778922i \(-0.715767\pi\)
−0.627121 + 0.778922i \(0.715767\pi\)
\(504\) 0 0
\(505\) 11.4318i 0.508710i
\(506\) −3.39439 + 16.9008i −0.150899 + 0.751333i
\(507\) 0 0
\(508\) −18.4960 + 10.6787i −0.820627 + 0.473789i
\(509\) 36.2515 20.9298i 1.60682 0.927698i 0.616745 0.787163i \(-0.288451\pi\)
0.990076 0.140535i \(-0.0448824\pi\)
\(510\) 0 0
\(511\) −5.92029 + 10.2542i −0.261898 + 0.453621i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 14.1908i 0.625928i
\(515\) 11.2745 + 6.50932i 0.496812 + 0.286835i
\(516\) 0 0
\(517\) 11.6610 + 10.2648i 0.512852 + 0.451445i
\(518\) 2.91244 1.68150i 0.127965 0.0738808i
\(519\) 0 0
\(520\) 0.918976 1.59171i 0.0402998 0.0698013i
\(521\) 42.0815i 1.84362i 0.387638 + 0.921812i \(0.373291\pi\)
−0.387638 + 0.921812i \(0.626709\pi\)
\(522\) 0 0
\(523\) 9.18729i 0.401732i 0.979619 + 0.200866i \(0.0643756\pi\)
−0.979619 + 0.200866i \(0.935624\pi\)
\(524\) 3.08156 5.33742i 0.134619 0.233166i
\(525\) 0 0
\(526\) 13.1025 + 22.6943i 0.571298 + 0.989518i
\(527\) −21.1955 36.7117i −0.923291 1.59919i
\(528\) 0 0
\(529\) 2.00725 3.47665i 0.0872716 0.151159i
\(530\) −11.0936 −0.481875
\(531\) 0 0
\(532\) 1.51235 0.0655689
\(533\) 5.54194 + 3.19964i 0.240048 + 0.138592i
\(534\) 0 0
\(535\) −16.9000 + 9.75724i −0.730652 + 0.421842i
\(536\) −0.221611 0.383842i −0.00957214 0.0165794i
\(537\) 0 0
\(538\) −5.82763 3.36459i −0.251247 0.145058i
\(539\) −6.72878 19.9438i −0.289829 0.859042i
\(540\) 0 0
\(541\) 8.40554i 0.361382i −0.983540 0.180691i \(-0.942167\pi\)
0.983540 0.180691i \(-0.0578335\pi\)
\(542\) −10.2751 5.93236i −0.441355 0.254817i
\(543\) 0 0
\(544\) −3.25087 5.63067i −0.139380 0.241413i
\(545\) 1.56394 + 2.70882i 0.0669918 + 0.116033i
\(546\) 0 0
\(547\) −0.617106 0.356286i −0.0263855 0.0152337i 0.486749 0.873542i \(-0.338183\pi\)
−0.513135 + 0.858308i \(0.671516\pi\)
\(548\) 10.1004i 0.431469i
\(549\) 0 0
\(550\) 1.06027 + 3.14258i 0.0452099 + 0.134000i
\(551\) −0.171764 0.0991679i −0.00731739 0.00422470i
\(552\) 0 0
\(553\) 5.04424 + 8.73688i 0.214503 + 0.371530i
\(554\) 5.70227 3.29221i 0.242266 0.139872i
\(555\) 0 0
\(556\) 10.7266 + 6.19303i 0.454911 + 0.262643i
\(557\) −3.99124 −0.169114 −0.0845571 0.996419i \(-0.526948\pi\)
−0.0845571 + 0.996419i \(0.526948\pi\)
\(558\) 0 0
\(559\) 2.32832 0.0984776
\(560\) 0.404254 0.700188i 0.0170828 0.0295883i
\(561\) 0 0
\(562\) −12.5438 21.7265i −0.529129 0.916479i
\(563\) −23.4366 40.5933i −0.987734 1.71081i −0.629094 0.777329i \(-0.716574\pi\)
−0.358639 0.933476i \(-0.616759\pi\)
\(564\) 0 0
\(565\) −0.404152 + 0.700012i −0.0170028 + 0.0294497i
\(566\) 21.8274i 0.917472i
\(567\) 0 0
\(568\) 8.87630i 0.372441i
\(569\) 13.8231 23.9422i 0.579493 1.00371i −0.416044 0.909344i \(-0.636584\pi\)
