Properties

Label 2970.2.t.a.791.11
Level $2970$
Weight $2$
Character 2970.791
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 791.11
Character \(\chi\) \(=\) 2970.791
Dual form 2970.2.t.a.2771.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.866025 + 0.500000i) q^{5} +(2.83014 + 1.63398i) q^{7} +1.00000 q^{8} -1.00000i q^{10} +(0.898862 + 3.19250i) q^{11} +(2.49573 - 1.44091i) q^{13} +(-2.83014 + 1.63398i) q^{14} +(-0.500000 + 0.866025i) q^{16} -1.88020 q^{17} +4.33972i q^{19} +(0.866025 + 0.500000i) q^{20} +(-3.21422 - 0.817812i) q^{22} +(-6.17351 + 3.56428i) q^{23} +(0.500000 - 0.866025i) q^{25} +2.88183i q^{26} -3.26796i q^{28} +(0.688200 - 1.19200i) q^{29} +(1.78294 + 3.08815i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.940102 - 1.62830i) q^{34} -3.26796 q^{35} -7.24005 q^{37} +(-3.75831 - 2.16986i) q^{38} +(-0.866025 + 0.500000i) q^{40} +(-3.83291 - 6.63880i) q^{41} +(6.89392 + 3.98021i) q^{43} +(2.31535 - 2.37469i) q^{44} -7.12855i q^{46} +(8.91993 + 5.14992i) q^{47} +(1.83978 + 3.18659i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-2.49573 - 1.44091i) q^{52} -3.25710i q^{53} +(-2.37469 - 2.31535i) q^{55} +(2.83014 + 1.63398i) q^{56} +(0.688200 + 1.19200i) q^{58} +(1.31366 - 0.758441i) q^{59} +(6.49131 + 3.74776i) q^{61} -3.56588 q^{62} +1.00000 q^{64} +(-1.44091 + 2.49573i) q^{65} +(1.84864 + 3.20194i) q^{67} +(0.940102 + 1.62830i) q^{68} +(1.63398 - 2.83014i) q^{70} +15.6364i q^{71} -11.3309i q^{73} +(3.62003 - 6.27007i) q^{74} +(3.75831 - 2.16986i) q^{76} +(-2.67258 + 10.5039i) q^{77} +(-11.3436 - 6.54921i) q^{79} -1.00000i q^{80} +7.66582 q^{82} +(-0.462740 + 0.801490i) q^{83} +(1.62830 - 0.940102i) q^{85} +(-6.89392 + 3.98021i) q^{86} +(0.898862 + 3.19250i) q^{88} -2.39265i q^{89} +9.41769 q^{91} +(6.17351 + 3.56428i) q^{92} +(-8.91993 + 5.14992i) q^{94} +(-2.16986 - 3.75831i) q^{95} +(-8.05367 + 13.9494i) q^{97} -3.67955 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} + 12 q^{11} - 24 q^{13} - 24 q^{16} - 12 q^{17} - 6 q^{22} - 36 q^{23} + 24 q^{25} - 24 q^{32} + 6 q^{34} + 6 q^{38} - 6 q^{41} - 30 q^{43} - 6 q^{44} + 24 q^{49} + 24 q^{50}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.866025 + 0.500000i −0.387298 + 0.223607i
\(6\) 0 0
\(7\) 2.83014 + 1.63398i 1.06969 + 0.617586i 0.928097 0.372339i \(-0.121444\pi\)
0.141594 + 0.989925i \(0.454777\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 0.898862 + 3.19250i 0.271017 + 0.962575i
\(12\) 0 0
\(13\) 2.49573 1.44091i 0.692192 0.399637i −0.112240 0.993681i \(-0.535803\pi\)
0.804433 + 0.594044i \(0.202469\pi\)
\(14\) −2.83014 + 1.63398i −0.756385 + 0.436699i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.88020 −0.456016 −0.228008 0.973659i \(-0.573221\pi\)
−0.228008 + 0.973659i \(0.573221\pi\)
\(18\) 0 0
\(19\) 4.33972i 0.995600i 0.867292 + 0.497800i \(0.165859\pi\)
−0.867292 + 0.497800i \(0.834141\pi\)
\(20\) 0.866025 + 0.500000i 0.193649 + 0.111803i
\(21\) 0 0
\(22\) −3.21422 0.817812i −0.685273 0.174358i
\(23\) −6.17351 + 3.56428i −1.28727 + 0.743203i −0.978166 0.207827i \(-0.933361\pi\)
−0.309099 + 0.951030i \(0.600028\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 2.88183i 0.565173i
\(27\) 0 0
\(28\) 3.26796i 0.617586i
\(29\) 0.688200 1.19200i 0.127796 0.221348i −0.795027 0.606574i \(-0.792543\pi\)
0.922822 + 0.385226i \(0.125877\pi\)
\(30\) 0 0
\(31\) 1.78294 + 3.08815i 0.320226 + 0.554647i 0.980534 0.196347i \(-0.0629079\pi\)
−0.660309 + 0.750994i \(0.729575\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.940102 1.62830i 0.161226 0.279252i
\(35\) −3.26796 −0.552386
\(36\) 0 0
\(37\) −7.24005 −1.19026 −0.595129 0.803630i \(-0.702899\pi\)
−0.595129 + 0.803630i \(0.702899\pi\)
\(38\) −3.75831 2.16986i −0.609678 0.351998i
\(39\) 0 0
\(40\) −0.866025 + 0.500000i −0.136931 + 0.0790569i
\(41\) −3.83291 6.63880i −0.598600 1.03681i −0.993028 0.117879i \(-0.962391\pi\)
0.394428 0.918927i \(-0.370943\pi\)
\(42\) 0 0
\(43\) 6.89392 + 3.98021i 1.05131 + 0.606976i 0.923017 0.384760i \(-0.125716\pi\)
0.128296 + 0.991736i \(0.459049\pi\)
\(44\) 2.31535 2.37469i 0.349053 0.357997i
\(45\) 0 0
\(46\) 7.12855i 1.05105i
\(47\) 8.91993 + 5.14992i 1.30111 + 0.751194i 0.980594 0.196051i \(-0.0628118\pi\)
0.320512 + 0.947245i \(0.396145\pi\)
\(48\) 0 0
\(49\) 1.83978 + 3.18659i 0.262825 + 0.455227i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −2.49573 1.44091i −0.346096 0.199819i
\(53\) 3.25710i 0.447398i −0.974658 0.223699i \(-0.928187\pi\)
0.974658 0.223699i \(-0.0718132\pi\)
\(54\) 0 0
\(55\) −2.37469 2.31535i −0.320203 0.312202i
\(56\) 2.83014 + 1.63398i 0.378193 + 0.218350i
\(57\) 0 0
\(58\) 0.688200 + 1.19200i 0.0903651 + 0.156517i
\(59\) 1.31366 0.758441i 0.171024 0.0987406i −0.412045 0.911164i \(-0.635185\pi\)
0.583068 + 0.812423i \(0.301852\pi\)
\(60\) 0 0
\(61\) 6.49131 + 3.74776i 0.831128 + 0.479852i 0.854239 0.519881i \(-0.174024\pi\)
−0.0231111 + 0.999733i \(0.507357\pi\)
\(62\) −3.56588 −0.452868
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.44091 + 2.49573i −0.178723 + 0.309558i
\(66\) 0 0
\(67\) 1.84864 + 3.20194i 0.225847 + 0.391179i 0.956573 0.291492i \(-0.0941516\pi\)
−0.730726 + 0.682671i \(0.760818\pi\)
\(68\) 0.940102 + 1.62830i 0.114004 + 0.197461i
\(69\) 0 0
\(70\) 1.63398 2.83014i 0.195298 0.338266i
\(71\) 15.6364i 1.85570i 0.372959 + 0.927848i \(0.378343\pi\)
−0.372959 + 0.927848i \(0.621657\pi\)
\(72\) 0 0
\(73\) 11.3309i 1.32618i −0.748540 0.663090i \(-0.769245\pi\)
0.748540 0.663090i \(-0.230755\pi\)
\(74\) 3.62003 6.27007i 0.420819 0.728881i
\(75\) 0 0
\(76\) 3.75831 2.16986i 0.431107 0.248900i
\(77\) −2.67258 + 10.5039i −0.304568 + 1.19703i
\(78\) 0 0
\(79\) −11.3436 6.54921i −1.27625 0.736843i −0.300093 0.953910i \(-0.597018\pi\)
−0.976157 + 0.217067i \(0.930351\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) 7.66582 0.846548
