Properties

Label 2970.2.t.a.2771.17
Level $2970$
Weight $2$
Character 2970.2771
Analytic conductor $23.716$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2970,2,Mod(791,2970)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2970, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2970.791"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2970 = 2 \cdot 3^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2970.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.7155694003\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 990)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2771.17
Character \(\chi\) \(=\) 2970.2771
Dual form 2970.2.t.a.791.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(0.866025 + 0.500000i) q^{5} +(1.26719 - 0.731611i) q^{7} +1.00000 q^{8} -1.00000i q^{10} +(-3.30189 - 0.312246i) q^{11} +(0.354032 + 0.204400i) q^{13} +(-1.26719 - 0.731611i) q^{14} +(-0.500000 - 0.866025i) q^{16} +2.86818 q^{17} +6.41008i q^{19} +(-0.866025 + 0.500000i) q^{20} +(1.38053 + 3.01565i) q^{22} +(-7.54804 - 4.35786i) q^{23} +(0.500000 + 0.866025i) q^{25} -0.408801i q^{26} +1.46322i q^{28} +(5.07036 + 8.78212i) q^{29} +(0.478423 - 0.828652i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(-1.43409 - 2.48391i) q^{34} +1.46322 q^{35} +8.03901 q^{37} +(5.55129 - 3.20504i) q^{38} +(0.866025 + 0.500000i) q^{40} +(0.185968 - 0.322106i) q^{41} +(-7.17709 + 4.14369i) q^{43} +(1.92136 - 2.70340i) q^{44} +8.71572i q^{46} +(5.43736 - 3.13926i) q^{47} +(-2.42949 + 4.20800i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-0.354032 + 0.204400i) q^{52} +6.52693i q^{53} +(-2.70340 - 1.92136i) q^{55} +(1.26719 - 0.731611i) q^{56} +(5.07036 - 8.78212i) q^{58} +(-3.76646 - 2.17457i) q^{59} +(8.21542 - 4.74317i) q^{61} -0.956845 q^{62} +1.00000 q^{64} +(0.204400 + 0.354032i) q^{65} +(-0.265166 + 0.459281i) q^{67} +(-1.43409 + 2.48391i) q^{68} +(-0.731611 - 1.26719i) q^{70} +5.71056i q^{71} -3.68830i q^{73} +(-4.01950 - 6.96198i) q^{74} +(-5.55129 - 3.20504i) q^{76} +(-4.41256 + 2.02003i) q^{77} +(-3.20431 + 1.85001i) q^{79} -1.00000i q^{80} -0.371936 q^{82} +(6.46495 + 11.1976i) q^{83} +(2.48391 + 1.43409i) q^{85} +(7.17709 + 4.14369i) q^{86} +(-3.30189 - 0.312246i) q^{88} +7.53973i q^{89} +0.598166 q^{91} +(7.54804 - 4.35786i) q^{92} +(-5.43736 - 3.13926i) q^{94} +(-3.20504 + 5.55129i) q^{95} +(-9.30082 - 16.1095i) q^{97} +4.85898 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 24 q^{2} - 24 q^{4} + 48 q^{8} + 12 q^{11} - 24 q^{13} - 24 q^{16} - 12 q^{17} - 6 q^{22} - 36 q^{23} + 24 q^{25} - 24 q^{32} + 6 q^{34} + 6 q^{38} - 6 q^{41} - 30 q^{43} - 6 q^{44} + 24 q^{49} + 24 q^{50}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2970\mathbb{Z}\right)^\times\).