0.995537 0.0943670i \(-0.0300827\pi\)
\(570\) 0 0
\(571\) −0.0760954 + 0.0439337i −0.00318449 + 0.00183857i −0.501591 0.865105i \(-0.667252\pi\)
0.498407 + 0.866943i \(0.333919\pi\)
\(572\) 4.57560 + 4.02774i 0.191315 + 0.168408i
\(573\) 0 0
\(574\) 2.43788 + 1.40751i 0.101755 + 0.0587483i
\(575\) 5.19755i 0.216753i
\(576\) 0 0
\(577\) −34.7807 −1.44794 −0.723970 0.689831i \(-0.757685\pi\)
−0.723970 + 0.689831i \(0.757685\pi\)
\(578\) −12.6363 + 21.8867i −0.525599 + 0.910365i
\(579\) 0 0
\(580\) −0.0918253 + 0.0530153i −0.00381284 + 0.00220134i
\(581\) −8.08485 + 4.66779i −0.335416 + 0.193652i
\(582\) 0 0
\(583\) 7.24495 36.0729i 0.300055 1.49399i
\(584\) 14.6450i 0.606014i
\(585\) 0 0
\(586\) 11.7538 0.485544
\(587\) −6.79402 3.92253i −0.280419 0.161900i 0.353194 0.935550i \(-0.385096\pi\)
−0.633613 + 0.773650i \(0.718429\pi\)
\(588\) 0 0
\(589\) 10.5620 6.09796i 0.435199 0.251262i
\(590\) −0.799257 1.38435i −0.0329049 0.0569930i
\(591\) 0 0
\(592\) 2.07976 3.60224i 0.0854775 0.148051i
\(593\) −33.3620 −1.37001 −0.685006 0.728538i \(-0.740200\pi\)
−0.685006 + 0.728538i \(0.740200\pi\)
\(594\) 0 0
\(595\) −5.25670 −0.215504
\(596\) 10.3389 17.9074i 0.423496 0.733517i
\(597\) 0 0
\(598\) −4.77642 8.27301i −0.195322 0.338308i
\(599\) 4.28378 2.47324i 0.175031 0.101054i −0.409925 0.912119i \(-0.634445\pi\)
0.584956 + 0.811065i \(0.301112\pi\)
\(600\) 0 0
\(601\) 21.5660 + 12.4512i 0.879697 + 0.507893i 0.870559 0.492065i \(-0.163758\pi\)
0.00913864 + 0.999958i \(0.497091\pi\)
\(602\) 1.02422 0.0417441
\(603\) 0 0
\(604\) 20.3009i 0.826031i
\(605\) −10.9111 + 1.39531i −0.443601 + 0.0567275i
\(606\) 0 0
\(607\) 11.0145 6.35925i 0.447066 0.258114i −0.259524 0.965737i \(-0.583566\pi\)
0.706590 + 0.707623i \(0.250232\pi\)
\(608\) 1.61995 0.935276i 0.0656975 0.0379304i
\(609\) 0 0
\(610\) 6.21219 10.7598i 0.251524 0.435653i
\(611\) −8.60910 −0.348287
\(612\) 0 0
\(613\) 0.697036i 0.0281530i −0.999901 0.0140765i \(-0.995519\pi\)
0.999901 0.0140765i \(-0.00448084\pi\)
\(614\) 3.86467 + 2.23127i 0.155965 + 0.0900466i
\(615\) 0 0
\(616\) 2.01279 + 1.77178i 0.0810975 + 0.0713872i
\(617\) 21.7066 12.5323i 0.873876 0.504532i 0.00524151 0.999986i \(-0.498332\pi\)
0.868634 + 0.495454i \(0.164998\pi\)
\(618\) 0 0
\(619\) −7.63117 + 13.2176i −0.306723 + 0.531259i −0.977643 0.210270i \(-0.932566\pi\)
0.670921 + 0.741529i \(0.265899\pi\)
\(620\) 6.51996i 0.261848i
\(621\) 0 0
\(622\) 8.59321i 0.344556i
\(623\) −2.91383 + 5.04691i −0.116740 + 0.202200i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −1.02823 1.78094i −0.0410963 0.0711808i
\(627\) 0 0
\(628\) 1.07419 1.86056i 0.0428650 0.0742444i
\(629\) −27.0441 −1.07832
\(630\) 0 0
\(631\) −16.4855 −0.656278 −0.328139 0.944629i \(-0.606421\pi\)