\(83\) −0.462740 + 0.801490i −0.0507924 + 0.0879749i −0.890304 0.455367i \(-0.849508\pi\)
0.839511 + 0.543342i \(0.182841\pi\)
\(84\) 0 0
\(85\) 1.62830 0.940102i 0.176614 0.101968i
\(86\) −6.89392 + 3.98021i −0.743390 + 0.429197i
\(87\) 0 0
\(88\) 0.898862 + 3.19250i 0.0958190 + 0.340321i
\(89\) 2.39265i 0.253620i −0.991927 0.126810i \(-0.959526\pi\)
0.991927 0.126810i \(-0.0404739\pi\)
\(90\) 0 0
\(91\) 9.41769 0.987242
\(92\) 6.17351 + 3.56428i 0.643633 + 0.371601i
\(93\) 0 0
\(94\) −8.91993 + 5.14992i −0.920021 + 0.531174i
\(95\) −2.16986 3.75831i −0.222623 0.385594i
\(96\) 0 0
\(97\) −8.05367 + 13.9494i −0.817726 + 1.41634i 0.0896275 + 0.995975i \(0.471432\pi\)
−0.907354 + 0.420368i \(0.861901\pi\)
\(98\) −3.67955 −0.371691
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 1.81753 3.14805i 0.180851 0.313243i −0.761320 0.648377i \(-0.775448\pi\)
0.942171 + 0.335134i \(0.108782\pi\)
\(102\) 0 0
\(103\) 1.93445 + 3.35057i 0.190607 + 0.330141i 0.945452 0.325763i \(-0.105621\pi\)
−0.754845 + 0.655904i \(0.772288\pi\)
\(104\) 2.49573 1.44091i 0.244727 0.141293i
\(105\) 0 0
\(106\) 2.82074 + 1.62855i 0.273974 + 0.158179i
\(107\) −7.19194 −0.695271 −0.347635 0.937630i \(-0.613015\pi\)
−0.347635 + 0.937630i \(0.613015\pi\)
\(108\) 0 0
\(109\) 12.6752i 1.21406i −0.794678 0.607031i \(-0.792360\pi\)
0.794678 0.607031i \(-0.207640\pi\)
\(110\) 3.19250 0.898862i 0.304393 0.0857031i
\(111\) 0 0
\(112\) −2.83014 + 1.63398i −0.267423 + 0.154397i
\(113\) 2.95268 1.70473i 0.277765 0.160368i −0.354646 0.935001i \(-0.615399\pi\)
0.632411 + 0.774633i \(0.282065\pi\)
\(114\) 0 0
\(115\) 3.56428 6.17351i 0.332370 0.575682i
\(116\) −1.37640 −0.127796
\(117\) 0 0
\(118\) 1.51688i 0.139640i
\(119\) −5.32123 3.07221i −0.487796 0.281629i
\(120\) 0 0
\(121\) −9.38409 + 5.73923i −0.853100 + 0.521748i
\(122\) −6.49131 + 3.74776i −0.587696 + 0.339306i
\(123\) 0 0
\(124\) 1.78294 3.08815i 0.160113 0.277324i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 6.58147i 0.584011i −0.956417 0.292006i \(-0.905677\pi\)
0.956417 0.292006i \(-0.0943226\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −1.44091 2.49573i −0.126376 0.218890i
\(131\) 2.79118 + 4.83446i 0.243866 + 0.422389i 0.961812 0.273710i \(-0.0882508\pi\)
−0.717946 + 0.696099i \(0.754917\pi\)
\(132\) 0 0
\(133\) −7.09101 + 12.2820i −0.614868 + 1.06498i
\(134\) −3.69728 −0.319397
\(135\) 0 0
\(136\) −1.88020 −0.161226
\(137\) 4.52136 + 2.61041i 0.386286 + 0.223022i 0.680549 0.732702i \(-0.261741\pi\)
−0.294264 + 0.955724i \(0.595074\pi\)
\(138\) 0 0
\(139\) −10.2061 + 5.89247i −0.865666 + 0.499793i −0.865906 0.500207i \(-0.833257\pi\)
0.000239343 1.00000i \(0.499924\pi\)
\(140\) 1.63398 + 2.83014i 0.138096 + 0.239190i
\(141\) 0 0
\(142\) −13.5415 7.81819i −1.13638 0.656088i
\(143\) 6.84343 + 6.67245i 0.572277 + 0.557978i
\(144\) 0 0
\(145\) 1.37640i 0.114304i
\(146\) 9.81284 + 5.66544i 0.812116 + 0.468875i
\(147\) 0 0
\(148\) 3.62003 + 6.27007i 0.297564 + 0.515397i
\(149\) −1.35163 2.34110i −0.110730 0.191790i 0.805335 0.592820i \(-0.201986\pi\)
−0.916065 + 0.401030i \(0.868652\pi\)
\(150\) 0 0
\(151\) −9.07019 5.23668i −0.738122 0.426155i 0.0832643 0.996527i \(-0.473465\pi\)
−0.821386 + 0.570373i \(0.806799\pi\)
\(152\) 4.33972i 0.351998i
\(153\) 0 0
\(154\) −7.76038 7.56648i −0.625349 0.609724i
\(155\) −3.08815 1.78294i −0.248046 0.143209i
\(156\) 0 0
\(157\) 4.83418 + 8.37305i 0.385810 + 0.668242i 0.991881 0.127168i \(-0.0405888\pi\)
−0.606072 + 0.795410i \(0.707255\pi\)
\(158\) 11.3436 6.54921i 0.902445 0.521027i
\(159\) 0 0
\(160\) 0.866025 + 0.500000i 0.0684653 + 0.0395285i
\(161\) −23.2958 −1.83597
\(162\) 0 0
\(163\) −20.0875 −1.57337 −0.786687 0.617352i \(-0.788206\pi\)
−0.786687 + 0.617352i \(0.788206\pi\)
\(164\) −3.83291 + 6.63880i −0.299300 + 0.518403i
\(165\) 0 0
\(166\) −0.462740 0.801490i −0.0359156 0.0622077i
\(167\) 10.1839 + 17.6390i 0.788052 + 1.36495i 0.927159 + 0.374668i \(0.122243\pi\)
−0.139107 + 0.990277i \(0.544423\pi\)
\(168\) 0 0
\(169\) −2.34754 + 4.06606i −0.180580 + 0.312773i
\(170\) 1.88020i 0.144205i
\(171\) 0 0
\(172\) 7.96041i 0.606976i
\(173\) −6.26488 + 10.8511i −0.476310 + 0.824994i −0.999632 0.0271419i \(-0.991359\pi\)
0.523321 + 0.852135i \(0.324693\pi\)
\(174\) 0 0
\(175\) 2.83014 1.63398i 0.213938 0.123517i
\(176\) −3.21422 0.817812i −0.242281 0.0616449i
\(177\) 0 0
\(178\) 2.07209 + 1.19632i 0.155310 + 0.0896683i
\(179\) 22.5880i 1.68831i 0.536103 + 0.844153i \(0.319896\pi\)
−0.536103 + 0.844153i \(0.680104\pi\)
\(180\) 0 0
\(181\) −16.0655 −1.19414 −0.597069 0.802190i \(-0.703668\pi\)
−0.597069 + 0.802190i \(0.703668\pi\)
\(182\) −4.70884 + 8.15596i −0.349043 + 0.604560i
\(183\) 0 0
\(184\) −6.17351 + 3.56428i −0.455117 + 0.262762i
\(185\) 6.27007 3.62003i 0.460985 0.266150i
\(186\) 0 0
\(187\) −1.69004 6.00255i −0.123588 0.438950i
\(188\) 10.2998i 0.751194i
\(189\) 0 0
\(190\) 4.33972 0.314836
\(191\) −1.49071 0.860659i −0.107864 0.0622751i 0.445098 0.895482i \(-0.353169\pi\)
−0.552961 + 0.833207i \(0.686502\pi\)
\(192\) 0 0
\(193\) 10.9926 6.34656i 0.791262 0.456836i −0.0491444 0.998792i \(-0.515649\pi\)
0.840407 + 0.541956i \(0.182316\pi\)
\(194\) −8.05367 13.9494i −0.578220 1.00151i
\(195\) 0 0
\(196\) 1.83978 3.18659i 0.131413 0.227613i
\(197\) 0.626855 0.0446615 0.0223308 0.999751i \(-0.492891\pi\)
0.0223308 + 0.999751i \(0.492891\pi\)
\(198\) 0 0
\(199\) −16.8127 −1.19182 −0.595909 0.803052i \(-0.703208\pi\)
−0.595909 + 0.803052i \(0.703208\pi\)
\(200\) 0.500000 0.866025i 0.0353553 0.0612372i
\(201\) 0 0
\(202\) 1.81753 + 3.14805i 0.127881 + 0.221496i
\(203\) 3.89540 2.24901i 0.273403 0.157850i
\(204\) 0 0
\(205\) 6.63880 + 3.83291i 0.463674 + 0.267702i
\(206\) −3.86890 −0.269559
\(207\) 0 0
