Properties

Label 2970.2.t.a.791.20
Level $2970$
Weight $2$
Character 2970.791
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 791.20
Character \(\chi\) \(=\) 2970.791
Dual form 2970.2.t.a.2771.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.866025 - 0.500000i) q^{5} +(0.915692 + 0.528675i) q^{7} +1.00000 q^{8} +1.00000i q^{10} +(1.83929 + 2.75989i) q^{11} +(4.33706 - 2.50400i) q^{13} +(-0.915692 + 0.528675i) q^{14} +(-0.500000 + 0.866025i) q^{16} -4.08152 q^{17} -1.38667i q^{19} +(-0.866025 - 0.500000i) q^{20} +(-3.30978 + 0.212926i) q^{22} +(4.52401 - 2.61194i) q^{23} +(0.500000 - 0.866025i) q^{25} +5.00801i q^{26} -1.05735i q^{28} +(-3.32715 + 5.76280i) q^{29} +(3.35865 + 5.81736i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(2.04076 - 3.53470i) q^{34} +1.05735 q^{35} +5.98254 q^{37} +(1.20089 + 0.693335i) q^{38} +(0.866025 - 0.500000i) q^{40} +(1.10662 + 1.91672i) q^{41} +(2.85341 + 1.64742i) q^{43} +(1.47049 - 2.97282i) q^{44} +5.22388i q^{46} +(-1.01676 - 0.587024i) q^{47} +(-2.94100 - 5.09397i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-4.33706 - 2.50400i) q^{52} -0.0346036i q^{53} +(2.97282 + 1.47049i) q^{55} +(0.915692 + 0.528675i) q^{56} +(-3.32715 - 5.76280i) q^{58} +(9.41442 - 5.43542i) q^{59} +(-3.91068 - 2.25783i) q^{61} -6.71730 q^{62} +1.00000 q^{64} +(2.50400 - 4.33706i) q^{65} +(-4.21923 - 7.30793i) q^{67} +(2.04076 + 3.53470i) q^{68} +(-0.528675 + 0.915692i) q^{70} -5.03435i q^{71} +12.8897i q^{73} +(-2.99127 + 5.18103i) q^{74} +(-1.20089 + 0.693335i) q^{76} +(0.225138 + 3.49960i) q^{77} +(-8.56074 - 4.94255i) q^{79} +1.00000i q^{80} -2.21324 q^{82} +(-1.65561 + 2.86759i) q^{83} +(-3.53470 + 2.04076i) q^{85} +(-2.85341 + 1.64742i) q^{86} +(1.83929 + 2.75989i) q^{88} +3.71184i q^{89} +5.29522 q^{91} +(-4.52401 - 2.61194i) q^{92} +(1.01676 - 0.587024i) q^{94} +(-0.693335 - 1.20089i) q^{95} +(-2.76338 + 4.78632i) q^{97} +5.88201 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} + 12 q^{11} - 24 q^{13} - 24 q^{16} - 12 q^{17} - 6 q^{22} - 36 q^{23} + 24 q^{25} - 24 q^{32} + 6 q^{34} + 6 q^{38} - 6 q^{41} - 30 q^{43} - 6 q^{44} + 24 q^{49} + 24 q^{50}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.866025 0.500000i 0.387298 0.223607i
\(6\) 0 0
\(7\) 0.915692 + 0.528675i 0.346099 + 0.199820i 0.662966 0.748650i \(-0.269297\pi\)
−0.316867 + 0.948470i \(0.602631\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 1.83929 + 2.75989i 0.554567 + 0.832139i
\(12\) 0 0
\(13\) 4.33706 2.50400i 1.20288 0.694486i 0.241689 0.970354i \(-0.422299\pi\)
0.961196 + 0.275868i \(0.0889652\pi\)
\(14\) −0.915692 + 0.528675i −0.244729 + 0.141294i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −4.08152 −0.989914 −0.494957 0.868917i \(-0.664816\pi\)
−0.494957 + 0.868917i \(0.664816\pi\)
\(18\) 0 0
\(19\) 1.38667i 0.318124i −0.987269 0.159062i \(-0.949153\pi\)
0.987269 0.159062i \(-0.0508469\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 0 0
\(22\) −3.30978 + 0.212926i −0.705648 + 0.0453961i
\(23\) 4.52401 2.61194i 0.943322 0.544627i 0.0523215 0.998630i \(-0.483338\pi\)
0.891000 + 0.454003i \(0.150005\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 5.00801i 0.982151i
\(27\) 0 0
\(28\) 1.05735i 0.199820i
\(29\) −3.32715 + 5.76280i −0.617837 + 1.07013i 0.372043 + 0.928216i \(0.378658\pi\)
−0.989880 + 0.141909i \(0.954676\pi\)
\(30\) 0 0
\(31\) 3.35865 + 5.81736i 0.603232 + 1.04483i 0.992328 + 0.123631i \(0.0394539\pi\)
−0.389097 + 0.921197i \(0.627213\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 2.04076 3.53470i 0.349987 0.606196i
\(35\) 1.05735 0.178725
\(36\) 0 0
\(37\) 5.98254 0.983524 0.491762 0.870730i \(-0.336353\pi\)
0.491762 + 0.870730i \(0.336353\pi\)
\(38\) 1.20089 + 0.693335i 0.194810 + 0.112474i
\(39\) 0 0
\(40\) 0.866025 0.500000i 0.136931 0.0790569i
\(41\) 1.10662 + 1.91672i 0.172825 + 0.299342i 0.939406 0.342805i \(-0.111377\pi\)
−0.766581 + 0.642147i \(0.778044\pi\)
\(42\) 0 0
\(43\) 2.85341 + 1.64742i 0.435141 + 0.251228i 0.701534 0.712636i \(-0.252499\pi\)
−0.266394 + 0.963864i \(0.585832\pi\)
\(44\) 1.47049 2.97282i 0.221685 0.448169i
\(45\) 0 0
\(46\) 5.22388i 0.770219i
\(47\) −1.01676 0.587024i −0.148309 0.0856263i 0.424009 0.905658i \(-0.360622\pi\)
−0.572318 + 0.820032i \(0.693956\pi\)
\(48\) 0 0
\(49\) −2.94100 5.09397i −0.420144 0.727710i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −4.33706 2.50400i −0.601442 0.347243i
\(53\) 0.0346036i 0.00475317i −0.999997 0.00237658i \(-0.999244\pi\)
0.999997 0.00237658i \(-0.000756491\pi\)
\(54\) 0 0
\(55\) 2.97282 + 1.47049i 0.400855 + 0.198281i
\(56\) 0.915692 + 0.528675i 0.122365 + 0.0706472i
\(57\) 0 0
\(58\) −3.32715 5.76280i −0.436877 0.756693i
\(59\) 9.41442 5.43542i 1.22565 0.707631i 0.259535 0.965734i \(-0.416431\pi\)
0.966117 + 0.258103i \(0.0830973\pi\)
\(60\) 0 0
\(61\) −3.91068 2.25783i −0.500712 0.289086i 0.228296 0.973592i \(-0.426685\pi\)
−0.729007 + 0.684506i \(0.760018\pi\)
\(62\) −6.71730 −0.853098
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 2.50400 4.33706i 0.310584 0.537946i
\(66\) 0 0
\(67\) −4.21923 7.30793i −0.515461 0.892805i −0.999839 0.0179463i \(-0.994287\pi\)
0.484377 0.874859i \(-0.339046\pi\)
\(68\) 2.04076 + 3.53470i 0.247479 + 0.428645i
\(69\) 0 0
\(70\) −0.528675 + 0.915692i −0.0631888 + 0.109446i
\(71\) 5.03435i 0.597467i −0.954337 0.298734i \(-0.903436\pi\)
0.954337 0.298734i \(-0.0965642\pi\)
\(72\) 0 0
\(73\) 12.8897i 1.50862i 0.656519 + 0.754310i \(0.272028\pi\)
−0.656519 + 0.754310i \(0.727972\pi\)
\(74\) −2.99127 + 5.18103i −0.347728 + 0.602283i
\(75\) 0 0
\(76\) −1.20089 + 0.693335i −0.137752 + 0.0795309i
\(77\) 0.225138 + 3.49960i 0.0256568 + 0.398817i
\(78\) 0 0
\(79\) −8.56074 4.94255i −0.963159 0.556080i −0.0660149 0.997819i \(-0.521029\pi\)