\(n\) \(541\) \(1541\) \(2377\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) 0 0
\(7\) 1.26719 0.731611i 0.478952 0.276523i −0.241028 0.970518i \(-0.577484\pi\)
0.719980 + 0.693995i \(0.244151\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) −3.30189 0.312246i −0.995558 0.0941456i
\(12\) 0 0
\(13\) 0.354032 + 0.204400i 0.0981907 + 0.0566904i 0.548291 0.836287i \(-0.315279\pi\)
−0.450101 + 0.892978i \(0.648612\pi\)
\(14\) −1.26719 0.731611i −0.338670 0.195531i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.86818 0.695635 0.347817 0.937562i \(-0.386923\pi\)
0.347817 + 0.937562i \(0.386923\pi\)
\(18\) 0 0
\(19\) 6.41008i 1.47057i 0.677757 + 0.735286i \(0.262952\pi\)
−0.677757 + 0.735286i \(0.737048\pi\)
\(20\) −0.866025 + 0.500000i −0.193649 + 0.111803i
\(21\) 0 0
\(22\) 1.38053 + 3.01565i 0.294331 + 0.642938i
\(23\) −7.54804 4.35786i −1.57387 0.908677i −0.995687 0.0927729i \(-0.970427\pi\)
−0.578187 0.815904i \(-0.696240\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0.408801i 0.0801724i
\(27\) 0 0
\(28\) 1.46322i 0.276523i
\(29\) 5.07036 + 8.78212i 0.941543 + 1.63080i 0.762530 + 0.646953i \(0.223957\pi\)
0.179012 + 0.983847i \(0.442710\pi\)
\(30\) 0 0
\(31\) 0.478423 0.828652i 0.0859272 0.148830i −0.819859 0.572566i \(-0.805948\pi\)
0.905786 + 0.423736i \(0.139281\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −1.43409 2.48391i −0.245944 0.425988i
\(35\) 1.46322 0.247330
\(36\) 0 0
\(37\) 8.03901 1.32160 0.660802 0.750560i \(-0.270216\pi\)
0.660802 + 0.750560i \(0.270216\pi\)
\(38\) 5.55129 3.20504i 0.900538 0.519926i
\(39\) 0 0
\(40\) 0.866025 + 0.500000i 0.136931 + 0.0790569i
\(41\) 0.185968 0.322106i 0.0290433 0.0503045i −0.851138 0.524941i \(-0.824087\pi\)
0.880182 + 0.474637i \(0.157421\pi\)
\(42\) 0 0
\(43\) −7.17709 + 4.14369i −1.09450 + 0.631907i −0.934770 0.355254i \(-0.884394\pi\)
−0.159726 + 0.987161i \(0.551061\pi\)
\(44\) 1.92136 2.70340i 0.289656 0.407553i
\(45\) 0 0
\(46\) 8.71572i 1.28506i
\(47\) 5.43736 3.13926i 0.793120 0.457908i −0.0479395 0.998850i \(-0.515265\pi\)
0.841060 + 0.540942i \(0.181932\pi\)
\(48\) 0 0
\(49\) −2.42949 + 4.20800i −0.347070 + 0.601143i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) −0.354032 + 0.204400i −0.0490954 + 0.0283452i
\(53\) 6.52693i 0.896543i 0.893897 + 0.448272i \(0.147960\pi\)
−0.893897 + 0.448272i \(0.852040\pi\)
\(54\) 0 0
\(55\) −2.70340 1.92136i −0.364527 0.259076i
\(56\) 1.26719 0.731611i 0.169335 0.0977656i
\(57\) 0 0
\(58\) 5.07036 8.78212i 0.665771 1.15315i
\(59\) −3.76646 2.17457i −0.490352 0.283105i 0.234369 0.972148i \(-0.424698\pi\)
−0.724720 + 0.689043i \(0.758031\pi\)
\(60\) 0 0