−0.328139 + 0.944629i \(0.606421\pi\)
\(632\) 10.8062 + 6.23895i 0.429847 + 0.248172i
\(633\) 0 0
\(634\) 3.40370 1.96513i 0.135178 0.0780452i
\(635\) 10.6787 + 18.4960i 0.423770 + 0.733991i
\(636\) 0 0
\(637\) 10.1015 + 5.83211i 0.400237 + 0.231077i
\(638\) −0.112421 0.333210i −0.00445078 0.0131919i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) 5.30661 + 3.06377i 0.209599 + 0.121012i 0.601125 0.799155i \(-0.294719\pi\)
−0.391526 + 0.920167i \(0.628053\pi\)
\(642\) 0 0
\(643\) −7.76854 13.4555i −0.306361 0.530634i 0.671202 0.741274i \(-0.265778\pi\)
−0.977564 + 0.210641i \(0.932445\pi\)
\(644\) −2.10113 3.63926i −0.0827960 0.143407i
\(645\) 0 0
\(646\) −10.5325 6.08091i −0.414394 0.239250i
\(647\) 39.4895i 1.55249i −0.630430 0.776246i \(-0.717121\pi\)
0.630430 0.776246i \(-0.282879\pi\)
\(648\) 0 0
\(649\) 5.02347 1.69485i 0.197188 0.0665287i
\(650\) −1.59171 0.918976i −0.0624321 0.0360452i
\(651\) 0 0
\(652\) 5.91940 + 10.2527i 0.231822 + 0.401527i
\(653\) 18.3721 10.6071i 0.718954 0.415088i −0.0954134 0.995438i \(-0.530417\pi\)
0.814368 + 0.580349i \(0.197084\pi\)
\(654\) 0 0
\(655\) −5.33742 3.08156i −0.208550 0.120406i
\(656\) 3.48175 0.135939
\(657\) 0 0
\(658\) −3.78710 −0.147637
\(659\) 21.5484 37.3230i 0.839407 1.45390i −0.0509836 0.998699i \(-0.516236\pi\)
0.890391 0.455197i \(-0.150431\pi\)
\(660\) 0 0
\(661\) 4.38090 + 7.58794i 0.170397 + 0.295137i 0.938559 0.345119i \(-0.112162\pi\)
−0.768162 + 0.640256i \(0.778828\pi\)
\(662\) −7.61257 13.1854i −0.295871 0.512463i
\(663\) 0 0
\(664\) −5.77334 + 9.99972i −0.224049 + 0.388064i
\(665\) 1.51235i 0.0586466i
\(666\) 0 0
\(667\) 0.551099i 0.0213387i
\(668\) 11.4316 19.8001i 0.442302 0.766090i
\(669\) 0 0
\(670\) −0.383842 + 0.221611i −0.0148291 + 0.00856158i
\(671\) 30.9306 + 27.2271i 1.19406 + 1.05109i
\(672\) 0 0
\(673\) −34.2563 19.7779i −1.32049 0.762382i −0.336679 0.941619i \(-0.609304\pi\)
−0.983806 + 0.179237i \(0.942637\pi\)
\(674\) 6.66725i 0.256813i
\(675\) 0 0
\(676\) 9.62193 0.370074
\(677\) −17.5285 + 30.3603i −0.673676 + 1.16684i 0.303178 + 0.952934i \(0.401952\pi\)
−0.976854 + 0.213907i \(0.931381\pi\)
\(678\) 0 0
\(679\) 7.89042 4.55553i 0.302806 0.174825i
\(680\) −5.63067 + 3.25087i −0.215926 + 0.124665i
\(681\) 0 0
\(682\) 21.2009 + 4.25802i 0.811824 + 0.163048i
\(683\) 46.3667i 1.77417i −0.461602 0.887087i \(-0.652725\pi\)
0.461602 0.887087i \(-0.347275\pi\)
\(684\) 0 0
\(685\) −10.1004 −0.385918
\(686\) 9.34493 + 5.39530i 0.356791 + 0.205993i
\(687\) 0 0
\(688\) 1.09708 0.633401i 0.0418259 0.0241482i
\(689\) 10.1947 + 17.6578i 0.388389 + 0.672709i
\(690\) 0 0
\(691\) 6.18944 10.7204i 0.235457 0.407824i −0.723948 0.689854i \(-0.757675\pi\)