\(208\) 2.88183i 0.199819i
\(209\) −13.8545 + 3.90081i −0.958339 + 0.269824i
\(210\) 0 0
\(211\) −10.0105 + 5.77955i −0.689150 + 0.397881i −0.803293 0.595584i \(-0.796921\pi\)
0.114144 + 0.993464i \(0.463588\pi\)
\(212\) −2.82074 + 1.62855i −0.193729 + 0.111849i
\(213\) 0 0
\(214\) 3.59597 6.22840i 0.245815 0.425765i
\(215\) −7.96041 −0.542896
\(216\) 0 0
\(217\) 11.6532i 0.791068i
\(218\) 10.9770 + 6.33759i 0.743459 + 0.429236i
\(219\) 0 0
\(220\) −0.817812 + 3.21422i −0.0551369 + 0.216702i
\(221\) −4.69249 + 2.70921i −0.315651 + 0.182241i
\(222\) 0 0
\(223\) −6.53996 + 11.3275i −0.437948 + 0.758549i −0.997531 0.0702259i \(-0.977628\pi\)
0.559583 + 0.828774i \(0.310961\pi\)
\(224\) 3.26796i 0.218350i
\(225\) 0 0
\(226\) 3.40946i 0.226794i
\(227\) 10.9195 18.9130i 0.724749 1.25530i −0.234328 0.972158i \(-0.575289\pi\)
0.959077 0.283145i \(-0.0913778\pi\)
\(228\) 0 0
\(229\) 0.226279 + 0.391926i 0.0149529 + 0.0258992i 0.873405 0.486994i \(-0.161907\pi\)
−0.858452 + 0.512894i \(0.828573\pi\)
\(230\) 3.56428 + 6.17351i 0.235021 + 0.407069i
\(231\) 0 0
\(232\) 0.688200 1.19200i 0.0451826 0.0782585i
\(233\) 28.9074 1.89379 0.946893 0.321549i \(-0.104204\pi\)
0.946893 + 0.321549i \(0.104204\pi\)
\(234\) 0 0
\(235\) −10.2998 −0.671888
\(236\) −1.31366 0.758441i −0.0855118 0.0493703i
\(237\) 0 0
\(238\) 5.32123 3.07221i 0.344924 0.199142i
\(239\) 6.53619 + 11.3210i 0.422791 + 0.732296i 0.996211 0.0869659i \(-0.0277171\pi\)
−0.573420 + 0.819261i \(0.694384\pi\)
\(240\) 0 0
\(241\) 20.5969 + 11.8916i 1.32676 + 0.766006i 0.984797 0.173707i \(-0.0555747\pi\)
0.341964 + 0.939713i \(0.388908\pi\)
\(242\) −0.278271 10.9965i −0.0178880 0.706880i
\(243\) 0 0
\(244\) 7.49552i 0.479852i
\(245\) −3.18659 1.83978i −0.203584 0.117539i
\(246\) 0 0
\(247\) 6.25316 + 10.8308i 0.397879 + 0.689146i
\(248\) 1.78294 + 3.08815i 0.113217 + 0.196097i
\(249\) 0 0
\(250\) −0.866025 0.500000i −0.0547723 0.0316228i
\(251\) 5.83695i 0.368425i 0.982886 + 0.184212i \(0.0589734\pi\)
−0.982886 + 0.184212i \(0.941027\pi\)
\(252\) 0 0
\(253\) −16.9281 16.5051i −1.06426 1.03767i
\(254\) 5.69972 + 3.29074i 0.357633 + 0.206479i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.461731 + 0.266581i −0.0288020 + 0.0166289i −0.514332 0.857591i \(-0.671960\pi\)
0.485530 + 0.874220i \(0.338627\pi\)
\(258\) 0 0
\(259\) −20.4903 11.8301i −1.27321 0.735086i
\(260\) 2.88183 0.178723
\(261\) 0 0
\(262\) −5.58236 −0.344879
\(263\) 1.99471 3.45494i 0.122999 0.213041i −0.797950 0.602724i \(-0.794082\pi\)
0.920949 + 0.389683i \(0.127415\pi\)
\(264\) 0 0
\(265\) 1.62855 + 2.82074i 0.100041 + 0.173276i
\(266\) −7.09101 12.2820i −0.434778 0.753057i
\(267\) 0 0
\(268\) 1.84864 3.20194i 0.112924 0.195590i
\(269\) 18.0847i 1.10265i −0.834292 0.551323i \(-0.814123\pi\)
0.834292 0.551323i \(-0.185877\pi\)
\(270\) 0 0
\(271\) 0.0590289i 0.00358575i −0.999998 0.00179288i \(-0.999429\pi\)
0.999998 0.00179288i \(-0.000570691\pi\)
\(272\) 0.940102 1.62830i 0.0570020 0.0987304i
\(273\) 0 0
\(274\) −4.52136 + 2.61041i −0.273145 + 0.157700i
\(275\) 3.21422 + 0.817812i 0.193825 + 0.0493159i
\(276\) 0 0
\(277\) 6.37510 + 3.68067i 0.383043 + 0.221150i 0.679141 0.734008i \(-0.262352\pi\)
−0.296099 + 0.955157i \(0.595686\pi\)
\(278\) 11.7849i 0.706814i
\(279\) 0 0
\(280\) −3.26796 −0.195298
\(281\) −11.7245 + 20.3075i −0.699428 + 1.21144i 0.269237 + 0.963074i \(0.413228\pi\)
−0.968665 + 0.248371i \(0.920105\pi\)
\(282\) 0 0
\(283\) −8.86343 + 5.11730i −0.526876 + 0.304192i −0.739743 0.672889i \(-0.765053\pi\)
0.212867 + 0.977081i \(0.431720\pi\)
\(284\) 13.5415 7.81819i 0.803540 0.463924i
\(285\) 0 0
\(286\) −9.20023 + 2.59036i −0.544021 + 0.153171i
\(287\) 25.0516i 1.47875i
\(288\) 0 0
\(289\) −13.4648 −0.792049
\(290\) −1.19200 0.688200i −0.0699965 0.0404125i
\(291\) 0 0
\(292\) −9.81284 + 5.66544i −0.574253 + 0.331545i
\(293\) −11.5431 19.9933i −0.674357 1.16802i −0.976656 0.214808i \(-0.931087\pi\)
0.302299 0.953213i \(-0.402246\pi\)
\(294\) 0 0
\(295\) −0.758441 + 1.31366i −0.0441581 + 0.0764841i
\(296\) −7.24005 −0.420819
\(297\) 0 0
\(298\) 2.70327 0.156596
\(299\) −10.2716 + 17.7910i −0.594023 + 1.02888i
\(300\) 0 0
\(301\) 13.0071 + 22.5290i 0.749719 + 1.29855i
\(302\) 9.07019 5.23668i 0.521931 0.301337i
\(303\) 0 0
\(304\) −3.75831 2.16986i −0.215554 0.124450i
\(305\) −7.49552 −0.429192
\(306\) 0 0
\(307\) 26.5900i 1.51757i 0.651339 + 0.758787i \(0.274207\pi\)
−0.651339 + 0.758787i \(0.725793\pi\)
\(308\) 10.4330 2.93744i 0.594473 0.167376i
\(309\) 0 0
\(310\) 3.08815 1.78294i 0.175395 0.101264i
\(311\) −17.4411 + 10.0696i −0.988992 + 0.570995i −0.904973 0.425470i \(-0.860109\pi\)
−0.0840190 + 0.996464i \(0.526776\pi\)
\(312\) 0 0
\(313\) 14.9929 25.9684i 0.847446 1.46782i −0.0360335 0.999351i \(-0.511472\pi\)
0.883480 0.468469i \(-0.155194\pi\)
\(314\) −9.66836 −0.545617
\(315\) 0 0
\(316\) 13.0984i 0.736843i
\(317\) 12.7330 + 7.35141i 0.715157 + 0.412896i 0.812968 0.582309i \(-0.197851\pi\)
−0.0978106 + 0.995205i \(0.531184\pi\)
\(318\) 0 0
\(319\) 4.42405 + 1.12564i 0.247699 + 0.0630236i
\(320\) −0.866025 + 0.500000i −0.0484123 + 0.0279508i
\(321\) 0 0
\(322\) 11.6479 20.1748i 0.649112 1.12430i
\(323\) 8.15955i 0.454010i
\(324\) 0 0
\(325\) 2.88183i 0.159855i
\(326\) 10.0438 17.3963i 0.556272 0.963491i
\(327\) 0 0
\(328\) −3.83291 6.63880i −0.211637 0.366566i
\(329\) 16.8297 + 29.1500i 0.927854 + 1.60709i
\(330\) 0 0
\(331\) 6.84351 11.8533i 0.376153 0.651517i −0.614346 0.789037i \(-0.710580\pi\)
0.990499 + 0.137520i \(0.0439133\pi\)
\(332\) 0.925481 0.0507924
\(333\) 0 0
\(334\) −20.3677 −1.11447
\(335\) −3.20194 1.84864i −0.174941 0.101002i
\(336\) 0 0
\(337\) −15.5359 + 8.96965i −0.846294 + 0.488608i −0.859399 0.511306i \(-0.829162\pi\)
0.0131049 + 0.999914i \(0.495828\pi\)
\(338\) −2.34754 4.06606i −0.127689 0.221164i