−0.897144 + 0.441739i \(0.854362\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) −2.21324 −0.244412
\(83\) −1.65561 + 2.86759i −0.181726 + 0.314759i −0.942468 0.334295i \(-0.891502\pi\)
0.760742 + 0.649054i \(0.224835\pi\)
\(84\) 0 0
\(85\) −3.53470 + 2.04076i −0.383392 + 0.221352i
\(86\) −2.85341 + 1.64742i −0.307691 + 0.177645i
\(87\) 0 0
\(88\) 1.83929 + 2.75989i 0.196069 + 0.294206i
\(89\) 3.71184i 0.393454i 0.980458 + 0.196727i \(0.0630313\pi\)
−0.980458 + 0.196727i \(0.936969\pi\)
\(90\) 0 0
\(91\) 5.29522 0.555090
\(92\) −4.52401 2.61194i −0.471661 0.272313i
\(93\) 0 0
\(94\) 1.01676 0.587024i 0.104870 0.0605469i
\(95\) −0.693335 1.20089i −0.0711346 0.123209i
\(96\) 0 0
\(97\) −2.76338 + 4.78632i −0.280579 + 0.485977i −0.971527 0.236927i \(-0.923860\pi\)
0.690949 + 0.722904i \(0.257193\pi\)
\(98\) 5.88201 0.594173
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 8.10726 14.0422i 0.806703 1.39725i −0.108433 0.994104i \(-0.534583\pi\)
0.915135 0.403146i \(-0.132083\pi\)
\(102\) 0 0
\(103\) 0.0495545 + 0.0858309i 0.00488275 + 0.00845717i 0.868456 0.495765i \(-0.165112\pi\)
−0.863574 + 0.504223i \(0.831779\pi\)
\(104\) 4.33706 2.50400i 0.425284 0.245538i
\(105\) 0 0
\(106\) 0.0299676 + 0.0173018i 0.00291071 + 0.00168050i
\(107\) 14.5678 1.40833 0.704163 0.710039i \(-0.251323\pi\)
0.704163 + 0.710039i \(0.251323\pi\)
\(108\) 0 0
\(109\) 0.522284i 0.0500257i −0.999687 0.0250129i \(-0.992037\pi\)
0.999687 0.0250129i \(-0.00796267\pi\)
\(110\) −2.75989 + 1.83929i −0.263145 + 0.175370i
\(111\) 0 0
\(112\) −0.915692 + 0.528675i −0.0865248 + 0.0499551i
\(113\) 11.8462 6.83942i 1.11440 0.643399i 0.174434 0.984669i \(-0.444190\pi\)
0.939965 + 0.341270i \(0.110857\pi\)
\(114\) 0 0
\(115\) 2.61194 4.52401i 0.243565 0.421866i
\(116\) 6.65431 0.617837
\(117\) 0 0
\(118\) 10.8708i 1.00074i
\(119\) −3.73742 2.15780i −0.342608 0.197805i
\(120\) 0 0
\(121\) −4.23402 + 10.1525i −0.384911 + 0.922954i
\(122\) 3.91068 2.25783i 0.354057 0.204415i
\(123\) 0 0
\(124\) 3.35865 5.81736i 0.301616 0.522414i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 16.8759i 1.49749i 0.662856 + 0.748747i \(0.269344\pi\)
−0.662856 + 0.748747i \(0.730656\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 2.50400 + 4.33706i 0.219616 + 0.380386i
\(131\) −5.09537 8.82545i −0.445185 0.771083i 0.552880 0.833261i \(-0.313529\pi\)
−0.998065 + 0.0621779i \(0.980195\pi\)
\(132\) 0 0
\(133\) 0.733098 1.26976i 0.0635676 0.110102i
\(134\) 8.43847 0.728973
\(135\) 0 0
\(136\) −4.08152 −0.349987
\(137\) 14.0381 + 8.10490i 1.19936 + 0.692448i 0.960412 0.278585i \(-0.0898654\pi\)
0.238944 + 0.971033i \(0.423199\pi\)
\(138\) 0 0
\(139\) 10.3611 5.98197i 0.878815 0.507384i 0.00854719 0.999963i \(-0.497279\pi\)
0.870267 + 0.492580i \(0.163946\pi\)
\(140\) −0.528675 0.915692i −0.0446812 0.0773901i
\(141\) 0 0
\(142\) 4.35988 + 2.51718i 0.365873 + 0.211237i
\(143\) 14.8879 + 7.36424i 1.24499 + 0.615828i
\(144\) 0 0
\(145\) 6.65431i 0.552610i
\(146\) −11.1628 6.44483i −0.923837 0.533378i
\(147\) 0 0
\(148\) −2.99127 5.18103i −0.245881 0.425878i
\(149\) 9.11819 + 15.7932i 0.746991 + 1.29383i 0.949259 + 0.314497i \(0.101836\pi\)
−0.202267 + 0.979330i \(0.564831\pi\)
\(150\) 0 0
\(151\) 4.70634 + 2.71721i 0.382997 + 0.221123i 0.679121 0.734026i \(-0.262361\pi\)
−0.296125 + 0.955149i \(0.595694\pi\)
\(152\) 1.38667i 0.112474i
\(153\) 0 0
\(154\) −3.14331 1.55483i −0.253295 0.125291i
\(155\) 5.81736 + 3.35865i 0.467261 + 0.269773i
\(156\) 0 0
\(157\) 3.89848 + 6.75237i 0.311133 + 0.538898i 0.978608 0.205734i \(-0.0659583\pi\)
−0.667475 + 0.744632i \(0.732625\pi\)
\(158\) 8.56074 4.94255i 0.681056 0.393208i
\(159\) 0 0
\(160\) −0.866025 0.500000i −0.0684653 0.0395285i
\(161\) 5.52347 0.435310
\(162\) 0 0
\(163\) −7.29928 −0.571723 −0.285862 0.958271i \(-0.592280\pi\)
−0.285862 + 0.958271i \(0.592280\pi\)
\(164\) 1.10662 1.91672i 0.0864126 0.149671i
\(165\) 0 0
\(166\) −1.65561 2.86759i −0.128500 0.222568i
\(167\) −0.940284 1.62862i −0.0727614 0.126026i 0.827349 0.561688i \(-0.189848\pi\)
−0.900111 + 0.435661i \(0.856514\pi\)
\(168\) 0 0
\(169\) 6.04008 10.4617i 0.464621 0.804748i
\(170\) 4.08152i 0.313038i
\(171\) 0 0
\(172\) 3.29483i 0.251228i
\(173\) −9.37390 + 16.2361i −0.712684 + 1.23441i 0.251162 + 0.967945i \(0.419187\pi\)
−0.963846 + 0.266460i \(0.914146\pi\)
\(174\) 0 0
\(175\) 0.915692 0.528675i 0.0692198 0.0399641i
\(176\) −3.30978 + 0.212926i −0.249484 + 0.0160499i
\(177\) 0 0
\(178\) −3.21455 1.85592i −0.240940 0.139107i
\(179\) 8.56019i 0.639819i −0.947448 0.319909i \(-0.896347\pi\)
0.947448 0.319909i \(-0.103653\pi\)
\(180\) 0 0
\(181\) 13.5719 1.00879 0.504395 0.863473i \(-0.331716\pi\)
0.504395 + 0.863473i \(0.331716\pi\)
\(182\) −2.64761 + 4.58580i −0.196254 + 0.339922i
\(183\) 0 0
\(184\) 4.52401 2.61194i 0.333515 0.192555i
\(185\) 5.18103 2.99127i 0.380917 0.219923i
\(186\) 0 0
\(187\) −7.50710 11.2646i −0.548974 0.823746i
\(188\) 1.17405i 0.0856263i
\(189\) 0 0
\(190\) 1.38667 0.100600
\(191\) 0.648106 + 0.374184i 0.0468953 + 0.0270750i 0.523264 0.852170i \(-0.324714\pi\)
−0.476369 + 0.879245i \(0.658047\pi\)
\(192\) 0 0
\(193\) 10.8573 6.26848i 0.781527 0.451215i −0.0554439 0.998462i \(-0.517657\pi\)
0.836971 + 0.547247i \(0.184324\pi\)
\(194\) −2.76338 4.78632i −0.198399 0.343638i
\(195\) 0 0
\(196\) −2.94100 + 5.09397i −0.210072 + 0.363855i
\(197\) −2.06029 −0.146790 −0.0733948 0.997303i \(-0.523383\pi\)
−0.0733948 + 0.997303i \(0.523383\pi\)
\(198\) 0 0
\(199\) 19.7096 1.39717 0.698587 0.715525i \(-0.253812\pi\)
0.698587 + 0.715525i \(0.253812\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) 8.10726 + 14.0422i 0.570425 + 0.988005i
\(203\) −6.09330 + 3.51797i −0.427666 + 0.246913i
\(204\) 0 0
\(205\) 1.91672 + 1.10662i 0.133870 + 0.0772898i
\(206\) −0.0991090 −0.00690525
\(207\) 0 0
\(208\) 5.00801i 0.347243i