0.959405 + 0.282030i \(0.0910079\pi\)
\(692\) −5.06533 −0.192555
\(693\) 0 0
\(694\) −7.48804 −0.284242
\(695\) 6.19303 10.7266i 0.234915 0.406885i
\(696\) 0 0
\(697\) −11.3187 19.6046i −0.428726 0.742575i
\(698\) −13.6389 + 7.87442i −0.516240 + 0.298051i
\(699\) 0 0
\(700\) −0.700188 0.404254i −0.0264646 0.0152793i
\(701\) 41.3363 1.56125 0.780626 0.624999i \(-0.214900\pi\)
0.780626 + 0.624999i \(0.214900\pi\)
\(702\) 0 0
\(703\) 7.78059i 0.293450i
\(704\) 3.25169 + 0.653075i 0.122553 + 0.0246137i
\(705\) 0 0
\(706\) 14.8221 8.55757i 0.557839 0.322068i
\(707\) 8.00443 4.62136i 0.301037 0.173804i
\(708\) 0 0
\(709\) 5.28407 9.15227i 0.198447 0.343721i −0.749578 0.661916i \(-0.769743\pi\)
0.948025 + 0.318195i \(0.103077\pi\)
\(710\) 8.87630 0.333121
\(711\) 0 0
\(712\) 7.20794i 0.270129i
\(713\) −29.3477 16.9439i −1.09908 0.634554i
\(714\) 0 0
\(715\) 4.02774 4.57560i 0.150629 0.171118i
\(716\) −0.591638 + 0.341582i −0.0221105 + 0.0127655i
\(717\) 0 0
\(718\) −5.40697 + 9.36515i −0.201786 + 0.349504i
\(719\) 31.7377i 1.18362i −0.806079 0.591809i \(-0.798414\pi\)
0.806079 0.591809i \(-0.201586\pi\)
\(720\) 0 0
\(721\) 10.5257i 0.391996i
\(722\) −7.75052 + 13.4243i −0.288444 + 0.499600i
\(723\) 0 0
\(724\) 4.87307 + 8.44041i 0.181106 + 0.313685i
\(725\) 0.0530153 + 0.0918253i 0.00196894 + 0.00341030i
\(726\) 0 0
\(727\) −11.1834 + 19.3702i −0.414770 + 0.718402i −0.995404 0.0957623i \(-0.969471\pi\)
0.580635 + 0.814164i \(0.302804\pi\)
\(728\) −1.48600 −0.0550747
\(729\) 0 0
\(730\) 14.6450 0.542035
\(731\) −7.13294 4.11821i −0.263821 0.152317i
\(732\) 0 0
\(733\) −7.78084 + 4.49227i −0.287392 + 0.165926i −0.636765 0.771058i \(-0.719728\pi\)
0.349373 + 0.936984i \(0.386395\pi\)
\(734\) −0.210501 0.364599i −0.00776974 0.0134576i
\(735\) 0 0
\(736\) −4.50121 2.59877i −0.165917 0.0957921i
\(737\) −0.469933 1.39286i −0.0173102 0.0513068i
\(738\) 0 0
\(739\) 34.8736i 1.28285i −0.767187 0.641423i \(-0.778344\pi\)
0.767187 0.641423i \(-0.221656\pi\)
\(740\) −3.60224 2.07976i −0.132421 0.0764534i
\(741\) 0 0
\(742\) 4.48462 + 7.76760i 0.164636 + 0.285157i
\(743\) −17.2037 29.7977i −0.631142 1.09317i −0.987319 0.158752i \(-0.949253\pi\)
0.356176 0.934419i \(-0.384080\pi\)
\(744\) 0 0
\(745\) −17.9074 10.3389i −0.656077 0.378786i
\(746\) 31.1764i 1.14145i
\(747\) 0 0
\(748\) −6.89357 20.4322i −0.252054 0.747077i
\(749\) 13.6638 + 7.88880i 0.499264 + 0.288250i
\(750\) 0 0
\(751\) −10.4865 18.1631i −0.382657 0.662782i 0.608784 0.793336i \(-0.291658\pi\)
−0.991441 + 0.130554i \(0.958324\pi\)
\(752\) −4.05652 + 2.34204i −0.147926 + 0.0854052i
\(753\) 0 0
\(754\) 0.168770 + 0.0974397i 0.00614626 + 0.00354854i
\(755\) −20.3009 −0.738824
\(756\) 0 0
\(757\) 10.1082 0.367387 0.183694 0.982984i \(-0.441195\pi\)