\(61\) 8.21542 4.74317i 1.05188 0.607301i 0.128702 0.991683i \(-0.458919\pi\)
0.923174 + 0.384382i \(0.125586\pi\)
\(62\) −0.956845 −0.121519
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.204400 + 0.354032i 0.0253527 + 0.0439122i
\(66\) 0 0
\(67\) −0.265166 + 0.459281i −0.0323952 + 0.0561101i −0.881768 0.471683i \(-0.843647\pi\)
0.849373 + 0.527793i \(0.176980\pi\)
\(68\) −1.43409 + 2.48391i −0.173909 + 0.301219i
\(69\) 0 0
\(70\) −0.731611 1.26719i −0.0874442 0.151458i
\(71\) 5.71056i 0.677719i 0.940837 + 0.338859i \(0.110041\pi\)
−0.940837 + 0.338859i \(0.889959\pi\)
\(72\) 0 0
\(73\) 3.68830i 0.431682i −0.976428 0.215841i \(-0.930751\pi\)
0.976428 0.215841i \(-0.0692493\pi\)
\(74\) −4.01950 6.96198i −0.467258 0.809314i
\(75\) 0 0
\(76\) −5.55129 3.20504i −0.636776 0.367643i
\(77\) −4.41256 + 2.02003i −0.502858 + 0.230204i
\(78\) 0 0
\(79\) −3.20431 + 1.85001i −0.360513 + 0.208142i −0.669306 0.742987i \(-0.733408\pi\)
0.308793 + 0.951129i \(0.400075\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 0 0
\(82\) −0.371936 −0.0410735
\(83\) 6.46495 + 11.1976i 0.709620 + 1.22910i 0.964998 + 0.262257i \(0.0844668\pi\)
−0.255378 + 0.966841i \(0.582200\pi\)
\(84\) 0 0
\(85\) 2.48391 + 1.43409i 0.269418 + 0.155549i
\(86\) 7.17709 + 4.14369i 0.773925 + 0.446826i
\(87\) 0 0
\(88\) −3.30189 0.312246i −0.351983 0.0332855i
\(89\) 7.53973i 0.799209i 0.916688 + 0.399605i \(0.130853\pi\)
−0.916688 + 0.399605i \(0.869147\pi\)
\(90\) 0 0
\(91\) 0.598166 0.0627048
\(92\) 7.54804 4.35786i 0.786937 0.454338i
\(93\) 0 0
\(94\) −5.43736 3.13926i −0.560821 0.323790i
\(95\) −3.20504 + 5.55129i −0.328830 + 0.569550i
\(96\) 0 0
\(97\) −9.30082 16.1095i −0.944355 1.63567i −0.757038 0.653371i \(-0.773354\pi\)
−0.187317 0.982299i \(-0.559979\pi\)
\(98\) 4.85898 0.490831
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 2.62335 + 4.54377i 0.261033 + 0.452122i 0.966517 0.256604i \(-0.0826035\pi\)
−0.705484 + 0.708726i \(0.749270\pi\)
\(102\) 0 0
\(103\) 2.93353 5.08102i 0.289049 0.500647i −0.684534 0.728981i \(-0.739994\pi\)
0.973583 + 0.228334i \(0.0733277\pi\)
\(104\) 0.354032 + 0.204400i 0.0347157 + 0.0200431i
\(105\) 0 0
\(106\) 5.65249 3.26347i 0.549018 0.316976i
\(107\) −4.60520 −0.445202 −0.222601 0.974910i \(-0.571455\pi\)
−0.222601 + 0.974910i \(0.571455\pi\)
\(108\) 0 0
\(109\) 12.7899i 1.22505i 0.790452 + 0.612524i \(0.209846\pi\)
−0.790452 + 0.612524i \(0.790154\pi\)
\(110\) −0.312246 + 3.30189i −0.0297715 + 0.314823i
\(111\) 0 0
\(112\) −1.26719 0.731611i −0.119738 0.0691307i
\(113\) 12.2279 + 7.05979i 1.15031 + 0.664129i 0.948962 0.315391i \(-0.102136\pi\)
0.201344 + 0.979521i \(0.435469\pi\)
\(114\) 0 0
\(115\) −4.35786 7.54804i −0.406373 0.703858i