\(209\) 3.82706 2.55049i 0.264723 0.176421i
\(210\) 0 0
\(211\) −15.7652 + 9.10203i −1.08532 + 0.626609i −0.932326 0.361618i \(-0.882224\pi\)
−0.152993 + 0.988227i \(0.548891\pi\)
\(212\) −0.0299676 + 0.0173018i −0.00205818 + 0.00118829i
\(213\) 0 0
\(214\) −7.28392 + 12.6161i −0.497918 + 0.862420i
\(215\) 3.29483 0.224706
\(216\) 0 0
\(217\) 7.10254i 0.482152i
\(218\) 0.452311 + 0.261142i 0.0306344 + 0.0176868i
\(219\) 0 0
\(220\) −0.212926 3.30978i −0.0143555 0.223146i
\(221\) −17.7018 + 10.2201i −1.19075 + 0.687481i
\(222\) 0 0
\(223\) −2.85879 + 4.95157i −0.191439 + 0.331582i −0.945727 0.324961i \(-0.894649\pi\)
0.754288 + 0.656543i \(0.227982\pi\)
\(224\) 1.05735i 0.0706472i
\(225\) 0 0
\(226\) 13.6788i 0.909903i
\(227\) −6.12933 + 10.6163i −0.406818 + 0.704630i −0.994531 0.104440i \(-0.966695\pi\)
0.587713 + 0.809069i \(0.300028\pi\)
\(228\) 0 0
\(229\) 9.63480 + 16.6880i 0.636685 + 1.10277i 0.986155 + 0.165824i \(0.0530283\pi\)
−0.349470 + 0.936948i \(0.613638\pi\)
\(230\) 2.61194 + 4.52401i 0.172226 + 0.298304i
\(231\) 0 0
\(232\) −3.32715 + 5.76280i −0.218438 + 0.378346i
\(233\) 23.5355 1.54186 0.770930 0.636919i \(-0.219792\pi\)
0.770930 + 0.636919i \(0.219792\pi\)
\(234\) 0 0
\(235\) −1.17405 −0.0765865
\(236\) −9.41442 5.43542i −0.612826 0.353815i
\(237\) 0 0
\(238\) 3.73742 2.15780i 0.242261 0.139869i
\(239\) −0.402515 0.697176i −0.0260365 0.0450966i 0.852714 0.522379i \(-0.174955\pi\)
−0.878750 + 0.477282i \(0.841622\pi\)
\(240\) 0 0
\(241\) −22.0083 12.7065i −1.41768 0.818499i −0.421586 0.906788i \(-0.638527\pi\)
−0.996095 + 0.0882896i \(0.971860\pi\)
\(242\) −6.67531 8.74301i −0.429105 0.562022i
\(243\) 0 0
\(244\) 4.51567i 0.289086i
\(245\) −5.09397 2.94100i −0.325442 0.187894i
\(246\) 0 0
\(247\) −3.47223 6.01407i −0.220932 0.382666i
\(248\) 3.35865 + 5.81736i 0.213275 + 0.369402i
\(249\) 0 0
\(250\) 0.866025 + 0.500000i 0.0547723 + 0.0316228i
\(251\) 30.2373i 1.90856i −0.298910 0.954281i \(-0.596623\pi\)
0.298910 0.954281i \(-0.403377\pi\)
\(252\) 0 0
\(253\) 15.5296 + 7.68167i 0.976340 + 0.482942i
\(254\) −14.6149 8.43794i −0.917023 0.529444i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −18.6493 + 10.7672i −1.16331 + 0.671637i −0.952095 0.305803i \(-0.901075\pi\)
−0.211214 + 0.977440i \(0.567742\pi\)
\(258\) 0 0
\(259\) 5.47817 + 3.16282i 0.340397 + 0.196528i
\(260\) −5.00801 −0.310584
\(261\) 0 0
\(262\) 10.1907 0.629586
\(263\) −4.55377 + 7.88736i −0.280798 + 0.486356i −0.971581 0.236706i \(-0.923932\pi\)
0.690784 + 0.723061i \(0.257266\pi\)
\(264\) 0 0
\(265\) −0.0173018 0.0299676i −0.00106284 0.00184089i
\(266\) 0.733098 + 1.26976i 0.0449491 + 0.0778541i
\(267\) 0 0
\(268\) −4.21923 + 7.30793i −0.257731 + 0.446403i
\(269\) 6.51179i 0.397031i 0.980098 + 0.198515i \(0.0636120\pi\)
−0.980098 + 0.198515i \(0.936388\pi\)
\(270\) 0 0
\(271\) 21.1590i 1.28532i 0.766153 + 0.642658i \(0.222168\pi\)
−0.766153 + 0.642658i \(0.777832\pi\)
\(272\) 2.04076 3.53470i 0.123739 0.214323i
\(273\) 0 0
\(274\) −14.0381 + 8.10490i −0.848073 + 0.489635i
\(275\) 3.30978 0.212926i 0.199587 0.0128399i
\(276\) 0 0
\(277\) −9.87865 5.70344i −0.593550 0.342686i 0.172950 0.984931i \(-0.444670\pi\)
−0.766500 + 0.642244i \(0.778004\pi\)
\(278\) 11.9639i 0.717549i
\(279\) 0 0
\(280\) 1.05735 0.0631888
\(281\) 12.1595 21.0609i 0.725376 1.25639i −0.233443 0.972370i \(-0.574999\pi\)
0.958819 0.284018i \(-0.0916674\pi\)
\(282\) 0 0
\(283\) 15.0537 8.69126i 0.894850 0.516642i 0.0193242 0.999813i \(-0.493849\pi\)
0.875526 + 0.483171i \(0.160515\pi\)
\(284\) −4.35988 + 2.51718i −0.258711 + 0.149367i
\(285\) 0 0
\(286\) −13.8216 + 9.21119i −0.817286 + 0.544669i
\(287\) 2.34017i 0.138136i
\(288\) 0 0
\(289\) −0.341192 −0.0200701
\(290\) −5.76280 3.32715i −0.338403 0.195377i
\(291\) 0 0
\(292\) 11.1628 6.44483i 0.653251 0.377155i
\(293\) 4.16935 + 7.22153i 0.243576 + 0.421886i 0.961730 0.273998i \(-0.0883461\pi\)
−0.718154 + 0.695884i \(0.755013\pi\)
\(294\) 0 0
\(295\) 5.43542 9.41442i 0.316462 0.548129i
\(296\) 5.98254 0.347728
\(297\) 0 0
\(298\) −18.2364 −1.05641
\(299\) 13.0806 22.6563i 0.756471 1.31025i
\(300\) 0 0
\(301\) 1.74190 + 3.01705i 0.100401 + 0.173900i
\(302\) −4.70634 + 2.71721i −0.270820 + 0.156358i
\(303\) 0 0
\(304\) 1.20089 + 0.693335i 0.0688758 + 0.0397655i
\(305\) −4.51567 −0.258566
\(306\) 0 0
\(307\) 13.4611i 0.768267i −0.923277 0.384134i \(-0.874500\pi\)
0.923277 0.384134i \(-0.125500\pi\)
\(308\) 2.91817 1.94478i 0.166278 0.110814i
\(309\) 0 0
\(310\) −5.81736 + 3.35865i −0.330404 + 0.190759i
\(311\) 23.1813 13.3837i 1.31449 0.758922i 0.331655 0.943401i \(-0.392393\pi\)
0.982836 + 0.184479i \(0.0590598\pi\)
\(312\) 0 0
\(313\) −10.3246 + 17.8827i −0.583579 + 1.01079i 0.411472 + 0.911422i \(0.365015\pi\)
−0.995051 + 0.0993655i \(0.968319\pi\)
\(314\) −7.79696 −0.440008
\(315\) 0 0
\(316\) 9.88509i 0.556080i
\(317\) 5.43650 + 3.13877i 0.305344 + 0.176291i 0.644841 0.764317i \(-0.276923\pi\)
−0.339497 + 0.940607i \(0.610257\pi\)
\(318\) 0 0
\(319\) −22.0243 + 1.41688i −1.23312 + 0.0793299i
\(320\) 0.866025 0.500000i 0.0484123 0.0279508i
\(321\) 0 0
\(322\) −2.76174 + 4.78347i −0.153905 + 0.266572i
\(323\) 5.65972i 0.314915i
\(324\) 0 0
\(325\) 5.00801i 0.277794i
\(326\) 3.64964 6.32136i 0.202135 0.350108i
\(327\) 0 0
\(328\) 1.10662 + 1.91672i 0.0611029 + 0.105833i
\(329\) −0.620690 1.07507i −0.0342198 0.0592704i
\(330\) 0 0
\(331\) −14.6814 + 25.4289i −0.806962 + 1.39770i 0.107996 + 0.994151i \(0.465557\pi\)
−0.914958 + 0.403548i \(0.867777\pi\)
\(332\) 3.31121 0.181726
\(333\) 0 0
\(334\) 1.88057 0.102900
\(335\) −7.30793 4.21923i −0.399275 0.230521i
\(336\) 0 0
\(337\) 17.1659 9.91076i 0.935089 0.539874i 0.0466712 0.998910i \(-0.485139\pi\)
0.888417 + 0.459037i \(0.151805\pi\)
\(338\) 6.04008 + 10.4617i 0.328537 + 0.569042i
\(339\) 0 0