0.183694 + 0.982984i \(0.441195\pi\)
\(758\) 6.87043 11.8999i 0.249545 0.432225i
\(759\) 0 0
\(760\) −0.935276 1.61995i −0.0339260 0.0587616i
\(761\) 4.66276 + 8.07613i 0.169025 + 0.292759i 0.938077 0.346426i \(-0.112605\pi\)
−0.769052 + 0.639186i \(0.779272\pi\)
\(762\) 0 0
\(763\) 1.26446 2.19010i 0.0457764 0.0792870i
\(764\) 5.87887i 0.212690i
\(765\) 0 0
\(766\) 9.24817i 0.334150i
\(767\) −1.46900 + 2.54438i −0.0530424 + 0.0918722i
\(768\) 0 0
\(769\) 2.46917 1.42557i 0.0890404 0.0514075i −0.454819 0.890584i \(-0.650296\pi\)
0.543859 + 0.839177i \(0.316963\pi\)
\(770\) 1.77178 2.01279i 0.0638506 0.0725358i
\(771\) 0 0
\(772\) 1.52540 + 0.880691i 0.0549004 + 0.0316968i
\(773\) 39.7303i 1.42900i 0.699635 + 0.714500i \(0.253346\pi\)
−0.699635 + 0.714500i \(0.746654\pi\)
\(774\) 0 0
\(775\) −6.51996 −0.234204
\(776\) 5.63450 9.75924i 0.202267 0.350336i
\(777\) 0 0
\(778\) 4.41058 2.54645i 0.158127 0.0912945i
\(779\) 5.64024 3.25639i 0.202083 0.116672i
\(780\) 0 0
\(781\) −5.79689 + 28.8630i −0.207429 + 1.03280i
\(782\) 33.7931i 1.20844i
\(783\) 0 0
\(784\) 6.34632 0.226654
\(785\) −1.86056 1.07419i −0.0664062 0.0383397i
\(786\) 0 0
\(787\) −8.69628 + 5.02080i −0.309989 + 0.178972i −0.646921 0.762557i \(-0.723944\pi\)
0.336933 + 0.941529i \(0.390611\pi\)
\(788\) 1.13386 + 1.96390i 0.0403919 + 0.0699609i
\(789\) 0 0
\(790\) 6.23895 10.8062i 0.221972 0.384467i
\(791\) 0.653519 0.0232365
\(792\) 0 0
\(793\) −22.8354 −0.810910
\(794\) −9.04861 + 15.6726i −0.321123 + 0.556201i
\(795\) 0 0
\(796\) −11.5064 19.9297i −0.407835 0.706390i
\(797\) 14.5687 8.41127i 0.516051 0.297942i −0.219266 0.975665i \(-0.570366\pi\)
0.735318 + 0.677723i \(0.237033\pi\)
\(798\) 0 0
\(799\) 26.3744 + 15.2273i 0.933061 + 0.538703i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 7.35100i 0.259573i
\(803\) −9.56427 + 47.6210i −0.337516 + 1.68051i
\(804\) 0 0
\(805\) −3.63926 + 2.10113i −0.128267 + 0.0740550i
\(806\) −10.3779 + 5.99169i −0.365546 + 0.211048i
\(807\) 0 0
\(808\) 5.71591 9.90025i 0.201085 0.348290i
\(809\) −36.9210 −1.29807 −0.649037 0.760757i \(-0.724828\pi\)
−0.649037 + 0.760757i \(0.724828\pi\)
\(810\) 0 0
\(811\) 56.0473i 1.96809i −0.177925 0.984044i \(-0.556938\pi\)
0.177925 0.984044i \(-0.443062\pi\)
\(812\) 0.0742414 + 0.0428633i 0.00260536 + 0.00150421i
\(813\) 0 0
\(814\) 9.11526 10.3551i 0.319490 0.362948i
\(815\) 10.2527 5.91940i 0.359137 0.207348i
\(816\) 0 0
\(817\) 1.18481 2.05215i 0.0414513 0.0717957i
\(818\) 8.44443i 0.295253i
\(819\) 0 0
\(820\) 3.48175i 0.121588i
\(821\) −13.8065 + 23.9135i −0.481850 + 0.834589i −0.999783 0.0208325i \(-0.993368\pi\)
0.517933 + 0.855421i \(0.326702\pi\)
\(822\) 0 0
\(823\) −24.0282 41.6180i −0.837570 1.45071i −0.891921 0.452191i \(-0.850642\pi\)