\(116\) −10.1407 −0.941543
\(117\) 0 0
\(118\) 4.34914i 0.400371i
\(119\) 3.63452 2.09839i 0.333176 0.192359i
\(120\) 0 0
\(121\) 10.8050 + 2.06200i 0.982273 + 0.187455i
\(122\) −8.21542 4.74317i −0.743789 0.429427i
\(123\) 0 0
\(124\) 0.478423 + 0.828652i 0.0429636 + 0.0744152i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 13.6254i 1.20906i 0.796582 + 0.604530i \(0.206639\pi\)
−0.796582 + 0.604530i \(0.793361\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 0.204400 0.354032i 0.0179271 0.0310506i
\(131\) −7.83507 + 13.5707i −0.684553 + 1.18568i 0.289024 + 0.957322i \(0.406669\pi\)
−0.973577 + 0.228359i \(0.926664\pi\)
\(132\) 0 0
\(133\) 4.68968 + 8.12277i 0.406647 + 0.704333i
\(134\) 0.530332 0.0458137
\(135\) 0 0
\(136\) 2.86818 0.245944
\(137\) −14.7996 + 8.54454i −1.26441 + 0.730010i −0.973925 0.226869i \(-0.927151\pi\)
−0.290488 + 0.956879i \(0.593818\pi\)
\(138\) 0 0
\(139\) 0.984121 + 0.568183i 0.0834721 + 0.0481926i 0.541155 0.840923i \(-0.317987\pi\)
−0.457683 + 0.889115i \(0.651321\pi\)
\(140\) −0.731611 + 1.26719i −0.0618324 + 0.107097i
\(141\) 0 0
\(142\) 4.94549 2.85528i 0.415016 0.239610i
\(143\) −1.10515 0.785453i −0.0924174 0.0656829i
\(144\) 0 0
\(145\) 10.1407i 0.842141i
\(146\) −3.19416 + 1.84415i −0.264350 + 0.152623i
\(147\) 0 0
\(148\) −4.01950 + 6.96198i −0.330401 + 0.572271i
\(149\) −0.817421 + 1.41582i −0.0669658 + 0.115988i −0.897564 0.440884i \(-0.854665\pi\)
0.830599 + 0.556872i \(0.187998\pi\)
\(150\) 0 0
\(151\) 18.5744 10.7239i 1.51156 0.872701i 0.511654 0.859192i \(-0.329033\pi\)
0.999909 0.0135092i \(-0.00430023\pi\)
\(152\) 6.41008i 0.519926i
\(153\) 0 0
\(154\) 3.95568 + 2.81138i 0.318757 + 0.226547i
\(155\) 0.828652 0.478423i 0.0665590 0.0384278i
\(156\) 0 0
\(157\) −5.03859 + 8.72709i −0.402123 + 0.696497i −0.993982 0.109544i \(-0.965061\pi\)
0.591859 + 0.806042i \(0.298394\pi\)
\(158\) 3.20431 + 1.85001i 0.254921 + 0.147179i
\(159\) 0 0
\(160\) −0.866025 + 0.500000i −0.0684653 + 0.0395285i
\(161\) −12.7530 −1.00508
\(162\) 0 0
\(163\) 12.4779 0.977341 0.488670 0.872468i \(-0.337482\pi\)
0.488670 + 0.872468i \(0.337482\pi\)
\(164\) 0.185968 + 0.322106i 0.0145217 + 0.0251523i
\(165\) 0 0
\(166\) 6.46495 11.1976i 0.501777 0.869104i
\(167\) 5.53040 9.57893i 0.427955 0.741240i −0.568736 0.822520i \(-0.692567\pi\)
0.996691 + 0.0812799i \(0.0259008\pi\)
\(168\) 0 0
\(169\) −6.41644 11.1136i −0.493572 0.854892i
\(170\) 2.86818i 0.219979i
\(171\) 0 0
\(172\) 8.28739i 0.631907i
\(173\) 0.545882 + 0.945495i 0.0415026 + 0.0718846i 0.886031 0.463627i \(-0.153452\pi\)
−0.844528 + 0.535512i \(0.820119\pi\)
\(174\) 0 0
\(175\) 1.26719 + 0.731611i 0.0957904 + 0.0553046i