\(340\) 3.53470 + 2.04076i 0.191696 + 0.110676i
\(341\) −9.87774 + 19.9693i −0.534910 + 1.08140i
\(342\) 0 0
\(343\) 13.6208i 0.735454i
\(344\) 2.85341 + 1.64742i 0.153845 + 0.0888227i
\(345\) 0 0
\(346\) −9.37390 16.2361i −0.503944 0.872857i
\(347\) 3.66105 + 6.34113i 0.196536 + 0.340410i 0.947403 0.320043i \(-0.103698\pi\)
−0.750867 + 0.660453i \(0.770364\pi\)
\(348\) 0 0
\(349\) 6.53255 + 3.77157i 0.349679 + 0.201888i 0.664544 0.747249i \(-0.268626\pi\)
−0.314865 + 0.949137i \(0.601959\pi\)
\(350\) 1.05735i 0.0565178i
\(351\) 0 0
\(352\) 1.47049 2.97282i 0.0783775 0.158452i
\(353\) 9.12857 + 5.27038i 0.485865 + 0.280514i 0.722857 0.690997i \(-0.242828\pi\)
−0.236992 + 0.971511i \(0.576162\pi\)
\(354\) 0 0
\(355\) −2.51718 4.35988i −0.133598 0.231398i
\(356\) 3.21455 1.85592i 0.170371 0.0983635i
\(357\) 0 0
\(358\) 7.41335 + 4.28010i 0.391808 + 0.226210i
\(359\) −31.7635 −1.67641 −0.838206 0.545354i \(-0.816395\pi\)
−0.838206 + 0.545354i \(0.816395\pi\)
\(360\) 0 0
\(361\) 17.0771 0.898797
\(362\) −6.78594 + 11.7536i −0.356661 + 0.617755i
\(363\) 0 0
\(364\) −2.64761 4.58580i −0.138772 0.240361i
\(365\) 6.44483 + 11.1628i 0.337338 + 0.584286i
\(366\) 0 0
\(367\) −0.0479495 + 0.0830510i −0.00250294 + 0.00433523i −0.867274 0.497831i \(-0.834130\pi\)
0.864771 + 0.502166i \(0.167463\pi\)
\(368\) 5.22388i 0.272313i
\(369\) 0 0
\(370\) 5.98254i 0.311018i
\(371\) 0.0182941 0.0316862i 0.000949780 0.00164507i
\(372\) 0 0
\(373\) 12.8307 7.40784i 0.664351 0.383563i −0.129582 0.991569i \(-0.541364\pi\)
0.793933 + 0.608006i \(0.208030\pi\)
\(374\) 13.5089 0.869063i 0.698531 0.0449382i
\(375\) 0 0
\(376\) −1.01676 0.587024i −0.0524352 0.0302735i
\(377\) 33.3248i 1.71632i
\(378\) 0 0
\(379\) −5.85541 −0.300772 −0.150386 0.988627i \(-0.548052\pi\)
−0.150386 + 0.988627i \(0.548052\pi\)
\(380\) −0.693335 + 1.20089i −0.0355673 + 0.0616044i
\(381\) 0 0
\(382\) −0.648106 + 0.374184i −0.0331600 + 0.0191449i
\(383\) 4.27679 2.46921i 0.218534 0.126171i −0.386737 0.922190i \(-0.626398\pi\)
0.605271 + 0.796019i \(0.293065\pi\)
\(384\) 0 0
\(385\) 1.94478 + 2.91817i 0.0991149 + 0.148724i
\(386\) 12.5370i 0.638114i
\(387\) 0 0
\(388\) 5.52676 0.280579
\(389\) −30.4964 17.6071i −1.54623 0.892715i −0.998425 0.0561072i \(-0.982131\pi\)
−0.547803 0.836608i \(-0.684536\pi\)
\(390\) 0 0
\(391\) −18.4648 + 10.6607i −0.933807 + 0.539134i
\(392\) −2.94100 5.09397i −0.148543 0.257284i
\(393\) 0 0
\(394\) 1.03014 1.78426i 0.0518979 0.0898899i
\(395\) −9.88509 −0.497373
\(396\) 0 0
\(397\) −12.4144 −0.623060 −0.311530 0.950236i \(-0.600841\pi\)
−0.311530 + 0.950236i \(0.600841\pi\)
\(398\) −9.85479 + 17.0690i −0.493976 + 0.855591i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) −20.4887 + 11.8291i −1.02316 + 0.590719i −0.915016 0.403417i \(-0.867822\pi\)
−0.108139 + 0.994136i \(0.534489\pi\)
\(402\) 0 0
\(403\) 29.1334 + 16.8202i 1.45124 + 0.837872i
\(404\) −16.2145 −0.806703
\(405\) 0 0
\(406\) 7.03594i 0.349188i
\(407\) 11.0036 + 16.5112i 0.545430 + 0.818429i
\(408\) 0 0
\(409\) 16.4693 9.50856i 0.814355 0.470168i −0.0341109 0.999418i \(-0.510860\pi\)
0.848466 + 0.529250i \(0.177527\pi\)
\(410\) −1.91672 + 1.10662i −0.0946602 + 0.0546521i
\(411\) 0 0
\(412\) 0.0495545 0.0858309i 0.00244138 0.00422859i
\(413\) 11.4943 0.565597
\(414\) 0 0
\(415\) 3.31121i 0.162541i
\(416\) −4.33706 2.50400i −0.212642 0.122769i
\(417\) 0 0
\(418\) 0.295258 + 4.58957i 0.0144416 + 0.224483i
\(419\) −3.86278 + 2.23018i −0.188709 + 0.108951i −0.591378 0.806394i \(-0.701416\pi\)
0.402669 + 0.915346i \(0.368083\pi\)
\(420\) 0 0
\(421\) 12.3649 21.4167i 0.602629 1.04378i −0.389792 0.920903i \(-0.627453\pi\)
0.992421 0.122881i \(-0.0392135\pi\)
\(422\) 18.2041i 0.886159i
\(423\) 0 0
\(424\) 0.0346036i 0.00168050i
\(425\) −2.04076 + 3.53470i −0.0989914 + 0.171458i
\(426\) 0 0
\(427\) −2.38732 4.13496i −0.115531 0.200105i
\(428\) −7.28392 12.6161i −0.352081 0.609823i
\(429\) 0 0
\(430\) −1.64742 + 2.85341i −0.0794454 + 0.137604i
\(431\) −6.85682 −0.330282 −0.165141 0.986270i \(-0.552808\pi\)
−0.165141 + 0.986270i \(0.552808\pi\)
\(432\) 0 0
\(433\) 23.1663 1.11330 0.556651 0.830747i \(-0.312086\pi\)
0.556651 + 0.830747i \(0.312086\pi\)
\(434\) −6.15098 3.55127i −0.295257 0.170467i
\(435\) 0 0
\(436\) −0.452311 + 0.261142i −0.0216618 + 0.0125064i
\(437\) −3.62190 6.27331i −0.173259 0.300093i
\(438\) 0 0
\(439\) −28.5870 16.5047i −1.36438 0.787728i −0.374181 0.927356i \(-0.622076\pi\)
−0.990204 + 0.139628i \(0.955409\pi\)
\(440\) 2.97282 + 1.47049i 0.141724 + 0.0701029i
\(441\) 0 0
\(442\) 20.4403i 0.972245i
\(443\) 20.7202 + 11.9628i 0.984447 + 0.568371i 0.903610 0.428357i \(-0.140907\pi\)
0.0808370 + 0.996727i \(0.474241\pi\)
\(444\) 0 0
\(445\) 1.85592 + 3.21455i 0.0879790 + 0.152384i
\(446\) −2.85879 4.95157i −0.135368 0.234464i
\(447\) 0 0
\(448\) 0.915692 + 0.528675i 0.0432624 + 0.0249776i
\(449\) 4.03838i 0.190583i −0.995449 0.0952915i \(-0.969622\pi\)
0.995449 0.0952915i \(-0.0303783\pi\)
\(450\) 0 0
\(451\) −3.25455 + 6.57957i −0.153251 + 0.309820i
\(452\) −11.8462 6.83942i −0.557200 0.321699i
\(453\) 0 0
\(454\) −6.12933 10.6163i −0.287664 0.498249i
\(455\) 4.58580 2.64761i 0.214985 0.124122i
\(456\) 0 0
\(457\) −34.4097 19.8664i −1.60962 0.929313i −0.989455 0.144839i \(-0.953734\pi\)
−0.620162 0.784474i \(-0.712933\pi\)
\(458\) −19.2696 −0.900409
\(459\) 0 0
\(460\) −5.22388 −0.243565
\(461\) 12.3436 21.3798i 0.574900 0.995756i −0.421153 0.906990i \(-0.638374\pi\)
0.996052 0.0887662i \(-0.0282924\pi\)
\(462\) 0 0
\(463\) −7.42646 12.8630i −0.345137 0.597794i 0.640242 0.768173i \(-0.278834\pi\)
−0.985379 + 0.170379i \(0.945501\pi\)
\(464\) −3.32715 5.76280i −0.154459 0.267531i
\(465\) 0 0
\(466\) −11.7677 + 20.3823i −0.545130 + 0.944193i
\(467\) 17.9420i 0.830256i 0.909763 + 0.415128i \(0.136263\pi\)
−0.909763 + 0.415128i \(0.863737\pi\)