0.0543515 0.998522i \(-0.482691\pi\)
\(824\) −6.50932 11.2745i −0.226763 0.392765i
\(825\) 0 0
\(826\) −0.646205 + 1.11926i −0.0224844 + 0.0389440i
\(827\) 18.7015 0.650316 0.325158 0.945660i \(-0.394582\pi\)
0.325158 + 0.945660i \(0.394582\pi\)
\(828\) 0 0
\(829\) 23.4767 0.815378 0.407689 0.913121i \(-0.366335\pi\)
0.407689 + 0.913121i \(0.366335\pi\)
\(830\) 9.99972 + 5.77334i 0.347095 + 0.200396i
\(831\) 0 0
\(832\) −1.59171 + 0.918976i −0.0551827 + 0.0318598i
\(833\) −20.6310 35.7340i −0.714823 1.23811i
\(834\) 0 0
\(835\) −19.8001 11.4316i −0.685211 0.395607i
\(836\) 5.87837 1.98328i 0.203308 0.0685932i
\(837\) 0 0
\(838\) 29.9539i 1.03474i
\(839\) 2.82819 + 1.63286i 0.0976399 + 0.0563724i 0.548025 0.836462i \(-0.315380\pi\)
−0.450385 + 0.892834i \(0.648713\pi\)
\(840\) 0 0
\(841\) 14.4944 + 25.1050i 0.499806 + 0.865690i
\(842\) 4.82963 + 8.36516i 0.166440 + 0.288283i
\(843\) 0 0
\(844\) 6.07694 + 3.50852i 0.209177 + 0.120768i
\(845\) 9.62193i 0.331004i
\(846\) 0 0
\(847\) 5.38785 + 7.07579i 0.185129 + 0.243127i
\(848\) 9.60733 + 5.54680i 0.329917 + 0.190478i
\(849\) 0 0
\(850\) 3.25087 + 5.63067i 0.111504 + 0.193130i
\(851\) −18.7228 + 10.8096i −0.641811 + 0.370550i
\(852\) 0 0
\(853\) 31.3363 + 18.0920i 1.07293 + 0.619459i 0.928982 0.370125i \(-0.120685\pi\)
0.143953 + 0.989585i \(0.454019\pi\)
\(854\) −10.0452 −0.343740
\(855\) 0 0
\(856\) 19.5145 0.666991
\(857\) 22.9067 39.6755i 0.782477 1.35529i −0.148017 0.988985i \(-0.547289\pi\)
0.930495 0.366306i \(-0.119378\pi\)
\(858\) 0 0
\(859\) 25.7231 + 44.5537i 0.877661 + 1.52015i 0.853900 + 0.520437i \(0.174231\pi\)
0.0237611 + 0.999718i \(0.492436\pi\)
\(860\) −0.633401 1.09708i −0.0215988 0.0374102i
\(861\) 0 0
\(862\) −3.71613 + 6.43652i −0.126572 + 0.219229i
\(863\) 40.1888i 1.36804i 0.729462 + 0.684021i \(0.239771\pi\)
−0.729462 + 0.684021i \(0.760229\pi\)
\(864\) 0 0
\(865\) 5.06533i 0.172226i
\(866\) −19.3030 + 33.4338i −0.655943 + 1.13613i
\(867\) 0 0
\(868\) −4.56519 + 2.63572i −0.154953 + 0.0894620i
\(869\) 31.0639 + 27.3444i 1.05377 + 0.927595i
\(870\) 0 0
\(871\) 0.705483 + 0.407311i 0.0239044 + 0.0138012i
\(872\) 3.12788i 0.105923i
\(873\) 0 0
\(874\) −9.72228 −0.328861
\(875\) −0.404254 + 0.700188i −0.0136663 + 0.0236707i
\(876\) 0 0
\(877\) −7.65282 + 4.41836i −0.258417 + 0.149197i −0.623612 0.781734i \(-0.714336\pi\)
0.365195 + 0.930931i \(0.381002\pi\)
\(878\) 30.8607 17.8174i 1.04150 0.601310i
\(879\) 0 0
\(880\) 0.653075 3.25169i 0.0220152 0.109614i
\(881\) 28.9530i 0.975451i 0.872997 + 0.487725i \(0.162173\pi\)
−0.872997 + 0.487725i \(0.837827\pi\)
\(882\) 0 0
\(883\) 22.1157 0.744253 0.372127 0.928182i \(-0.378629\pi\)
0.372127 + 0.928182i \(0.378629\pi\)