\(339\) 0 0
\(340\) −1.62830 0.940102i −0.0883072 0.0509842i
\(341\) −8.25628 + 8.46786i −0.447103 + 0.458560i
\(342\) 0 0
\(343\) 10.8511i 0.585903i
\(344\) 6.89392 + 3.98021i 0.371695 + 0.214598i
\(345\) 0 0
\(346\) −6.26488 10.8511i −0.336802 0.583359i
\(347\) −9.69853 16.7983i −0.520644 0.901782i −0.999712 0.0240042i \(-0.992358\pi\)
0.479068 0.877778i \(-0.340975\pi\)
\(348\) 0 0
\(349\) 20.3082 + 11.7250i 1.08707 + 0.627623i 0.932796 0.360404i \(-0.117361\pi\)
0.154279 + 0.988027i \(0.450695\pi\)
\(350\) 3.26796i 0.174680i
\(351\) 0 0
\(352\) 2.31535 2.37469i 0.123409 0.126571i
\(353\) −9.72262 5.61336i −0.517483 0.298769i 0.218421 0.975855i \(-0.429909\pi\)
−0.735904 + 0.677086i \(0.763243\pi\)
\(354\) 0 0
\(355\) −7.81819 13.5415i −0.414946 0.718708i
\(356\) −2.07209 + 1.19632i −0.109821 + 0.0634050i
\(357\) 0 0
\(358\) −19.5618 11.2940i −1.03387 0.596906i
\(359\) 5.59649 0.295372 0.147686 0.989034i \(-0.452818\pi\)
0.147686 + 0.989034i \(0.452818\pi\)
\(360\) 0 0
\(361\) 0.166851 0.00878161
\(362\) 8.03274 13.9131i 0.422191 0.731257i
\(363\) 0 0
\(364\) −4.70884 8.15596i −0.246811 0.427488i
\(365\) 5.66544 + 9.81284i 0.296543 + 0.513627i
\(366\) 0 0
\(367\) −2.50320 + 4.33566i −0.130666 + 0.226320i −0.923933 0.382553i \(-0.875045\pi\)
0.793268 + 0.608873i \(0.208378\pi\)
\(368\) 7.12855i 0.371601i
\(369\) 0 0
\(370\) 7.24005i 0.376392i
\(371\) 5.32204 9.21805i 0.276307 0.478577i
\(372\) 0 0
\(373\) 23.8159 13.7501i 1.23314 0.711953i 0.265456 0.964123i \(-0.414478\pi\)
0.967683 + 0.252170i \(0.0811442\pi\)
\(374\) 6.04338 + 1.53765i 0.312496 + 0.0795102i
\(375\) 0 0
\(376\) 8.91993 + 5.14992i 0.460010 + 0.265587i
\(377\) 3.96655i 0.204288i
\(378\) 0 0
\(379\) 33.0775 1.69908 0.849538 0.527527i \(-0.176881\pi\)
0.849538 + 0.527527i \(0.176881\pi\)
\(380\) −2.16986 + 3.75831i −0.111311 + 0.192797i
\(381\) 0 0
\(382\) 1.49071 0.860659i 0.0762711 0.0440352i
\(383\) 27.2719 15.7454i 1.39353 0.804555i 0.399826 0.916591i \(-0.369071\pi\)
0.993704 + 0.112036i \(0.0357373\pi\)
\(384\) 0 0
\(385\) −2.93744 10.4330i −0.149706 0.531713i
\(386\) 12.6931i 0.646063i
\(387\) 0 0
\(388\) 16.1073 0.817726
\(389\) −33.1700 19.1507i −1.68179 0.970980i −0.960474 0.278371i \(-0.910206\pi\)
−0.721313 0.692609i \(-0.756461\pi\)
\(390\) 0 0
\(391\) 11.6074 6.70156i 0.587014 0.338913i
\(392\) 1.83978 + 3.18659i 0.0929228 + 0.160947i
\(393\) 0 0
\(394\) −0.313427 + 0.542872i −0.0157902 + 0.0273495i
\(395\) 13.0984 0.659053
\(396\) 0 0
\(397\) 4.36717 0.219182 0.109591 0.993977i \(-0.465046\pi\)
0.109591 + 0.993977i \(0.465046\pi\)
\(398\) 8.40633 14.5602i 0.421371 0.729836i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 9.63542 5.56301i 0.481170 0.277804i −0.239734 0.970839i \(-0.577060\pi\)
0.720904 + 0.693035i \(0.243727\pi\)
\(402\) 0 0
\(403\) 8.89950 + 5.13813i 0.443316 + 0.255948i
\(404\) −3.63506 −0.180851
\(405\) 0 0
\(406\) 4.49802i 0.223233i
\(407\) −6.50781 23.1139i −0.322580 1.14571i
\(408\) 0 0
\(409\) 4.54551 2.62435i 0.224761 0.129766i −0.383392 0.923586i \(-0.625244\pi\)
0.608153 + 0.793820i \(0.291911\pi\)
\(410\) −6.63880 + 3.83291i −0.327867 + 0.189294i
\(411\) 0 0
\(412\) 1.93445 3.35057i 0.0953035 0.165071i
\(413\) 4.95710 0.243923
\(414\) 0 0
\(415\) 0.925481i 0.0454301i
\(416\) −2.49573 1.44091i −0.122363 0.0706466i
\(417\) 0 0
\(418\) 3.54907 13.9488i 0.173591 0.682258i
\(419\) −15.2701 + 8.81620i −0.745994 + 0.430700i −0.824245 0.566234i \(-0.808400\pi\)
0.0782508 + 0.996934i \(0.475067\pi\)
\(420\) 0 0
\(421\) 8.85232 15.3327i 0.431435 0.747268i −0.565562 0.824706i \(-0.691341\pi\)
0.996997 + 0.0774378i \(0.0246739\pi\)
\(422\) 11.5591i 0.562688i
\(423\) 0 0
\(424\) 3.25710i 0.158179i
\(425\) −0.940102 + 1.62830i −0.0456016 + 0.0789843i
\(426\) 0 0
\(427\) 12.2475 + 21.2133i 0.592699 + 1.02659i
\(428\) 3.59597 + 6.22840i 0.173818 + 0.301061i
\(429\) 0 0
\(430\) 3.98021 6.89392i 0.191943 0.332454i
\(431\) −34.6411 −1.66860 −0.834301 0.551310i \(-0.814128\pi\)
−0.834301 + 0.551310i \(0.814128\pi\)
\(432\) 0 0
\(433\) 23.6691 1.13747 0.568733 0.822522i \(-0.307434\pi\)
0.568733 + 0.822522i \(0.307434\pi\)
\(434\) −10.0919 5.82658i −0.484428 0.279685i
\(435\) 0 0
\(436\) −10.9770 + 6.33759i −0.525705 + 0.303516i
\(437\) −15.4679 26.7913i −0.739932 1.28160i
\(438\) 0 0
\(439\) 30.7259 + 17.7396i 1.46647 + 0.846665i 0.999297 0.0375029i \(-0.0119403\pi\)
0.467170 + 0.884168i \(0.345274\pi\)
\(440\) −2.37469 2.31535i −0.113209 0.110380i
\(441\) 0 0
\(442\) 5.41842i 0.257728i
\(443\) 34.1454 + 19.7138i 1.62230 + 0.936633i 0.986304 + 0.164937i \(0.0527420\pi\)
0.635991 + 0.771696i \(0.280591\pi\)
\(444\) 0 0
\(445\) 1.19632 + 2.07209i 0.0567112 + 0.0982267i
\(446\) −6.53996 11.3275i −0.309676 0.536375i
\(447\) 0 0
\(448\) 2.83014 + 1.63398i 0.133711 + 0.0771983i
\(449\) 25.8480i 1.21984i 0.792462 + 0.609921i \(0.208799\pi\)
−0.792462 + 0.609921i \(0.791201\pi\)
\(450\) 0 0
\(451\) 17.7491 18.2039i 0.835772 0.857189i
\(452\) −2.95268 1.70473i −0.138883 0.0801839i
\(453\) 0 0
\(454\) 10.9195 + 18.9130i 0.512475 + 0.887633i
\(455\) −8.15596 + 4.70884i −0.382357 + 0.220754i
\(456\) 0 0
\(457\) −11.7176 6.76513i −0.548124 0.316460i 0.200241 0.979747i \(-0.435828\pi\)
−0.748365 + 0.663287i \(0.769161\pi\)
\(458\) −0.452557 −0.0211466
\(459\) 0 0
\(460\) −7.12855 −0.332370
\(461\) −5.94147 + 10.2909i −0.276722 + 0.479296i −0.970568 0.240827i \(-0.922581\pi\)
0.693846 + 0.720123i \(0.255915\pi\)
\(462\) 0 0
\(463\) −2.56020 4.43439i −0.118982 0.206083i 0.800382 0.599490i \(-0.204630\pi\)
−0.919365 + 0.393406i \(0.871297\pi\)
\(464\) 0.688200 + 1.19200i 0.0319489 + 0.0553371i
\(465\) 0 0
\(466\) −14.4537 + 25.0345i −0.669554 + 1.15970i
\(467\) 3.00206i 0.138919i 0.997585 + 0.0694595i \(0.0221274\pi\)
−0.997585 + 0.0694595i \(0.977873\pi\)