\(468\) 0 0
\(469\) 8.92242i 0.411999i
\(470\) 0.587024 1.01676i 0.0270774 0.0468995i
\(471\) 0 0
\(472\) 9.41442 5.43542i 0.433334 0.250185i
\(473\) 0.701556 + 10.9052i 0.0322576 + 0.501420i
\(474\) 0 0
\(475\) −1.20089 0.693335i −0.0551006 0.0318124i
\(476\) 4.31560i 0.197805i
\(477\) 0 0
\(478\) 0.805030 0.0368212
\(479\) −16.3488 + 28.3170i −0.746997 + 1.29384i 0.202258 + 0.979332i \(0.435172\pi\)
−0.949256 + 0.314505i \(0.898161\pi\)
\(480\) 0 0
\(481\) 25.9467 14.9803i 1.18307 0.683044i
\(482\) 22.0083 12.7065i 1.00245 0.578766i
\(483\) 0 0
\(484\) 10.9093 1.40948i 0.495878 0.0640673i
\(485\) 5.52676i 0.250957i
\(486\) 0 0
\(487\) −41.1610 −1.86518 −0.932591 0.360936i \(-0.882457\pi\)
−0.932591 + 0.360936i \(0.882457\pi\)
\(488\) −3.91068 2.25783i −0.177028 0.102207i
\(489\) 0 0
\(490\) 5.09397 2.94100i 0.230122 0.132861i
\(491\) −19.6521 34.0384i −0.886885 1.53613i −0.843538 0.537069i \(-0.819531\pi\)
−0.0433467 0.999060i \(-0.513802\pi\)
\(492\) 0 0
\(493\) 13.5798 23.5210i 0.611606 1.05933i
\(494\) 6.94445 0.312446
\(495\) 0 0
\(496\) −6.71730 −0.301616
\(497\) 2.66154 4.60992i 0.119386 0.206783i
\(498\) 0 0
\(499\) −19.9968 34.6354i −0.895178 1.55049i −0.833584 0.552393i \(-0.813715\pi\)
−0.0615941 0.998101i \(-0.519618\pi\)
\(500\) −0.866025 + 0.500000i −0.0387298 + 0.0223607i
\(501\) 0 0
\(502\) 26.1863 + 15.1187i 1.16875 + 0.674779i
\(503\) −26.7500 −1.19272 −0.596362 0.802715i \(-0.703388\pi\)
−0.596362 + 0.802715i \(0.703388\pi\)
\(504\) 0 0
\(505\) 16.2145i 0.721537i
\(506\) −14.4173 + 9.60823i −0.640929 + 0.427138i
\(507\) 0 0
\(508\) 14.6149 8.43794i 0.648434 0.374373i
\(509\) 5.00397 2.88905i 0.221797 0.128055i −0.384985 0.922923i \(-0.625793\pi\)
0.606782 + 0.794868i \(0.292460\pi\)
\(510\) 0 0
\(511\) −6.81444 + 11.8030i −0.301453 + 0.522132i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 21.5343i 0.949838i
\(515\) 0.0858309 + 0.0495545i 0.00378216 + 0.00218363i
\(516\) 0 0
\(517\) −0.249986 3.88585i −0.0109944 0.170899i
\(518\) −5.47817 + 3.16282i −0.240697 + 0.138966i
\(519\) 0 0
\(520\) 2.50400 4.33706i 0.109808 0.190193i
\(521\) 29.7698i 1.30424i 0.758117 + 0.652119i \(0.226120\pi\)
−0.758117 + 0.652119i \(0.773880\pi\)
\(522\) 0 0
\(523\) 0.902037i 0.0394433i 0.999806 + 0.0197217i \(0.00627801\pi\)
−0.999806 + 0.0197217i \(0.993722\pi\)
\(524\) −5.09537 + 8.82545i −0.222592 + 0.385541i
\(525\) 0 0
\(526\) −4.55377 7.88736i −0.198554 0.343905i
\(527\) −13.7084 23.7437i −0.597147 1.03429i
\(528\) 0 0
\(529\) 2.14445 3.71430i 0.0932370 0.161491i
\(530\) 0.0346036 0.00150308
\(531\) 0 0
\(532\) −1.46620 −0.0635676
\(533\) 9.59897 + 5.54197i 0.415777 + 0.240049i
\(534\) 0 0
\(535\) 12.6161 7.28392i 0.545442 0.314911i
\(536\) −4.21923 7.30793i −0.182243 0.315654i
\(537\) 0 0
\(538\) −5.63937 3.25589i −0.243131 0.140372i
\(539\) 8.64945 17.4862i 0.372558 0.753182i
\(540\) 0 0
\(541\) 40.9054i 1.75866i −0.476212 0.879330i \(-0.657991\pi\)
0.476212 0.879330i \(-0.342009\pi\)
\(542\) −18.3242 10.5795i −0.787092 0.454428i
\(543\) 0 0
\(544\) 2.04076 + 3.53470i 0.0874969 + 0.151549i
\(545\) −0.261142 0.452311i −0.0111861 0.0193749i
\(546\) 0 0
\(547\) 0.575875 + 0.332482i 0.0246227 + 0.0142159i 0.512261 0.858830i \(-0.328808\pi\)
−0.487638 + 0.873046i \(0.662141\pi\)
\(548\) 16.2098i 0.692448i
\(549\) 0 0
\(550\) −1.47049 + 2.97282i −0.0627020 + 0.126761i
\(551\) 7.99110 + 4.61366i 0.340432 + 0.196549i
\(552\) 0 0
\(553\) −5.22600 9.05170i −0.222232 0.384918i
\(554\) 9.87865 5.70344i 0.419703 0.242316i
\(555\) 0 0
\(556\) −10.3611 5.98197i −0.439407 0.253692i
\(557\) −23.0650 −0.977294 −0.488647 0.872482i \(-0.662509\pi\)
−0.488647 + 0.872482i \(0.662509\pi\)
\(558\) 0 0
\(559\) 16.5005 0.697899
\(560\) −0.528675 + 0.915692i −0.0223406 + 0.0386951i
\(561\) 0 0
\(562\) 12.1595 + 21.0609i 0.512918 + 0.888401i
\(563\) 6.36854 + 11.0306i 0.268402 + 0.464886i 0.968449 0.249210i \(-0.0801711\pi\)
−0.700047 + 0.714097i \(0.746838\pi\)
\(564\) 0 0
\(565\) 6.83942 11.8462i 0.287737 0.498375i
\(566\) 17.3825i 0.730642i
\(567\) 0 0
\(568\) 5.03435i 0.211237i
\(569\) 1.05386 1.82534i 0.0441801 0.0765222i −0.843090 0.537773i \(-0.819266\pi\)
0.887270 + 0.461251i \(0.152599\pi\)
\(570\) 0 0
\(571\) 15.0594 8.69454i 0.630216 0.363855i −0.150620 0.988592i \(-0.548127\pi\)
0.780836 + 0.624737i \(0.214794\pi\)
\(572\) −1.06634 16.5754i −0.0445858 0.693053i
\(573\) 0 0
\(574\) −2.02665 1.17009i −0.0845907 0.0488385i
\(575\) 5.22388i 0.217851i
\(576\) 0 0
\(577\) −32.1255 −1.33740 −0.668701 0.743532i \(-0.733149\pi\)
−0.668701 + 0.743532i \(0.733149\pi\)
\(578\) 0.170596 0.295481i 0.00709585 0.0122904i
\(579\) 0 0
\(580\) 5.76280 3.32715i 0.239287 0.138153i
\(581\) −3.03205 + 1.75056i −0.125791 + 0.0726253i
\(582\) 0 0
\(583\) 0.0955022 0.0636460i 0.00395530 0.00263595i
\(584\) 12.8897i 0.533378i
\(585\) 0 0
\(586\) −8.33870 −0.344469
\(587\) 15.7386 + 9.08669i 0.649602 + 0.375048i 0.788304 0.615286i \(-0.210960\pi\)
−0.138702 + 0.990334i \(0.544293\pi\)
\(588\) 0 0
\(589\) 8.06675 4.65734i 0.332385 0.191902i
\(590\) 5.43542 + 9.41442i 0.223773 + 0.387585i
\(591\) 0 0
\(592\) −2.99127 + 5.18103i −0.122941 + 0.212939i
\(593\) 35.1732 1.44439 0.722195 0.691689i \(-0.243133\pi\)
0.722195 + 0.691689i \(0.243133\pi\)
\(594\) 0 0
\(595\) −4.31560 −0.176922
\(596\) 9.11819 15.7932i 0.373496 0.646914i
\(597\) 0 0
\(598\) 13.0806 + 22.6563i 0.534906 + 0.926484i
\(599\) −26.0983 + 15.0679i −1.06635 + 0.615656i −0.927181 0.374613i \(-0.877776\pi\)
−0.139167 + 0.990269i \(0.544442\pi\)
\(600\) 0 0
\(601\) −27.2900 15.7559i −1.11318 0.642697i −0.173532 0.984828i \(-0.555518\pi\)
−0.939652 + 0.342131i \(0.888851\pi\)
\(602\) −3.48379 −0.141989
\(603\) 0 0
\(604\) 5.43442i 0.221123i
\(605\) 1.40948 + 10.9093i 0.0573035 + 0.443527i
\(606\) 0 0