\(176\) 1.38053 + 3.01565i 0.104062 + 0.227313i
\(177\) 0 0
\(178\) 6.52959 3.76986i 0.489414 0.282563i
\(179\) 1.38374i 0.103426i −0.998662 0.0517129i \(-0.983532\pi\)
0.998662 0.0517129i \(-0.0164681\pi\)
\(180\) 0 0
\(181\) −7.10273 −0.527942 −0.263971 0.964531i \(-0.585032\pi\)
−0.263971 + 0.964531i \(0.585032\pi\)
\(182\) −0.299083 0.518027i −0.0221695 0.0383987i
\(183\) 0 0
\(184\) −7.54804 4.35786i −0.556449 0.321266i
\(185\) 6.96198 + 4.01950i 0.511855 + 0.295520i
\(186\) 0 0
\(187\) −9.47041 0.895576i −0.692545 0.0654910i
\(188\) 6.27852i 0.457908i
\(189\) 0 0
\(190\) 6.41008 0.465036
\(191\) −3.37061 + 1.94602i −0.243889 + 0.140809i −0.616963 0.786992i \(-0.711637\pi\)
0.373074 + 0.927802i \(0.378304\pi\)
\(192\) 0 0
\(193\) 1.94393 + 1.12233i 0.139927 + 0.0807868i 0.568329 0.822801i \(-0.307590\pi\)
−0.428402 + 0.903588i \(0.640923\pi\)
\(194\) −9.30082 + 16.1095i −0.667760 + 1.15659i
\(195\) 0 0
\(196\) −2.42949 4.20800i −0.173535 0.300572i
\(197\) 23.2128 1.65385 0.826923 0.562316i \(-0.190089\pi\)
0.826923 + 0.562316i \(0.190089\pi\)
\(198\) 0 0
\(199\) −4.10464 −0.290970 −0.145485 0.989360i \(-0.546474\pi\)
−0.145485 + 0.989360i \(0.546474\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) 2.62335 4.54377i 0.184578 0.319699i
\(203\) 12.8502 + 7.41906i 0.901907 + 0.520716i
\(204\) 0 0
\(205\) 0.322106 0.185968i 0.0224969 0.0129886i
\(206\) −5.86705 −0.408777
\(207\) 0 0
\(208\) 0.408801i 0.0283452i
\(209\) 2.00152 21.1654i 0.138448 1.46404i
\(210\) 0 0
\(211\) 17.5793 + 10.1494i 1.21021 + 0.698715i 0.962805 0.270197i \(-0.0870889\pi\)
0.247405 + 0.968912i \(0.420422\pi\)
\(212\) −5.65249 3.26347i −0.388215 0.224136i
\(213\) 0 0
\(214\) 2.30260 + 3.98822i 0.157403 + 0.272629i
\(215\) −8.28739 −0.565195
\(216\) 0 0
\(217\) 1.40008i 0.0950434i
\(218\) 11.0764 6.39494i 0.750186 0.433120i
\(219\) 0 0
\(220\) 3.01565 1.38053i 0.203315 0.0930756i
\(221\) 1.01543 + 0.586256i 0.0683049 + 0.0394358i
\(222\) 0 0
\(223\) 5.60415 + 9.70667i 0.375282 + 0.650007i 0.990369 0.138452i \(-0.0442127\pi\)
−0.615088 + 0.788459i \(0.710879\pi\)
\(224\) 1.46322i 0.0977656i
\(225\) 0 0
\(226\) 14.1196i 0.939221i
\(227\) 4.37231 + 7.57307i 0.290201 + 0.502642i 0.973857 0.227162i \(-0.0729447\pi\)
−0.683656 + 0.729804i \(0.739611\pi\)
\(228\) 0 0
\(229\) −9.66650 + 16.7429i −0.638780 + 1.10640i 0.346920 + 0.937895i \(0.387227\pi\)
−0.985701 + 0.168505i \(0.946106\pi\)
\(230\) −4.35786 + 7.54804i −0.287349 + 0.497703i
\(231\) 0 0
\(232\) 5.07036 + 8.78212i 0.332886 + 0.576575i
\(233\) 7.40485 0.485108 0.242554 0.970138i \(-0.422015\pi\)
0.242554 + 0.970138i \(0.422015\pi\)
\(234\) 0 0
\(235\) 6.27852 0.409566
\(236\) 3.76646 2.17457i 0.245176 0.141552i