\(468\) 0 0
\(469\) 12.0826i 0.557921i
\(470\) 5.14992 8.91993i 0.237548 0.411446i
\(471\) 0 0
\(472\) 1.31366 0.758441i 0.0604660 0.0349101i
\(473\) −6.51012 + 25.5865i −0.299336 + 1.17647i
\(474\) 0 0
\(475\) 3.75831 + 2.16986i 0.172443 + 0.0995600i
\(476\) 6.14443i 0.281629i
\(477\) 0 0
\(478\) −13.0724 −0.597917
\(479\) 15.8657 27.4801i 0.724921 1.25560i −0.234086 0.972216i \(-0.575210\pi\)
0.959007 0.283384i \(-0.0914571\pi\)
\(480\) 0 0
\(481\) −18.0693 + 10.4323i −0.823887 + 0.475671i
\(482\) −20.5969 + 11.8916i −0.938162 + 0.541648i
\(483\) 0 0
\(484\) 9.66237 + 5.25725i 0.439198 + 0.238966i
\(485\) 16.1073i 0.731397i
\(486\) 0 0
\(487\) −21.3724 −0.968476 −0.484238 0.874936i \(-0.660903\pi\)
−0.484238 + 0.874936i \(0.660903\pi\)
\(488\) 6.49131 + 3.74776i 0.293848 + 0.169653i
\(489\) 0 0
\(490\) 3.18659 1.83978i 0.143955 0.0831126i
\(491\) −14.5893 25.2694i −0.658406 1.14039i −0.981028 0.193865i \(-0.937898\pi\)
0.322622 0.946528i \(-0.395436\pi\)
\(492\) 0 0
\(493\) −1.29396 + 2.24120i −0.0582769 + 0.100938i
\(494\) −12.5063 −0.562686
\(495\) 0 0
\(496\) −3.56588 −0.160113
\(497\) −25.5495 + 44.2530i −1.14605 + 1.98502i
\(498\) 0 0
\(499\) −19.2299 33.3072i −0.860850 1.49104i −0.871109 0.491089i \(-0.836599\pi\)
0.0102592 0.999947i \(-0.496734\pi\)
\(500\) 0.866025 0.500000i 0.0387298 0.0223607i
\(501\) 0 0
\(502\) −5.05494 2.91847i −0.225613 0.130258i
\(503\) 37.0022 1.64984 0.824922 0.565246i \(-0.191219\pi\)
0.824922 + 0.565246i \(0.191219\pi\)
\(504\) 0 0
\(505\) 3.63506i 0.161758i
\(506\) 22.7579 6.40758i 1.01171 0.284852i
\(507\) 0 0
\(508\) −5.69972 + 3.29074i −0.252884 + 0.146003i
\(509\) −27.4788 + 15.8649i −1.21798 + 0.703199i −0.964485 0.264139i \(-0.914912\pi\)
−0.253491 + 0.967338i \(0.581579\pi\)
\(510\) 0 0
\(511\) 18.5144 32.0679i 0.819030 1.41860i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 0.533162i 0.0235167i
\(515\) −3.35057 1.93445i −0.147644 0.0852420i
\(516\) 0 0
\(517\) −8.42334 + 33.1059i −0.370458 + 1.45600i
\(518\) 20.4903 11.8301i 0.900293 0.519785i
\(519\) 0 0
\(520\) −1.44091 + 2.49573i −0.0631882 + 0.109445i
\(521\) 15.5516i 0.681329i −0.940185 0.340664i \(-0.889348\pi\)
0.940185 0.340664i \(-0.110652\pi\)
\(522\) 0 0
\(523\) 27.1075i 1.18533i −0.805450 0.592664i \(-0.798076\pi\)
0.805450 0.592664i \(-0.201924\pi\)
\(524\) 2.79118 4.83446i 0.121933 0.211195i
\(525\) 0 0
\(526\) 1.99471 + 3.45494i 0.0869736 + 0.150643i
\(527\) −3.35229 5.80634i −0.146028 0.252928i
\(528\) 0 0
\(529\) 13.9081 24.0896i 0.604701 1.04737i
\(530\) −3.25710 −0.141480
\(531\) 0 0
\(532\) 14.1820 0.614868
\(533\) −19.1319 11.0458i −0.828693 0.478446i
\(534\) 0 0
\(535\) 6.22840 3.59597i 0.269277 0.155467i
\(536\) 1.84864 + 3.20194i 0.0798491 + 0.138303i
\(537\) 0 0
\(538\) 15.6618 + 9.04237i 0.675230 + 0.389844i
\(539\) −8.51947 + 8.73779i −0.366959 + 0.376363i
\(540\) 0 0
\(541\) 7.54485i 0.324379i 0.986760 + 0.162189i \(0.0518555\pi\)
−0.986760 + 0.162189i \(0.948144\pi\)
\(542\) 0.0511206 + 0.0295145i 0.00219582 + 0.00126776i
\(543\) 0 0
\(544\) 0.940102 + 1.62830i 0.0403065 + 0.0698130i
\(545\) 6.33759 + 10.9770i 0.271473 + 0.470205i
\(546\) 0 0
\(547\) 32.5884 + 18.8149i 1.39338 + 0.804469i 0.993688 0.112180i \(-0.0357833\pi\)
0.399693 + 0.916649i \(0.369117\pi\)
\(548\) 5.22081i 0.223022i
\(549\) 0 0
\(550\) −2.31535 + 2.37469i −0.0987270 + 0.101257i
\(551\) 5.17293 + 2.98659i 0.220374 + 0.127233i
\(552\) 0 0
\(553\) −21.4025 37.0703i −0.910128 1.57639i
\(554\) −6.37510 + 3.68067i −0.270852 + 0.156377i
\(555\) 0 0
\(556\) 10.2061 + 5.89247i 0.432833 + 0.249896i
\(557\) 16.4844 0.698468 0.349234 0.937036i \(-0.386442\pi\)
0.349234 + 0.937036i \(0.386442\pi\)
\(558\) 0 0
\(559\) 22.9405 0.970281
\(560\) 1.63398 2.83014i 0.0690482 0.119595i
\(561\) 0 0
\(562\) −11.7245 20.3075i −0.494570 0.856621i
\(563\) −3.03905 5.26379i −0.128081 0.221842i 0.794852 0.606803i \(-0.207548\pi\)
−0.922933 + 0.384961i \(0.874215\pi\)
\(564\) 0 0
\(565\) −1.70473 + 2.95268i −0.0717186 + 0.124220i
\(566\) 10.2346i 0.430192i
\(567\) 0 0
\(568\) 15.6364i 0.656088i
\(569\) −8.67474 + 15.0251i −0.363664 + 0.629885i −0.988561 0.150823i \(-0.951808\pi\)
0.624897 + 0.780707i \(0.285141\pi\)
\(570\) 0 0
\(571\) −3.31059 + 1.91137i −0.138544 + 0.0799883i −0.567670 0.823256i \(-0.692155\pi\)
0.429126 + 0.903245i \(0.358822\pi\)
\(572\) 2.35679 9.26281i 0.0985425 0.387298i
\(573\) 0 0
\(574\) 21.6953 + 12.5258i 0.905545 + 0.522817i
\(575\) 7.12855i 0.297281i
\(576\) 0 0
\(577\) −23.5042 −0.978494 −0.489247 0.872145i \(-0.662728\pi\)
−0.489247 + 0.872145i \(0.662728\pi\)
\(578\) 6.73242 11.6609i 0.280032 0.485029i
\(579\) 0 0
\(580\) 1.19200 0.688200i 0.0494950 0.0285760i
\(581\) −2.61924 + 1.51222i −0.108664 + 0.0627373i
\(582\) 0 0
\(583\) 10.3983 2.92769i 0.430654 0.121252i
\(584\) 11.3309i 0.468875i
\(585\) 0 0
\(586\) 23.0863 0.953685
\(587\) 8.03882 + 4.64121i 0.331797 + 0.191563i 0.656639 0.754205i \(-0.271978\pi\)
−0.324841 + 0.945769i \(0.605311\pi\)
\(588\) 0 0
\(589\) −13.4017 + 7.73746i −0.552207 + 0.318817i
\(590\) −0.758441 1.31366i −0.0312245 0.0540824i
\(591\) 0 0
\(592\) 3.62003 6.27007i 0.148782 0.257698i
\(593\) 24.8486 1.02041 0.510205 0.860053i \(-0.329570\pi\)
0.510205 + 0.860053i \(0.329570\pi\)
\(594\) 0 0
\(595\) 6.14443 0.251897
\(596\) −1.35163 + 2.34110i −0.0553651 + 0.0958951i
\(597\) 0 0
\(598\) −10.2716 17.7910i −0.420038 0.727527i
\(599\) 25.6362 14.8011i 1.04747 0.604755i 0.125527 0.992090i \(-0.459938\pi\)
0.921939 + 0.387336i \(0.126604\pi\)
\(600\) 0 0
\(601\) 2.39420 + 1.38229i 0.0976617 + 0.0563850i 0.548035 0.836455i \(-0.315376\pi\)
−0.450374 + 0.892840i \(0.648709\pi\)
\(602\) −26.0143 −1.06026
\(603\) 0 0
\(604\) 10.4734i 0.426155i
\(605\) 5.25725 9.66237i 0.213738 0.392831i
\(606\) 0 0