\(607\) 21.1523 12.2123i 0.858547 0.495682i −0.00497869 0.999988i \(-0.501585\pi\)
0.863525 + 0.504305i \(0.168251\pi\)
\(608\) −1.20089 + 0.693335i −0.0487026 + 0.0281184i
\(609\) 0 0
\(610\) 2.25783 3.91068i 0.0914170 0.158339i
\(611\) −5.87965 −0.237865
\(612\) 0 0
\(613\) 3.19506i 0.129047i −0.997916 0.0645236i \(-0.979447\pi\)
0.997916 0.0645236i \(-0.0205528\pi\)
\(614\) 11.6577 + 6.73057i 0.470466 + 0.271624i
\(615\) 0 0
\(616\) 0.225138 + 3.49960i 0.00907106 + 0.141003i
\(617\) −20.6567 + 11.9261i −0.831607 + 0.480128i −0.854403 0.519612i \(-0.826077\pi\)
0.0227957 + 0.999740i \(0.492743\pi\)
\(618\) 0 0
\(619\) −17.3766 + 30.0971i −0.698424 + 1.20971i 0.270589 + 0.962695i \(0.412782\pi\)
−0.969013 + 0.247011i \(0.920552\pi\)
\(620\) 6.71730i 0.269773i
\(621\) 0 0
\(622\) 26.7675i 1.07328i
\(623\) −1.96236 + 3.39890i −0.0786202 + 0.136174i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −10.3246 17.8827i −0.412652 0.714735i
\(627\) 0 0
\(628\) 3.89848 6.75237i 0.155566 0.269449i
\(629\) −24.4179 −0.973604
\(630\) 0 0
\(631\) −26.2444 −1.04477 −0.522387 0.852708i \(-0.674958\pi\)
−0.522387 + 0.852708i \(0.674958\pi\)
\(632\) −8.56074 4.94255i −0.340528 0.196604i
\(633\) 0 0
\(634\) −5.43650 + 3.13877i −0.215911 + 0.124656i
\(635\) 8.43794 + 14.6149i 0.334850 + 0.579977i
\(636\) 0 0
\(637\) −25.5106 14.7286i −1.01077 0.583568i
\(638\) 9.78511 19.7821i 0.387396 0.783179i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) 7.89607 + 4.55880i 0.311876 + 0.180062i 0.647766 0.761840i \(-0.275704\pi\)
−0.335890 + 0.941901i \(0.609037\pi\)
\(642\) 0 0
\(643\) −11.9790 20.7482i −0.472405 0.818230i 0.527096 0.849806i \(-0.323281\pi\)
−0.999501 + 0.0315756i \(0.989947\pi\)
\(644\) −2.76174 4.78347i −0.108828 0.188495i
\(645\) 0 0
\(646\) −4.90146 2.82986i −0.192845 0.111339i
\(647\) 12.2356i 0.481033i −0.970645 0.240516i \(-0.922683\pi\)
0.970645 0.240516i \(-0.0773168\pi\)
\(648\) 0 0
\(649\) 32.3170 + 15.9855i 1.26855 + 0.627485i
\(650\) 4.33706 + 2.50400i 0.170114 + 0.0982151i
\(651\) 0 0
\(652\) 3.64964 + 6.32136i 0.142931 + 0.247563i
\(653\) −29.2278 + 16.8747i −1.14377 + 0.660357i −0.947362 0.320165i \(-0.896262\pi\)
−0.196410 + 0.980522i \(0.562928\pi\)
\(654\) 0 0
\(655\) −8.82545 5.09537i −0.344839 0.199093i
\(656\) −2.21324 −0.0864126
\(657\) 0 0
\(658\) 1.24138 0.0483941
\(659\) 21.2069 36.7314i 0.826102 1.43085i −0.0749725 0.997186i \(-0.523887\pi\)
0.901074 0.433665i \(-0.142780\pi\)
\(660\) 0 0
\(661\) 16.3119 + 28.2531i 0.634460 + 1.09892i 0.986629 + 0.162980i \(0.0521107\pi\)
−0.352170 + 0.935936i \(0.614556\pi\)
\(662\) −14.6814 25.4289i −0.570608 0.988323i
\(663\) 0 0
\(664\) −1.65561 + 2.86759i −0.0642499 + 0.111284i
\(665\) 1.46620i 0.0568566i
\(666\) 0 0
\(667\) 34.7613i 1.34596i
\(668\) −0.940284 + 1.62862i −0.0363807 + 0.0630132i
\(669\) 0 0
\(670\) 7.30793 4.21923i 0.282330 0.163003i
\(671\) −0.961504 14.9459i −0.0371185 0.576979i
\(672\) 0 0
\(673\) 30.8226 + 17.7954i 1.18812 + 0.685963i 0.957880 0.287170i \(-0.0927144\pi\)
0.230243 + 0.973133i \(0.426048\pi\)
\(674\) 19.8215i 0.763497i
\(675\) 0 0
\(676\) −12.0802 −0.464621
\(677\) 16.1560 27.9830i 0.620926 1.07548i −0.368388 0.929672i \(-0.620090\pi\)
0.989314 0.145803i \(-0.0465766\pi\)
\(678\) 0 0
\(679\) −5.06081 + 2.92186i −0.194216 + 0.112131i
\(680\) −3.53470 + 2.04076i −0.135550 + 0.0782596i
\(681\) 0 0
\(682\) −12.3551 18.5390i −0.473100 0.709896i
\(683\) 2.61049i 0.0998875i −0.998752 0.0499438i \(-0.984096\pi\)
0.998752 0.0499438i \(-0.0159042\pi\)
\(684\) 0 0
\(685\) 16.2098 0.619345
\(686\) 11.7960 + 6.81040i 0.450372 + 0.260022i
\(687\) 0 0
\(688\) −2.85341 + 1.64742i −0.108785 + 0.0628071i
\(689\) −0.0866475 0.150078i −0.00330101 0.00571751i
\(690\) 0 0
\(691\) −2.16019 + 3.74157i −0.0821777 + 0.142336i −0.904185 0.427141i \(-0.859521\pi\)
0.822007 + 0.569477i \(0.192854\pi\)
\(692\) 18.7478 0.712684
\(693\) 0 0
\(694\) −7.32211 −0.277943
\(695\) 5.98197 10.3611i 0.226909 0.393018i
\(696\) 0 0
\(697\) −4.51670 7.82315i −0.171082 0.296323i
\(698\) −6.53255 + 3.77157i −0.247261 + 0.142756i
\(699\) 0 0
\(700\) −0.915692 0.528675i −0.0346099 0.0199820i
\(701\) −44.1237 −1.66653 −0.833265 0.552874i \(-0.813531\pi\)
−0.833265 + 0.552874i \(0.813531\pi\)
\(702\) 0 0
\(703\) 8.29581i 0.312882i
\(704\) 1.83929 + 2.75989i 0.0693209 + 0.104017i
\(705\) 0 0
\(706\) −9.12857 + 5.27038i −0.343558 + 0.198354i
\(707\) 14.8475 8.57222i 0.558398 0.322391i
\(708\) 0 0
\(709\) −15.5092 + 26.8627i −0.582459 + 1.00885i 0.412728 + 0.910854i \(0.364576\pi\)
−0.995187 + 0.0979942i \(0.968757\pi\)
\(710\) 5.03435 0.188936
\(711\) 0 0
\(712\) 3.71184i 0.139107i
\(713\) 30.3892 + 17.5452i 1.13808 + 0.657072i
\(714\) 0 0
\(715\) 16.5754 1.06634i 0.619886 0.0398787i
\(716\) −7.41335 + 4.28010i −0.277050 + 0.159955i
\(717\) 0 0
\(718\) 15.8817 27.5080i 0.592701 1.02659i
\(719\) 13.8269i 0.515656i −0.966191 0.257828i \(-0.916993\pi\)
0.966191 0.257828i \(-0.0830068\pi\)
\(720\) 0 0
\(721\) 0.104793i 0.00390269i
\(722\) −8.53857 + 14.7892i −0.317773 + 0.550399i
\(723\) 0 0
\(724\) −6.78594 11.7536i −0.252197 0.436819i
\(725\) 3.32715 + 5.76280i 0.123567 + 0.214025i
\(726\) 0 0
\(727\) 25.9981 45.0300i 0.964216 1.67007i 0.252509 0.967595i \(-0.418744\pi\)
0.711707 0.702476i \(-0.247922\pi\)
\(728\) 5.29522 0.196254
\(729\) 0 0
\(730\) −12.8897 −0.477067
\(731\) −11.6462 6.72396i −0.430752 0.248695i
\(732\) 0 0
\(733\) 12.1638 7.02279i 0.449281 0.259393i −0.258245 0.966079i \(-0.583144\pi\)
0.707527 + 0.706687i \(0.249811\pi\)
\(734\) −0.0479495 0.0830510i −0.00176985 0.00306547i
\(735\) 0 0
\(736\) −4.52401 2.61194i −0.166757 0.0962773i
\(737\) 12.4087 25.0860i 0.457080 0.924056i
\(738\) 0 0
\(739\) 1.73685i 0.0638911i −0.999490 0.0319455i \(-0.989830\pi\)
0.999490 0.0319455i \(-0.0101703\pi\)