\(237\) 0 0
\(238\) −3.63452 2.09839i −0.235591 0.136018i
\(239\) −10.9305 + 18.9321i −0.707033 + 1.22462i 0.258919 + 0.965899i \(0.416634\pi\)
−0.965953 + 0.258719i \(0.916700\pi\)
\(240\) 0 0
\(241\) 8.84950 5.10926i 0.570047 0.329117i −0.187121 0.982337i \(-0.559916\pi\)
0.757168 + 0.653220i \(0.226582\pi\)
\(242\) −3.61675 10.3884i −0.232494 0.667792i
\(243\) 0 0
\(244\) 9.48635i 0.607301i
\(245\) −4.20800 + 2.42949i −0.268839 + 0.155214i
\(246\) 0 0
\(247\) −1.31022 + 2.26937i −0.0833674 + 0.144397i
\(248\) 0.478423 0.828652i 0.0303799 0.0526195i
\(249\) 0 0
\(250\) 0.866025 0.500000i 0.0547723 0.0316228i
\(251\) 14.0042i 0.883936i 0.897031 + 0.441968i \(0.145719\pi\)
−0.897031 + 0.441968i \(0.854281\pi\)
\(252\) 0 0
\(253\) 23.5621 + 16.7460i 1.48134 + 1.05281i
\(254\) 11.8000 6.81271i 0.740395 0.427467i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 21.8400 + 12.6093i 1.36234 + 0.786547i 0.989935 0.141523i \(-0.0452000\pi\)
0.372405 + 0.928070i \(0.378533\pi\)
\(258\) 0 0
\(259\) 10.1869 5.88142i 0.632985 0.365454i
\(260\) −0.408801 −0.0253527
\(261\) 0 0
\(262\) 15.6701 0.968104
\(263\) 15.8988 + 27.5376i 0.980364 + 1.69804i 0.660961 + 0.750420i \(0.270149\pi\)
0.319403 + 0.947619i \(0.396518\pi\)
\(264\) 0 0
\(265\) −3.26347 + 5.65249i −0.200473 + 0.347230i
\(266\) 4.68968 8.12277i 0.287543 0.498039i
\(267\) 0 0
\(268\) −0.265166 0.459281i −0.0161976 0.0280551i
\(269\) 23.7818i 1.45000i −0.688749 0.724999i \(-0.741840\pi\)
0.688749 0.724999i \(-0.258160\pi\)
\(270\) 0 0
\(271\) 20.4696i 1.24344i −0.783239 0.621721i \(-0.786434\pi\)
0.783239 0.621721i \(-0.213566\pi\)
\(272\) −1.43409 2.48391i −0.0869544 0.150609i
\(273\) 0 0
\(274\) 14.7996 + 8.54454i 0.894075 + 0.516195i
\(275\) −1.38053 3.01565i −0.0832493 0.181850i
\(276\) 0 0
\(277\) 20.6454 11.9196i 1.24046 0.716179i 0.271272 0.962503i \(-0.412556\pi\)
0.969188 + 0.246323i \(0.0792225\pi\)
\(278\) 1.13637i 0.0681547i
\(279\) 0 0
\(280\) 1.46322 0.0874442
\(281\) −14.6086 25.3028i −0.871474 1.50944i −0.860472 0.509498i \(-0.829831\pi\)
−0.0110025 0.999939i \(-0.503502\pi\)
\(282\) 0 0
\(283\) −21.3819 12.3448i −1.27102 0.733825i −0.295842 0.955237i \(-0.595600\pi\)
−0.975180 + 0.221412i \(0.928934\pi\)
\(284\) −4.94549 2.85528i −0.293461 0.169430i
\(285\) 0 0
\(286\) −0.127646 + 1.34982i −0.00754788 + 0.0798163i
\(287\) 0.544225i 0.0321246i
\(288\) 0 0
\(289\) −8.77357 −0.516092
\(290\) 8.78212 5.07036i 0.515704 0.297742i
\(291\) 0 0
\(292\) 3.19416 + 1.84415i 0.186924 + 0.107921i
\(293\) −8.84379 + 15.3179i −0.516660 + 0.894881i 0.483153 + 0.875536i \(0.339491\pi\)
−0.999813 + 0.0193451i \(0.993842\pi\)
\(294\) 0 0
\(295\) −2.17457 3.76646i −0.126608 0.219292i