\(607\) 33.7561 19.4891i 1.37012 0.791039i 0.379176 0.925324i \(-0.376207\pi\)
0.990943 + 0.134286i \(0.0428741\pi\)
\(608\) 3.75831 2.16986i 0.152419 0.0879994i
\(609\) 0 0
\(610\) 3.74776 6.49131i 0.151742 0.262826i
\(611\) 29.6824 1.20082
\(612\) 0 0
\(613\) 23.9844i 0.968722i 0.874868 + 0.484361i \(0.160948\pi\)
−0.874868 + 0.484361i \(0.839052\pi\)
\(614\) −23.0276 13.2950i −0.929320 0.536543i
\(615\) 0 0
\(616\) −2.67258 + 10.5039i −0.107681 + 0.423215i
\(617\) −11.5361 + 6.66039i −0.464427 + 0.268137i −0.713904 0.700244i \(-0.753075\pi\)
0.249477 + 0.968381i \(0.419741\pi\)
\(618\) 0 0
\(619\) −13.4689 + 23.3289i −0.541362 + 0.937666i 0.457465 + 0.889228i \(0.348758\pi\)
−0.998826 + 0.0484380i \(0.984576\pi\)
\(620\) 3.56588i 0.143209i
\(621\) 0 0
\(622\) 20.1392i 0.807508i
\(623\) 3.90954 6.77152i 0.156632 0.271295i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 14.9929 + 25.9684i 0.599235 + 1.03791i
\(627\) 0 0
\(628\) 4.83418 8.37305i 0.192905 0.334121i
\(629\) 13.6128 0.542777
\(630\) 0 0
\(631\) 34.3706 1.36827 0.684136 0.729354i \(-0.260179\pi\)
0.684136 + 0.729354i \(0.260179\pi\)
\(632\) −11.3436 6.54921i −0.451223 0.260513i
\(633\) 0 0
\(634\) −12.7330 + 7.35141i −0.505692 + 0.291962i
\(635\) 3.29074 + 5.69972i 0.130589 + 0.226187i
\(636\) 0 0
\(637\) 9.18319 + 5.30192i 0.363851 + 0.210070i
\(638\) −3.18685 + 3.26852i −0.126169 + 0.129402i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) −17.6637 10.1981i −0.697673 0.402802i 0.108807 0.994063i \(-0.465297\pi\)
−0.806480 + 0.591261i \(0.798630\pi\)
\(642\) 0 0
\(643\) −13.7828 23.8725i −0.543539 0.941438i −0.998697 0.0510272i \(-0.983750\pi\)
0.455158 0.890411i \(-0.349583\pi\)
\(644\) 11.6479 + 20.1748i 0.458992 + 0.794997i
\(645\) 0 0
\(646\) 7.06638 + 4.07978i 0.278023 + 0.160517i
\(647\) 41.7451i 1.64117i 0.571525 + 0.820585i \(0.306352\pi\)
−0.571525 + 0.820585i \(0.693648\pi\)
\(648\) 0 0
\(649\) 3.60212 + 3.51212i 0.141395 + 0.137863i
\(650\) 2.49573 + 1.44091i 0.0978908 + 0.0565173i
\(651\) 0 0
\(652\) 10.0438 + 17.3963i 0.393344 + 0.681291i
\(653\) 10.9169 6.30286i 0.427210 0.246650i −0.270947 0.962594i \(-0.587337\pi\)
0.698157 + 0.715944i \(0.254004\pi\)
\(654\) 0 0
\(655\) −4.83446 2.79118i −0.188898 0.109060i
\(656\) 7.66582 0.299300
\(657\) 0 0
\(658\) −33.6595 −1.31218
\(659\) 2.55561 4.42644i 0.0995523 0.172430i −0.811947 0.583731i \(-0.801592\pi\)
0.911499 + 0.411301i \(0.134926\pi\)
\(660\) 0 0
\(661\) 16.2241 + 28.1010i 0.631045 + 1.09300i 0.987338 + 0.158628i \(0.0507070\pi\)
−0.356293 + 0.934374i \(0.615960\pi\)
\(662\) 6.84351 + 11.8533i 0.265981 + 0.460692i
\(663\) 0 0
\(664\) −0.462740 + 0.801490i −0.0179578 + 0.0311038i
\(665\) 14.1820i 0.549955i
\(666\) 0 0
\(667\) 9.81174i 0.379912i
\(668\) 10.1839 17.6390i 0.394026 0.682473i
\(669\) 0 0
\(670\) 3.20194 1.84864i 0.123702 0.0714192i
\(671\) −6.12993 + 24.0922i −0.236643 + 0.930070i
\(672\) 0 0
\(673\) 38.8482 + 22.4290i 1.49749 + 0.864574i 0.999996 0.00289542i \(-0.000921643\pi\)
0.497490 + 0.867469i \(0.334255\pi\)
\(674\) 17.9393i 0.690996i
\(675\) 0 0
\(676\) 4.69508 0.180580
\(677\) −9.57175 + 16.5788i −0.367872 + 0.637174i −0.989233 0.146351i \(-0.953247\pi\)
0.621360 + 0.783525i \(0.286580\pi\)
\(678\) 0 0
\(679\) −45.5859 + 26.3191i −1.74943 + 1.01003i
\(680\) 1.62830 0.940102i 0.0624426 0.0360513i
\(681\) 0 0
\(682\) −3.20524 11.3841i −0.122735 0.435919i
\(683\) 41.9745i 1.60611i −0.595906 0.803054i \(-0.703207\pi\)
0.595906 0.803054i \(-0.296793\pi\)
\(684\) 0 0
\(685\) −5.22081 −0.199477
\(686\) 9.39731 + 5.42554i 0.358791 + 0.207148i
\(687\) 0 0
\(688\) −6.89392 + 3.98021i −0.262828 + 0.151744i
\(689\) −4.69321 8.12887i −0.178797 0.309685i
\(690\) 0 0
\(691\) −11.6175 + 20.1221i −0.441950 + 0.765480i −0.997834 0.0657796i \(-0.979047\pi\)
0.555884 + 0.831260i \(0.312380\pi\)
\(692\) 12.5298 0.476310
\(693\) 0 0
\(694\) 19.3971 0.736302
\(695\) 5.89247 10.2061i 0.223514 0.387138i
\(696\) 0 0
\(697\) 7.20665 + 12.4823i 0.272971 + 0.472800i
\(698\) −20.3082 + 11.7250i −0.768678 + 0.443796i
\(699\) 0 0
\(700\) −2.83014 1.63398i −0.106969 0.0617586i
\(701\) −2.01452 −0.0760872 −0.0380436 0.999276i \(-0.512113\pi\)
−0.0380436 + 0.999276i \(0.512113\pi\)
\(702\) 0 0
\(703\) 31.4198i 1.18502i
\(704\) 0.898862 + 3.19250i 0.0338771 + 0.120322i
\(705\) 0 0
\(706\) 9.72262 5.61336i 0.365916 0.211262i
\(707\) 10.2877 5.93961i 0.386909 0.223382i
\(708\) 0 0
\(709\) −10.3159 + 17.8676i −0.387420 + 0.671032i −0.992102 0.125436i \(-0.959967\pi\)
0.604681 + 0.796468i \(0.293300\pi\)
\(710\) 15.6364 0.586823
\(711\) 0 0
\(712\) 2.39265i 0.0896683i
\(713\) −22.0140 12.7098i −0.824431 0.475985i
\(714\) 0 0
\(715\) −9.26281 2.35679i −0.346410 0.0881391i
\(716\) 19.5618 11.2940i 0.731058 0.422076i
\(717\) 0 0
\(718\) −2.79825 + 4.84670i −0.104430 + 0.180877i
\(719\) 38.6759i 1.44237i 0.692743 + 0.721185i \(0.256402\pi\)
−0.692743 + 0.721185i \(0.743598\pi\)
\(720\) 0 0
\(721\) 12.6434i 0.470865i
\(722\) −0.0834253 + 0.144497i −0.00310477 + 0.00537762i
\(723\) 0 0
\(724\) 8.03274 + 13.9131i 0.298534 + 0.517077i
\(725\) −0.688200 1.19200i −0.0255591 0.0442697i
\(726\) 0 0
\(727\) 8.24260 14.2766i 0.305701 0.529490i −0.671716 0.740809i \(-0.734443\pi\)
0.977417 + 0.211319i \(0.0677759\pi\)
\(728\) 9.41769 0.349043
\(729\) 0 0
\(730\) −11.3309 −0.419375
\(731\) −12.9620 7.48360i −0.479416 0.276791i
\(732\) 0 0
\(733\) −19.7637 + 11.4106i −0.729989 + 0.421459i −0.818418 0.574623i \(-0.805149\pi\)
0.0884293 + 0.996082i \(0.471815\pi\)
\(734\) −2.50320 4.33566i −0.0923946 0.160032i
\(735\) 0 0
\(736\) 6.17351 + 3.56428i 0.227558 + 0.131381i
\(737\) −8.56052 + 8.77989i −0.315331 + 0.323411i
\(738\) 0 0
\(739\) 13.0567i 0.480299i −0.970736 0.240149i \(-0.922804\pi\)
0.970736 0.240149i \(-0.0771964\pi\)