\(740\) −5.18103 2.99127i −0.190459 0.109961i
\(741\) 0 0
\(742\) 0.0182941 + 0.0316862i 0.000671596 + 0.00116324i
\(743\) −1.07106 1.85513i −0.0392933 0.0680580i 0.845710 0.533643i \(-0.179177\pi\)
−0.885003 + 0.465585i \(0.845844\pi\)
\(744\) 0 0
\(745\) 15.7932 + 9.11819i 0.578617 + 0.334065i
\(746\) 14.8157i 0.542440i
\(747\) 0 0
\(748\) −6.00184 + 12.1336i −0.219449 + 0.443649i
\(749\) 13.3397 + 7.70165i 0.487420 + 0.281412i
\(750\) 0 0
\(751\) 18.8637 + 32.6729i 0.688348 + 1.19225i 0.972372 + 0.233436i \(0.0749969\pi\)
−0.284025 + 0.958817i \(0.591670\pi\)
\(752\) 1.01676 0.587024i 0.0370773 0.0214066i
\(753\) 0 0
\(754\) −28.8602 16.6624i −1.05102 0.606809i
\(755\) 5.43442 0.197779
\(756\) 0 0
\(757\) 23.4098 0.850845 0.425422 0.904995i \(-0.360126\pi\)
0.425422 + 0.904995i \(0.360126\pi\)
\(758\) 2.92771 5.07094i 0.106339 0.184185i
\(759\) 0 0
\(760\) −0.693335 1.20089i −0.0251499 0.0435609i
\(761\) −13.4756 23.3404i −0.488490 0.846089i 0.511423 0.859329i \(-0.329119\pi\)
−0.999912 + 0.0132405i \(0.995785\pi\)
\(762\) 0 0
\(763\) 0.276119 0.478252i 0.00999617 0.0173139i
\(764\) 0.748369i 0.0270750i
\(765\) 0 0
\(766\) 4.93842i 0.178432i
\(767\) 27.2206 47.1475i 0.982879 1.70240i
\(768\) 0 0
\(769\) 11.9803 6.91685i 0.432022 0.249428i −0.268186 0.963367i \(-0.586424\pi\)
0.700208 + 0.713939i \(0.253091\pi\)
\(770\) −3.49960 + 0.225138i −0.126117 + 0.00811340i
\(771\) 0 0
\(772\) −10.8573 6.26848i −0.390764 0.225608i
\(773\) 40.2226i 1.44671i −0.690478 0.723353i \(-0.742600\pi\)
0.690478 0.723353i \(-0.257400\pi\)
\(774\) 0 0
\(775\) 6.71730 0.241293
\(776\) −2.76338 + 4.78632i −0.0991996 + 0.171819i
\(777\) 0 0
\(778\) 30.4964 17.6071i 1.09335 0.631245i
\(779\) 2.65786 1.53452i 0.0952278 0.0549798i
\(780\) 0 0
\(781\) 13.8943 9.25963i 0.497176 0.331336i
\(782\) 21.3214i 0.762450i
\(783\) 0 0
\(784\) 5.88201 0.210072
\(785\) 6.75237 + 3.89848i 0.241002 + 0.139143i
\(786\) 0 0
\(787\) −40.0385 + 23.1162i −1.42722 + 0.824004i −0.996900 0.0786737i \(-0.974931\pi\)
−0.430317 + 0.902678i \(0.641598\pi\)
\(788\) 1.03014 + 1.78426i 0.0366974 + 0.0635617i
\(789\) 0 0
\(790\) 4.94255 8.56074i 0.175848 0.304578i
\(791\) 14.4633 0.514257
\(792\) 0 0
\(793\) −22.6145 −0.803064
\(794\) 6.20719 10.7512i 0.220285 0.381544i
\(795\) 0 0
\(796\) −9.85479 17.0690i −0.349294 0.604994i
\(797\) −14.4588 + 8.34779i −0.512157 + 0.295694i −0.733720 0.679452i \(-0.762217\pi\)
0.221563 + 0.975146i \(0.428884\pi\)
\(798\) 0 0
\(799\) 4.14991 + 2.39595i 0.146813 + 0.0847627i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 23.6583i 0.835403i
\(803\) −35.5741 + 23.7078i −1.25538 + 0.836631i
\(804\) 0 0
\(805\) 4.78347 2.76174i 0.168595 0.0973384i
\(806\) −29.1334 + 16.8202i −1.02618 + 0.592465i
\(807\) 0 0
\(808\) 8.10726 14.0422i 0.285213 0.494003i
\(809\) −7.89639 −0.277622 −0.138811 0.990319i \(-0.544328\pi\)
−0.138811 + 0.990319i \(0.544328\pi\)
\(810\) 0 0
\(811\) 43.3459i 1.52208i −0.648706 0.761040i \(-0.724689\pi\)
0.648706 0.761040i \(-0.275311\pi\)
\(812\) 6.09330 + 3.51797i 0.213833 + 0.123456i
\(813\) 0 0
\(814\) −19.8009 + 1.27384i −0.694022 + 0.0446481i
\(815\) −6.32136 + 3.64964i −0.221428 + 0.127841i
\(816\) 0 0
\(817\) 2.28442 3.95673i 0.0799217 0.138429i
\(818\) 19.0171i 0.664918i
\(819\) 0 0
\(820\) 2.21324i 0.0772898i
\(821\) −18.1604 + 31.4547i −0.633802 + 1.09778i 0.352965 + 0.935636i \(0.385173\pi\)
−0.986768 + 0.162141i \(0.948160\pi\)
\(822\) 0 0
\(823\) −14.8019 25.6377i −0.515963 0.893674i −0.999828 0.0185314i \(-0.994101\pi\)
0.483865 0.875142i \(-0.339232\pi\)
\(824\) 0.0495545 + 0.0858309i 0.00172631 + 0.00299006i
\(825\) 0 0
\(826\) −5.74714 + 9.95434i −0.199969 + 0.346356i
\(827\) −12.8344 −0.446295 −0.223148 0.974785i \(-0.571633\pi\)
−0.223148 + 0.974785i \(0.571633\pi\)
\(828\) 0 0
\(829\) −4.28623 −0.148867 −0.0744334 0.997226i \(-0.523715\pi\)
−0.0744334 + 0.997226i \(0.523715\pi\)
\(830\) −2.86759 1.65561i −0.0995356 0.0574669i
\(831\) 0 0
\(832\) 4.33706 2.50400i 0.150361 0.0868107i
\(833\) 12.0038 + 20.7911i 0.415906 + 0.720370i
\(834\) 0 0
\(835\) −1.62862 0.940284i −0.0563607 0.0325399i
\(836\) −4.12232 2.03909i −0.142573 0.0705233i
\(837\) 0 0
\(838\) 4.46035i 0.154080i
\(839\) −21.6342 12.4905i −0.746896 0.431220i 0.0776755 0.996979i \(-0.475250\pi\)
−0.824571 + 0.565758i \(0.808584\pi\)
\(840\) 0 0
\(841\) −7.63991 13.2327i −0.263445 0.456300i
\(842\) 12.3649 + 21.4167i 0.426123 + 0.738067i
\(843\) 0 0
\(844\) 15.7652 + 9.10203i 0.542660 + 0.313305i
\(845\) 12.0802i 0.415570i
\(846\) 0 0
\(847\) −9.24443 + 7.05814i −0.317642 + 0.242521i
\(848\) 0.0299676 + 0.0173018i 0.00102909 + 0.000594146i
\(849\) 0 0
\(850\) −2.04076 3.53470i −0.0699975 0.121239i
\(851\) 27.0651 15.6260i 0.927779 0.535654i
\(852\) 0 0
\(853\) 32.8015 + 18.9379i 1.12310 + 0.648423i 0.942191 0.335076i \(-0.108762\pi\)
0.180911 + 0.983500i \(0.442095\pi\)
\(854\) 4.77464 0.163385
\(855\) 0 0
\(856\) 14.5678 0.497918
\(857\) 9.26853 16.0536i 0.316607 0.548379i −0.663171 0.748468i \(-0.730790\pi\)
0.979778 + 0.200089i \(0.0641231\pi\)
\(858\) 0 0
\(859\) −14.1421 24.4949i −0.482524 0.835755i 0.517275 0.855819i \(-0.326946\pi\)
−0.999799 + 0.0200639i \(0.993613\pi\)
\(860\) −1.64742 2.85341i −0.0561764 0.0973004i
\(861\) 0 0
\(862\) 3.42841 5.93818i 0.116772 0.202255i
\(863\) 38.0301i 1.29456i −0.762252 0.647280i \(-0.775906\pi\)
0.762252 0.647280i \(-0.224094\pi\)
\(864\) 0 0
\(865\) 18.7478i 0.637444i
\(866\) −11.5832 + 20.0626i −0.393612 + 0.681755i
\(867\) 0 0
\(868\) 6.15098 3.55127i 0.208778 0.120538i
\(869\) −2.10480 32.7175i −0.0714003 1.10987i
\(870\) 0 0
\(871\) −36.5982 21.1300i −1.24008 0.715961i
\(872\) 0.522284i 0.0176868i
\(873\) 0 0
\(874\) 7.24379 0.245025
\(875\) 0.528675 0.915692i 0.0178725 0.0309561i
\(876\) 0 0
\(877\) −34.2501 + 19.7743i −1.15654 + 0.667731i −0.950474 0.310805i \(-0.899401\pi\)