\(296\) 8.03901 0.467258
\(297\) 0 0
\(298\) 1.63484 0.0947039
\(299\) −1.78150 3.08564i −0.103027 0.178447i
\(300\) 0 0
\(301\) −6.06314 + 10.5017i −0.349474 + 0.605306i
\(302\) −18.5744 10.7239i −1.06884 0.617093i
\(303\) 0 0
\(304\) 5.55129 3.20504i 0.318388 0.183822i
\(305\) 9.48635 0.543187
\(306\) 0 0
\(307\) 10.4138i 0.594348i 0.954823 + 0.297174i \(0.0960441\pi\)
−0.954823 + 0.297174i \(0.903956\pi\)
\(308\) 0.456885 4.83140i 0.0260334 0.275295i
\(309\) 0 0
\(310\) −0.828652 0.478423i −0.0470643 0.0271726i
\(311\) 0.258357 + 0.149163i 0.0146501 + 0.00845823i 0.507307 0.861765i \(-0.330641\pi\)
−0.492657 + 0.870224i \(0.663974\pi\)
\(312\) 0 0
\(313\) 6.60789 + 11.4452i 0.373500 + 0.646921i 0.990101 0.140355i \(-0.0448242\pi\)
−0.616601 + 0.787276i \(0.711491\pi\)
\(314\) 10.0772 0.568688
\(315\) 0 0
\(316\) 3.70001i 0.208142i
\(317\) 26.8991 15.5302i 1.51081 0.872265i 0.510886 0.859648i \(-0.329317\pi\)
0.999920 0.0126163i \(-0.00401601\pi\)
\(318\) 0 0
\(319\) −13.9996 30.5808i −0.783828 1.71220i
\(320\) 0.866025 + 0.500000i 0.0484123 + 0.0279508i
\(321\) 0 0
\(322\) 6.37652 + 11.0445i 0.355349 + 0.615483i
\(323\) 18.3852i 1.02298i
\(324\) 0 0
\(325\) 0.408801i 0.0226762i
\(326\) −6.23893 10.8061i −0.345542 0.598497i
\(327\) 0 0
\(328\) 0.185968 0.322106i 0.0102684 0.0177853i
\(329\) 4.59344 7.95606i 0.253244 0.438632i
\(330\) 0 0
\(331\) −16.3056 28.2421i −0.896235 1.55232i −0.832269 0.554373i \(-0.812958\pi\)
−0.0639665 0.997952i \(-0.520375\pi\)
\(332\) −12.9299 −0.709620
\(333\) 0 0
\(334\) −11.0608 −0.605220
\(335\) −0.459281 + 0.265166i −0.0250932 + 0.0144876i
\(336\) 0 0
\(337\) −8.64557 4.99152i −0.470954 0.271906i 0.245685 0.969350i \(-0.420987\pi\)
−0.716639 + 0.697444i \(0.754321\pi\)
\(338\) −6.41644 + 11.1136i −0.349008 + 0.604500i
\(339\) 0 0
\(340\) −2.48391 + 1.43409i −0.134709 + 0.0777743i
\(341\) −1.83844 + 2.58674i −0.0995573 + 0.140080i
\(342\) 0 0
\(343\) 17.3523i 0.936937i
\(344\) −7.17709 + 4.14369i −0.386963 + 0.223413i
\(345\) 0 0
\(346\) 0.545882 0.945495i 0.0293468 0.0508301i
\(347\) 12.8574 22.2696i 0.690219 1.19550i −0.281546 0.959548i \(-0.590847\pi\)
0.971766 0.235948i \(-0.0758194\pi\)
\(348\) 0 0
\(349\) 19.2655 11.1229i 1.03126 0.595397i 0.113913 0.993491i \(-0.463661\pi\)
0.917345 + 0.398094i \(0.130328\pi\)
\(350\) 1.46322i 0.0782125i
\(351\) 0 0
\(352\) 1.92136 2.70340i 0.102409 0.144092i
\(353\) 12.7595 7.36672i 0.679121 0.392091i −0.120403 0.992725i \(-0.538419\pi\)
0.799524 + 0.600634i \(0.205085\pi\)
\(354\) 0 0
\(355\) −2.85528 + 4.94549i −0.151542 + 0.262479i
\(356\) −6.52959 3.76986i −0.346068 0.199802i
\(357\) 0 0
\(358\) −1.19836 + 0.691871i −0.0633351 + 0.0365665i