\(740\) −6.27007 3.62003i −0.230492 0.133075i
\(741\) 0 0
\(742\) 5.32204 + 9.21805i 0.195378 + 0.338405i
\(743\) 5.08792 + 8.81253i 0.186658 + 0.323300i 0.944134 0.329562i \(-0.106901\pi\)
−0.757476 + 0.652863i \(0.773568\pi\)
\(744\) 0 0
\(745\) 2.34110 + 1.35163i 0.0857712 + 0.0495200i
\(746\) 27.5002i 1.00685i
\(747\) 0 0
\(748\) −4.35334 + 4.46489i −0.159174 + 0.163253i
\(749\) −20.3542 11.7515i −0.743725 0.429390i
\(750\) 0 0
\(751\) 13.0380 + 22.5825i 0.475764 + 0.824047i 0.999615 0.0277630i \(-0.00883837\pi\)
−0.523851 + 0.851810i \(0.675505\pi\)
\(752\) −8.91993 + 5.14992i −0.325276 + 0.187798i
\(753\) 0 0
\(754\) 3.43513 + 1.98327i 0.125100 + 0.0722266i
\(755\) 10.4734 0.381164
\(756\) 0 0
\(757\) 15.5500 0.565176 0.282588 0.959241i \(-0.408807\pi\)
0.282588 + 0.959241i \(0.408807\pi\)
\(758\) −16.5387 + 28.6459i −0.600714 + 1.04047i
\(759\) 0 0
\(760\) −2.16986 3.75831i −0.0787091 0.136328i
\(761\) −14.8760 25.7659i −0.539253 0.934014i −0.998944 0.0459348i \(-0.985373\pi\)
0.459691 0.888079i \(-0.347960\pi\)
\(762\) 0 0
\(763\) 20.7110 35.8725i 0.749788 1.29867i
\(764\) 1.72132i 0.0622751i
\(765\) 0 0
\(766\) 31.4909i 1.13781i
\(767\) 2.18569 3.78573i 0.0789208 0.136695i
\(768\) 0 0
\(769\) 23.5942 13.6221i 0.850830 0.491227i −0.0101010 0.999949i \(-0.503215\pi\)
0.860931 + 0.508722i \(0.169882\pi\)
\(770\) 10.5039 + 2.67258i 0.378535 + 0.0963130i
\(771\) 0 0
\(772\) −10.9926 6.34656i −0.395631 0.228418i
\(773\) 50.9522i 1.83262i −0.400466 0.916312i \(-0.631152\pi\)
0.400466 0.916312i \(-0.368848\pi\)
\(774\) 0 0
\(775\) 3.56588 0.128090
\(776\) −8.05367 + 13.9494i −0.289110 + 0.500753i
\(777\) 0 0
\(778\) 33.1700 19.1507i 1.18920 0.686587i
\(779\) 28.8105 16.6338i 1.03224 0.595966i
\(780\) 0 0
\(781\) −49.9191 + 14.0549i −1.78625 + 0.502925i
\(782\) 13.4031i 0.479295i
\(783\) 0 0
\(784\) −3.67955 −0.131413
\(785\) −8.37305 4.83418i −0.298847 0.172539i
\(786\) 0 0
\(787\) −3.16619 + 1.82800i −0.112863 + 0.0651612i −0.555369 0.831604i \(-0.687423\pi\)
0.442506 + 0.896765i \(0.354090\pi\)
\(788\) −0.313427 0.542872i −0.0111654 0.0193390i
\(789\) 0 0
\(790\) −6.54921 + 11.3436i −0.233010 + 0.403586i
\(791\) 11.1420 0.396164
\(792\) 0 0
\(793\) 21.6008 0.767067
\(794\) −2.18358 + 3.78208i −0.0774925 + 0.134221i
\(795\) 0 0
\(796\) 8.40633 + 14.5602i 0.297954 + 0.516072i
\(797\) −1.24075 + 0.716346i −0.0439495 + 0.0253743i −0.521814 0.853059i \(-0.674744\pi\)
0.477864 + 0.878434i \(0.341411\pi\)
\(798\) 0 0
\(799\) −16.7713 9.68290i −0.593325 0.342557i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 11.1260i 0.392874i
\(803\) 36.1738 10.1849i 1.27655 0.359417i
\(804\) 0 0
\(805\) 20.1748 11.6479i 0.711067 0.410535i
\(806\) −8.89950 + 5.13813i −0.313472 + 0.180983i
\(807\) 0 0
\(808\) 1.81753 3.14805i 0.0639405 0.110748i
\(809\) 47.3250 1.66386 0.831929 0.554882i \(-0.187237\pi\)
0.831929 + 0.554882i \(0.187237\pi\)
\(810\) 0 0
\(811\) 19.8112i 0.695664i −0.937557 0.347832i \(-0.886918\pi\)
0.937557 0.347832i \(-0.113082\pi\)
\(812\) −3.89540 2.24901i −0.136702 0.0789248i
\(813\) 0 0
\(814\) 23.2711 + 5.92100i 0.815651 + 0.207531i
\(815\) 17.3963 10.0438i 0.609365 0.351817i
\(816\) 0 0
\(817\) −17.2730 + 29.9177i −0.604305 + 1.04669i
\(818\) 5.24870i 0.183517i
\(819\) 0 0
\(820\) 7.66582i 0.267702i
\(821\) 10.8369 18.7700i 0.378210 0.655079i −0.612592 0.790399i \(-0.709873\pi\)
0.990802 + 0.135321i \(0.0432064\pi\)
\(822\) 0 0
\(823\) 20.1692 + 34.9340i 0.703053 + 1.21772i 0.967390 + 0.253293i \(0.0815136\pi\)
−0.264337 + 0.964430i \(0.585153\pi\)
\(824\) 1.93445 + 3.35057i 0.0673898 + 0.116722i
\(825\) 0 0
\(826\) −2.47855 + 4.29298i −0.0862399 + 0.149372i
\(827\) 38.9841 1.35561 0.677805 0.735242i \(-0.262931\pi\)
0.677805 + 0.735242i \(0.262931\pi\)
\(828\) 0 0
\(829\) 28.1575 0.977952 0.488976 0.872297i \(-0.337371\pi\)
0.488976 + 0.872297i \(0.337371\pi\)
\(830\) 0.801490 + 0.462740i 0.0278201 + 0.0160620i
\(831\) 0 0
\(832\) 2.49573 1.44091i 0.0865240 0.0499547i
\(833\) −3.45915 5.99143i −0.119853 0.207591i
\(834\) 0 0
\(835\) −17.6390 10.1839i −0.610422 0.352427i
\(836\) 10.3055 + 10.0480i 0.356422 + 0.347517i
\(837\) 0 0
\(838\) 17.6324i 0.609101i
\(839\) 2.08528 + 1.20394i 0.0719918 + 0.0415645i 0.535564 0.844495i \(-0.320099\pi\)
−0.463572 + 0.886059i \(0.653432\pi\)
\(840\) 0 0
\(841\) 13.5528 + 23.4741i 0.467337 + 0.809451i
\(842\) 8.85232 + 15.3327i 0.305071 + 0.528398i
\(843\) 0 0
\(844\) 10.0105 + 5.77955i 0.344575 + 0.198940i
\(845\) 4.69508i 0.161516i
\(846\) 0 0
\(847\) −35.9360 + 0.909380i −1.23478 + 0.0312467i
\(848\) 2.82074 + 1.62855i 0.0968645 + 0.0559247i
\(849\) 0 0
\(850\) −0.940102 1.62830i −0.0322452 0.0558504i
\(851\) 44.6965 25.8055i 1.53218 0.884603i
\(852\) 0 0
\(853\) 0.00677959 + 0.00391420i 0.000232129 + 0.000134020i 0.500116 0.865958i \(-0.333291\pi\)
−0.499884 + 0.866092i \(0.666624\pi\)
\(854\) −24.4951 −0.838204
\(855\) 0 0
\(856\) −7.19194 −0.245815
\(857\) 6.78272 11.7480i 0.231693 0.401304i −0.726613 0.687047i \(-0.758907\pi\)
0.958307 + 0.285742i \(0.0922401\pi\)
\(858\) 0 0
\(859\) −4.78235 8.28327i −0.163172 0.282622i 0.772833 0.634610i \(-0.218839\pi\)
−0.936004 + 0.351988i \(0.885506\pi\)
\(860\) 3.98021 + 6.89392i 0.135724 + 0.235081i
\(861\) 0 0
\(862\) 17.3205 30.0000i 0.589940 1.02181i
\(863\) 4.90873i 0.167095i 0.996504 + 0.0835476i \(0.0266251\pi\)
−0.996504 + 0.0835476i \(0.973375\pi\)
\(864\) 0 0
\(865\) 12.5298i 0.426025i
\(866\) −11.8346 + 20.4981i −0.402155 + 0.696553i
\(867\) 0 0
\(868\) 10.0919 5.82658i 0.342543 0.197767i
\(869\) 10.7120 42.1011i 0.363381 1.42818i
\(870\) 0 0
\(871\) 9.22744 + 5.32746i 0.312660 + 0.180514i
\(872\) 12.6752i 0.429236i
\(873\) 0 0
\(874\) 30.9359 1.04642
\(875\) −1.63398 + 2.83014i −0.0552386 + 0.0956760i
\(876\) 0 0