\(884\) 10.3489 + 5.97494i 0.348071 + 0.200959i
\(885\) 0 0
\(886\) 19.2694 11.1252i 0.647368 0.373758i
\(887\) 17.5830 + 30.4547i 0.590380 + 1.02257i 0.994181 + 0.107721i \(0.0343553\pi\)
−0.403802 + 0.914847i \(0.632311\pi\)
\(888\) 0 0
\(889\) 8.63378 14.9541i 0.289568 0.501546i
\(890\) 7.20794 0.241611
\(891\) 0 0
\(892\) −17.3266 −0.580136
\(893\) −4.38090 + 7.58794i −0.146601 + 0.253921i
\(894\) 0 0
\(895\) 0.341582 + 0.591638i 0.0114178 + 0.0197763i
\(896\) −0.700188 + 0.404254i −0.0233916 + 0.0135052i
\(897\) 0 0
\(898\) −21.5944 12.4675i −0.720615 0.416047i
\(899\) 0.691316 0.0230567
\(900\) 0 0
\(901\) 72.1276i 2.40292i
\(902\) 11.3216 + 2.27384i 0.376967 + 0.0757107i
\(903\) 0 0
\(904\) 0.700012 0.404152i 0.0232820 0.0134419i
\(905\) 8.44041 4.87307i 0.280569 0.161986i
\(906\) 0 0
\(907\) 23.6311 40.9302i 0.784657 1.35907i −0.144547 0.989498i \(-0.546173\pi\)
0.929204 0.369567i \(-0.120494\pi\)
\(908\) 7.87967 0.261496
\(909\) 0 0
\(910\) 1.48600i 0.0492603i
\(911\) −30.5270 17.6248i −1.01141 0.583935i −0.0998029 0.995007i \(-0.531821\pi\)
−0.911603 + 0.411072i \(0.865155\pi\)
\(912\) 0 0
\(913\) −25.3037 + 28.7456i −0.837430 + 0.951340i
\(914\) −3.35432 + 1.93662i −0.110951 + 0.0640577i
\(915\) 0 0
\(916\) 3.92425 6.79701i 0.129661 0.224579i
\(917\) 4.98292i 0.164551i
\(918\) 0 0
\(919\) 11.7900i 0.388916i 0.980911 + 0.194458i \(0.0622948\pi\)
−0.980911 + 0.194458i \(0.937705\pi\)
\(920\) −2.59877 + 4.50121i −0.0856790 + 0.148400i
\(921\) 0 0
\(922\) 4.36386 + 7.55843i 0.143716 + 0.248924i
\(923\) −8.15710 14.1285i −0.268494 0.465046i
\(924\) 0 0
\(925\) −2.07976 + 3.60224i −0.0683820 + 0.118441i
\(926\) 30.4202 0.999670
\(927\) 0 0
\(928\) 0.106031 0.00348063
\(929\) −10.4435 6.02956i −0.342640 0.197823i 0.318799 0.947822i \(-0.396721\pi\)
−0.661439 + 0.749999i \(0.730054\pi\)
\(930\) 0 0
\(931\) 10.2807 5.93556i 0.336936 0.194530i
\(932\) −3.19402 5.53221i −0.104624 0.181214i
\(933\) 0 0
\(934\) −12.4070 7.16319i −0.405970 0.234387i
\(935\) −20.4322 + 6.89357i −0.668206 + 0.225444i
\(936\) 0 0
\(937\) 53.5358i 1.74894i −0.485080 0.874470i \(-0.661209\pi\)
0.485080 0.874470i \(-0.338791\pi\)
\(938\) 0.310339 + 0.179174i 0.0101329 + 0.00585024i
\(939\) 0 0
\(940\) 2.34204 + 4.05652i 0.0763888 + 0.132309i
\(941\) −4.14260 7.17519i −0.135045 0.233904i 0.790570 0.612372i \(-0.209784\pi\)
−0.925615 + 0.378468i \(0.876451\pi\)
\(942\) 0 0
\(943\) −15.6721 9.04827i −0.510353 0.294652i
\(944\) 1.59851i 0.0520272i
\(945\) 0 0
\(946\) 3.98103 1.34315i 0.129435 0.0436695i
\(947\) −44.3316 25.5949i −1.44058 0.831722i −0.442696 0.896672i \(-0.645978\pi\)
−0.997889 + 0.0649501i \(0.979311\pi\)
\(948\) 0 0
\(949\) −13.4584 23.3106i −0.436878 0.756695i