−0.206071 + 0.978537i \(0.566068\pi\)
\(878\) 28.5870 16.5047i 0.964766 0.557008i
\(879\) 0 0
\(880\) −2.75989 + 1.83929i −0.0930360 + 0.0620025i
\(881\) 1.43415i 0.0483176i 0.999708 + 0.0241588i \(0.00769073\pi\)
−0.999708 + 0.0241588i \(0.992309\pi\)
\(882\) 0 0
\(883\) 29.5724 0.995192 0.497596 0.867409i \(-0.334216\pi\)
0.497596 + 0.867409i \(0.334216\pi\)
\(884\) 17.7018 + 10.2201i 0.595376 + 0.343741i
\(885\) 0 0
\(886\) −20.7202 + 11.9628i −0.696109 + 0.401899i
\(887\) −0.459977 0.796704i −0.0154445 0.0267507i 0.858200 0.513316i \(-0.171583\pi\)
−0.873644 + 0.486565i \(0.838250\pi\)
\(888\) 0 0
\(889\) −8.92187 + 15.4531i −0.299230 + 0.518281i
\(890\) −3.71184 −0.124421
\(891\) 0 0
\(892\) 5.71758 0.191439
\(893\) −0.814009 + 1.40990i −0.0272398 + 0.0471806i
\(894\) 0 0
\(895\) −4.28010 7.41335i −0.143068 0.247801i
\(896\) −0.915692 + 0.528675i −0.0305911 + 0.0176618i
\(897\) 0 0
\(898\) 3.49734 + 2.01919i 0.116708 + 0.0673813i
\(899\) −44.6990 −1.49080
\(900\) 0 0
\(901\) 0.141235i 0.00470523i
\(902\) −4.07080 6.10831i −0.135543 0.203384i
\(903\) 0 0
\(904\) 11.8462 6.83942i 0.394000 0.227476i
\(905\) 11.7536 6.78594i 0.390703 0.225572i
\(906\) 0 0
\(907\) −18.0827 + 31.3201i −0.600425 + 1.03997i 0.392331 + 0.919824i \(0.371669\pi\)
−0.992757 + 0.120143i \(0.961665\pi\)
\(908\) 12.2587 0.406818
\(909\) 0 0
\(910\) 5.29522i 0.175535i
\(911\) −7.17296 4.14131i −0.237651 0.137208i 0.376446 0.926439i \(-0.377146\pi\)
−0.614097 + 0.789231i \(0.710479\pi\)
\(912\) 0 0
\(913\) −10.9594 + 0.705044i −0.362703 + 0.0233335i
\(914\) 34.4097 19.8664i 1.13817 0.657123i
\(915\) 0 0
\(916\) 9.63480 16.6880i 0.318343 0.551386i
\(917\) 10.7752i 0.355828i
\(918\) 0 0
\(919\) 7.65289i 0.252446i 0.992002 + 0.126223i \(0.0402854\pi\)
−0.992002 + 0.126223i \(0.959715\pi\)
\(920\) 2.61194 4.52401i 0.0861131 0.149152i
\(921\) 0 0
\(922\) 12.3436 + 21.3798i 0.406516 + 0.704106i
\(923\) −12.6060 21.8343i −0.414933 0.718684i
\(924\) 0 0
\(925\) 2.99127 5.18103i 0.0983524 0.170351i
\(926\) 14.8529 0.488097
\(927\) 0 0
\(928\) 6.65431 0.218438
\(929\) 22.3193 + 12.8861i 0.732274 + 0.422778i 0.819253 0.573432i \(-0.194388\pi\)
−0.0869797 + 0.996210i \(0.527722\pi\)
\(930\) 0 0
\(931\) −7.06365 + 4.07820i −0.231502 + 0.133658i
\(932\) −11.7677 20.3823i −0.385465 0.667645i
\(933\) 0 0
\(934\) −15.5382 8.97099i −0.508426 0.293540i
\(935\) −12.1336 6.00184i −0.396812 0.196281i
\(936\) 0 0
\(937\) 25.7244i 0.840380i −0.907436 0.420190i \(-0.861963\pi\)
0.907436 0.420190i \(-0.138037\pi\)
\(938\) 7.72704 + 4.46121i 0.252297 + 0.145664i
\(939\) 0 0
\(940\) 0.587024 + 1.01676i 0.0191466 + 0.0331629i
\(941\) 20.6037 + 35.6867i 0.671663 + 1.16335i 0.977432 + 0.211249i \(0.0677530\pi\)
−0.305769 + 0.952106i \(0.598914\pi\)
\(942\) 0 0
\(943\) 10.0127 + 5.78085i 0.326059 + 0.188250i
\(944\) 10.8708i 0.353815i
\(945\) 0 0
\(946\) −9.79494 4.84502i −0.318461 0.157525i
\(947\) −39.6156 22.8721i −1.28733 0.743242i −0.309156 0.951011i \(-0.600046\pi\)
−0.978178 + 0.207769i \(0.933380\pi\)
\(948\) 0 0
\(949\) 32.2757 + 55.9032i 1.04772 + 1.81470i
\(950\) 1.20089 0.693335i 0.0389620 0.0224947i
\(951\) 0 0
\(952\) −3.73742 2.15780i −0.121130 0.0699347i
\(953\) −48.5152 −1.57156 −0.785781 0.618505i \(-0.787739\pi\)
−0.785781 + 0.618505i \(0.787739\pi\)
\(954\) 0 0
\(955\) 0.748369 0.0242166
\(956\) −0.402515 + 0.697176i −0.0130183 + 0.0225483i
\(957\) 0 0
\(958\) −16.3488 28.3170i −0.528207 0.914881i
\(959\) 8.56972 + 14.8432i 0.276731 + 0.479312i
\(960\) 0 0
\(961\) −7.06108 + 12.2302i −0.227777 + 0.394521i
\(962\) 29.9606i 0.965969i
\(963\) 0 0
\(964\) 25.4130i 0.818499i
\(965\) 6.26848 10.8573i 0.201790 0.349510i
\(966\) 0 0
\(967\) −6.60473 + 3.81324i −0.212394 + 0.122626i −0.602423 0.798177i \(-0.705798\pi\)
0.390030 + 0.920802i \(0.372465\pi\)
\(968\) −4.23402 + 10.1525i −0.136086 + 0.326313i
\(969\) 0 0
\(970\) −4.78632 2.76338i −0.153679 0.0887268i
\(971\) 49.9776i 1.60386i −0.597419 0.801929i \(-0.703807\pi\)
0.597419 0.801929i \(-0.296193\pi\)
\(972\) 0 0
\(973\) 12.6501 0.405543
\(974\) 20.5805 35.6464i 0.659441 1.14219i
\(975\) 0 0
\(976\) 3.91068 2.25783i 0.125178 0.0722715i
\(977\) −52.6085 + 30.3735i −1.68310 + 0.971736i −0.723512 + 0.690312i \(0.757473\pi\)
−0.959584 + 0.281424i \(0.909193\pi\)
\(978\) 0 0
\(979\) −10.2443 + 6.82715i −0.327408 + 0.218197i
\(980\) 5.88201i 0.187894i
\(981\) 0 0
\(982\) 39.3041 1.25424
\(983\) 7.03999 + 4.06454i 0.224541 + 0.129639i 0.608051 0.793898i \(-0.291952\pi\)
−0.383510 + 0.923537i \(0.625285\pi\)
\(984\) 0 0
\(985\) −1.78426 + 1.03014i −0.0568513 + 0.0328231i
\(986\) 13.5798 + 23.5210i 0.432470 + 0.749061i
\(987\) 0 0
\(988\) −3.47223 + 6.01407i −0.110466 + 0.191333i
\(989\) 17.2118 0.547303
\(990\) 0 0
\(991\) −24.1067 −0.765775 −0.382887 0.923795i \(-0.625070\pi\)
−0.382887 + 0.923795i \(0.625070\pi\)
\(992\) 3.35865 5.81736i 0.106637 0.184701i
\(993\) 0 0
\(994\) 2.66154 + 4.60992i 0.0844188 + 0.146218i
\(995\) 17.0690 9.85479i 0.541123 0.312418i
\(996\) 0 0
\(997\) 32.0996 + 18.5327i 1.01661 + 0.586937i 0.913119 0.407693i \(-0.133667\pi\)
0.103487 + 0.994631i \(0.467000\pi\)
\(998\) 39.9935 1.26597
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.a.791.20 48
3.2 odd 2 990.2.t.b.461.24 yes 48
9.4 even 3 990.2.t.a.131.24 48
9.5 odd 6 2970.2.t.b.2771.20 48
11.10 odd 2 2970.2.t.b.791.20 48
33.32 even 2 990.2.t.a.461.24 yes 48
99.32 even 6 inner 2970.2.t.a.2771.20 48
99.76 odd 6 990.2.t.b.131.24 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.24 48 9.4 even 3
990.2.t.a.461.24 yes 48 33.32 even 2
990.2.t.b.131.24 yes 48 99.76 odd 6
990.2.t.b.461.24 yes 48 3.2 odd 2
2970.2.t.a.791.20 48 1.1 even 1 trivial
2970.2.t.a.2771.20 48 99.32 even 6 inner
2970.2.t.b.791.20 48 11.10 odd 2
2970.2.t.b.2771.20 48 9.5 odd 6