\(877\) 33.7633 19.4933i 1.14011 0.658241i 0.193650 0.981071i \(-0.437968\pi\)
0.946457 + 0.322830i \(0.104634\pi\)
\(878\) −30.7259 + 17.7396i −1.03695 + 0.598682i
\(879\) 0 0
\(880\) 3.19250 0.898862i 0.107619 0.0303006i
\(881\) 31.1989i 1.05112i 0.850758 + 0.525558i \(0.176143\pi\)
−0.850758 + 0.525558i \(0.823857\pi\)
\(882\) 0 0
\(883\) −15.2943 −0.514693 −0.257347 0.966319i \(-0.582848\pi\)
−0.257347 + 0.966319i \(0.582848\pi\)
\(884\) 4.69249 + 2.70921i 0.157825 + 0.0911206i
\(885\) 0 0
\(886\) −34.1454 + 19.7138i −1.14714 + 0.662299i
\(887\) −12.7148 22.0226i −0.426921 0.739448i 0.569677 0.821869i \(-0.307068\pi\)
−0.996598 + 0.0824205i \(0.973735\pi\)
\(888\) 0 0
\(889\) 10.7540 18.6265i 0.360677 0.624712i
\(890\) −2.39265 −0.0802017
\(891\) 0 0
\(892\) 13.0799 0.437948
\(893\) −22.3492 + 38.7100i −0.747888 + 1.29538i
\(894\) 0 0
\(895\) −11.2940 19.5618i −0.377517 0.653878i
\(896\) −2.83014 + 1.63398i −0.0945482 + 0.0545874i
\(897\) 0 0
\(898\) −22.3850 12.9240i −0.746998 0.431280i
\(899\) 4.90808 0.163694
\(900\) 0 0
\(901\) 6.12402i 0.204021i
\(902\) 6.89051 + 24.4731i 0.229429 + 0.814866i
\(903\) 0 0
\(904\) 2.95268 1.70473i 0.0982048 0.0566986i
\(905\) 13.9131 8.03274i 0.462487 0.267017i
\(906\) 0 0
\(907\) 10.7067 18.5446i 0.355511 0.615763i −0.631694 0.775218i \(-0.717640\pi\)
0.987205 + 0.159454i \(0.0509735\pi\)
\(908\) −21.8389 −0.724749
\(909\) 0 0
\(910\) 9.41769i 0.312193i
\(911\) −16.9252 9.77174i −0.560755 0.323752i 0.192693 0.981259i \(-0.438278\pi\)
−0.753449 + 0.657507i \(0.771611\pi\)
\(912\) 0 0
\(913\) −2.97469 0.756869i −0.0984480 0.0250487i
\(914\) 11.7176 6.76513i 0.387582 0.223771i
\(915\) 0 0
\(916\) 0.226279 0.391926i 0.00747646 0.0129496i
\(917\) 18.2429i 0.602434i
\(918\) 0 0
\(919\) 4.69659i 0.154926i 0.996995 + 0.0774632i \(0.0246820\pi\)
−0.996995 + 0.0774632i \(0.975318\pi\)
\(920\) 3.56428 6.17351i 0.117511 0.203534i
\(921\) 0 0
\(922\) −5.94147 10.2909i −0.195672 0.338914i
\(923\) 22.5307 + 39.0242i 0.741606 + 1.28450i
\(924\) 0 0
\(925\) −3.62003 + 6.27007i −0.119026 + 0.206159i
\(926\) 5.12039 0.168266
\(927\) 0 0
\(928\) −1.37640 −0.0451826
\(929\) 12.9688 + 7.48755i 0.425493 + 0.245659i 0.697425 0.716658i \(-0.254329\pi\)
−0.271932 + 0.962317i \(0.587662\pi\)
\(930\) 0 0
\(931\) −13.8289 + 7.98411i −0.453223 + 0.261669i
\(932\) −14.4537 25.0345i −0.473446 0.820033i
\(933\) 0 0
\(934\) −2.59986 1.50103i −0.0850701 0.0491153i
\(935\) 4.46489 + 4.35334i 0.146018 + 0.142369i
\(936\) 0 0
\(937\) 10.3961i 0.339626i 0.985476 + 0.169813i \(0.0543164\pi\)
−0.985476 + 0.169813i \(0.945684\pi\)
\(938\) −10.4638 6.04128i −0.341655 0.197255i
\(939\) 0 0
\(940\) 5.14992 + 8.91993i 0.167972 + 0.290936i
\(941\) −25.8519 44.7768i −0.842748 1.45968i −0.887562 0.460687i \(-0.847603\pi\)
0.0448143 0.998995i \(-0.485730\pi\)
\(942\) 0 0
\(943\) 47.3250 + 27.3231i 1.54111 + 0.889763i
\(944\) 1.51688i 0.0493703i
\(945\) 0 0
\(946\) −18.9035 18.4312i −0.614605 0.599249i
\(947\) 9.41189 + 5.43396i 0.305845 + 0.176580i 0.645066 0.764127i \(-0.276830\pi\)
−0.339220 + 0.940707i \(0.610163\pi\)
\(948\) 0 0
\(949\) −16.3268 28.2789i −0.529991 0.917972i
\(950\) −3.75831 + 2.16986i −0.121936 + 0.0703995i
\(951\) 0 0
\(952\) −5.32123 3.07221i −0.172462 0.0995710i
\(953\) 49.8541 1.61493 0.807467 0.589913i \(-0.200838\pi\)
0.807467 + 0.589913i \(0.200838\pi\)
\(954\) 0 0
\(955\) 1.72132 0.0557006
\(956\) 6.53619 11.3210i 0.211396 0.366148i
\(957\) 0 0
\(958\) 15.8657 + 27.4801i 0.512597 + 0.887843i
\(959\) 8.53070 + 14.7756i 0.275471 + 0.477129i
\(960\) 0 0
\(961\) 9.14224 15.8348i 0.294911 0.510801i
\(962\) 20.8646i 0.672701i
\(963\) 0 0
\(964\) 23.7832i 0.766006i
\(965\) −6.34656 + 10.9926i −0.204303 + 0.353863i
\(966\) 0 0
\(967\) 33.1745 19.1533i 1.06682 0.615928i 0.139509 0.990221i \(-0.455448\pi\)
0.927311 + 0.374292i \(0.122114\pi\)
\(968\) −9.38409 + 5.73923i −0.301616 + 0.184466i
\(969\) 0 0
\(970\) 13.9494 + 8.05367i 0.447887 + 0.258588i
\(971\) 26.2790i 0.843333i −0.906751 0.421667i \(-0.861445\pi\)
0.906751 0.421667i \(-0.138555\pi\)
\(972\) 0 0
\(973\) −38.5127 −1.23466
\(974\) 10.6862 18.5090i 0.342408 0.593068i
\(975\) 0 0
\(976\) −6.49131 + 3.74776i −0.207782 + 0.119963i
\(977\) 29.5918 17.0848i 0.946725 0.546592i 0.0546627 0.998505i \(-0.482592\pi\)
0.892062 + 0.451913i \(0.149258\pi\)
\(978\) 0 0
\(979\) 7.63853 2.15066i 0.244128 0.0687354i
\(980\) 3.67955i 0.117539i
\(981\) 0 0
\(982\) 29.1786 0.931127
\(983\) 4.41072 + 2.54653i 0.140680 + 0.0812217i 0.568688 0.822553i \(-0.307451\pi\)
−0.428008 + 0.903775i \(0.640784\pi\)
\(984\) 0 0
\(985\) −0.542872 + 0.313427i −0.0172973 + 0.00998663i
\(986\) −1.29396 2.24120i −0.0412080 0.0713743i
\(987\) 0 0
\(988\) 6.25316 10.8308i 0.198939 0.344573i
\(989\) −56.7462 −1.80442
\(990\) 0 0
\(991\) 51.0722 1.62236 0.811181 0.584795i \(-0.198825\pi\)
0.811181 + 0.584795i \(0.198825\pi\)
\(992\) 1.78294 3.08815i 0.0566085 0.0980487i
\(993\) 0 0
\(994\) −25.5495 44.2530i −0.810381 1.40362i
\(995\) 14.5602 8.40633i 0.461589 0.266499i
\(996\) 0 0
\(997\) 2.51845 + 1.45403i 0.0797600 + 0.0460495i 0.539350 0.842082i \(-0.318670\pi\)
−0.459590 + 0.888131i \(0.652003\pi\)
\(998\) 38.4599 1.21743
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.a.791.11 48
3.2 odd 2 990.2.t.b.461.16 yes 48
9.4 even 3 990.2.t.a.131.16 48
9.5 odd 6 2970.2.t.b.2771.11 48
11.10 odd 2 2970.2.t.b.791.11 48
33.32 even 2 990.2.t.a.461.16 yes 48
99.32 even 6 inner 2970.2.t.a.2771.11 48
99.76 odd 6 990.2.t.b.131.16 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.16 48 9.4 even 3
990.2.t.a.461.16 yes 48 33.32 even 2
990.2.t.b.131.16 yes 48 99.76 odd 6
990.2.t.b.461.16 yes 48 3.2 odd 2
2970.2.t.a.791.11 48 1.1 even 1 trivial
2970.2.t.a.2771.11 48 99.32 even 6 inner
2970.2.t.b.791.11 48 11.10 odd 2
2970.2.t.b.2771.11 48 9.5 odd 6