\(950\) −1.61995 + 0.935276i −0.0525580 + 0.0303444i
\(951\) 0 0
\(952\) 4.55243 + 2.62835i 0.147545 + 0.0851853i
\(953\) 17.2842 0.559891 0.279945 0.960016i \(-0.409684\pi\)
0.279945 + 0.960016i \(0.409684\pi\)
\(954\) 0 0
\(955\) −5.87887 −0.190236
\(956\) −7.14471 + 12.3750i −0.231076 + 0.400236i
\(957\) 0 0
\(958\) −4.21713 7.30428i −0.136249 0.235991i
\(959\) 4.08314 + 7.07220i 0.131851 + 0.228373i
\(960\) 0 0
\(961\) −5.75493 + 9.96783i −0.185643 + 0.321543i
\(962\) 7.64499i 0.246484i
\(963\) 0 0
\(964\) 6.44039i 0.207431i
\(965\) 0.880691 1.52540i 0.0283505 0.0491044i
\(966\) 0 0
\(967\) −11.2321 + 6.48486i −0.361200 + 0.208539i −0.669607 0.742715i \(-0.733538\pi\)
0.308407 + 0.951255i \(0.400204\pi\)
\(968\) 10.1470 + 4.24720i 0.326136 + 0.136510i
\(969\) 0 0
\(970\) −9.75924 5.63450i −0.313350 0.180913i
\(971\) 0.242751i 0.00779026i 0.999992 + 0.00389513i \(0.00123986\pi\)
−0.999992 + 0.00389513i \(0.998760\pi\)
\(972\) 0 0
\(973\) −10.0142 −0.321041
\(974\) −4.02490 + 6.97134i −0.128966 + 0.223376i
\(975\) 0 0
\(976\) −10.7598 + 6.21219i −0.344414 + 0.198847i
\(977\) −25.4078 + 14.6692i −0.812866 + 0.469309i −0.847950 0.530076i \(-0.822163\pi\)
0.0350839 + 0.999384i \(0.488830\pi\)
\(978\) 0 0
\(979\) −4.70732 + 23.4380i −0.150447 + 0.749081i
\(980\) 6.34632i 0.202726i
\(981\) 0 0
\(982\) −0.741818 −0.0236724
\(983\) −46.8439 27.0453i −1.49409 0.862612i −0.494112 0.869398i \(-0.664507\pi\)
−0.999977 + 0.00678602i \(0.997840\pi\)
\(984\) 0 0
\(985\) 1.96390 1.13386i 0.0625749 0.0361276i
\(986\) −0.344692 0.597023i −0.0109772 0.0190131i
\(987\) 0 0
\(988\) −1.71899 + 2.97738i −0.0546884 + 0.0947232i
\(989\) −6.58427 −0.209368
\(990\) 0 0
\(991\) −26.7484 −0.849690 −0.424845 0.905266i \(-0.639671\pi\)
−0.424845 + 0.905266i \(0.639671\pi\)
\(992\) −3.25998 + 5.64645i −0.103504 + 0.179275i
\(993\) 0 0
\(994\) −3.58827 6.21507i −0.113813 0.197130i
\(995\) −19.9297 + 11.5064i −0.631815 + 0.364778i
\(996\) 0 0
\(997\) 19.4039 + 11.2028i 0.614526 + 0.354797i 0.774735 0.632286i \(-0.217883\pi\)
−0.160209 + 0.987083i \(0.551217\pi\)
\(998\) −5.61657 −0.177789
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.a.791.5 48
3.2 odd 2 990.2.t.b.461.6 yes 48
9.4 even 3 990.2.t.a.131.6 48
9.5 odd 6 2970.2.t.b.2771.5 48
11.10 odd 2 2970.2.t.b.791.5 48
33.32 even 2 990.2.t.a.461.6 yes 48
99.32 even 6 inner 2970.2.t.a.2771.5 48
99.76 odd 6 990.2.t.b.131.6 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.6 48 9.4 even 3
990.2.t.a.461.6 yes 48 33.32 even 2
990.2.t.b.131.6 yes 48 99.76 odd 6
990.2.t.b.461.6 yes 48 3.2 odd 2
2970.2.t.a.791.5 48 1.1 even 1 trivial
2970.2.t.a.2771.5 48 99.32 even 6 inner
2970.2.t.b.791.5 48 11.10 odd 2
2970.2.t.b.2771.5 48 9.5 odd 6