\(359\) −9.73365 −0.513722 −0.256861 0.966448i \(-0.582688\pi\)
−0.256861 + 0.966448i \(0.582688\pi\)
\(360\) 0 0
\(361\) −22.0891 −1.16258
\(362\) 3.55137 + 6.15114i 0.186656 + 0.323297i
\(363\) 0 0
\(364\) −0.299083 + 0.518027i −0.0156762 + 0.0271520i
\(365\) 1.84415 3.19416i 0.0965271 0.167190i
\(366\) 0 0
\(367\) 0.747133 + 1.29407i 0.0390000 + 0.0675501i 0.884867 0.465845i \(-0.154249\pi\)
−0.845867 + 0.533395i \(0.820916\pi\)
\(368\) 8.71572i 0.454338i
\(369\) 0 0
\(370\) 8.03901i 0.417928i
\(371\) 4.77518 + 8.27085i 0.247915 + 0.429401i
\(372\) 0 0
\(373\) 6.08320 + 3.51214i 0.314976 + 0.181852i 0.649151 0.760660i \(-0.275124\pi\)
−0.334175 + 0.942511i \(0.608458\pi\)
\(374\) 3.95961 + 8.64941i 0.204747 + 0.447250i
\(375\) 0 0
\(376\) 5.43736 3.13926i 0.280410 0.161895i
\(377\) 4.14553i 0.213506i
\(378\) 0 0
\(379\) 0.0105305 0.000540913 0.000270457 1.00000i \(-0.499914\pi\)
0.000270457 1.00000i \(0.499914\pi\)
\(380\) −3.20504 5.55129i −0.164415 0.284775i
\(381\) 0 0
\(382\) 3.37061 + 1.94602i 0.172456 + 0.0995672i
\(383\) −11.8628 6.84898i −0.606160 0.349967i 0.165301 0.986243i \(-0.447140\pi\)
−0.771461 + 0.636276i \(0.780474\pi\)
\(384\) 0 0
\(385\) −4.83140 0.456885i −0.246231 0.0232850i
\(386\) 2.24465i 0.114250i
\(387\) 0 0
\(388\) 18.6016 0.944355
\(389\) −28.5177 + 16.4647i −1.44590 + 0.834792i −0.998234 0.0594074i \(-0.981079\pi\)
−0.447669 + 0.894200i \(0.647746\pi\)
\(390\) 0 0
\(391\) −21.6491 12.4991i −1.09484 0.632107i
\(392\) −2.42949 + 4.20800i −0.122708 + 0.212536i
\(393\) 0 0
\(394\) −11.6064 20.1029i −0.584723 1.01277i
\(395\) −3.70001 −0.186168
\(396\) 0 0
\(397\) −7.13376 −0.358033 −0.179017 0.983846i \(-0.557292\pi\)
−0.179017 + 0.983846i \(0.557292\pi\)
\(398\) 2.05232 + 3.55472i 0.102873 + 0.178182i
\(399\) 0 0
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) −14.5771 8.41611i −0.727947 0.420280i 0.0897238 0.995967i \(-0.471402\pi\)
−0.817671 + 0.575686i \(0.804735\pi\)
\(402\) 0 0
\(403\) 0.338754 0.195579i 0.0168745 0.00974251i
\(404\) −5.24670 −0.261033
\(405\) 0 0
\(406\) 14.8381i 0.736404i
\(407\) −26.5439 2.51015i −1.31573 0.124423i
\(408\) 0 0
\(409\) 4.21460 + 2.43330i 0.208399 + 0.120319i 0.600567 0.799574i \(-0.294942\pi\)
−0.392168 + 0.919893i \(0.628275\pi\)
\(410\) −0.322106 0.185968i −0.0159077 0.00918431i
\(411\) 0 0
\(412\) 2.93353 + 5.08102i 0.144524 + 0.250324i
\(413\) −6.36375 −0.313140
\(414\) 0 0
\(415\) 12.9299i 0.634704i
\(416\) −0.354032 + 0.204400i −0.0173578 + 0.0100215i
\(417\) 0 0
\(418\) −19.3305 + 8.84933i −0.945487 + 0.432835i
\(419\) −12.0105 6.93426i −0.586751 0.338761i 0.177061 0.984200i \(-0.443341\pi\)
−0.763812 + 0.645439i \(0.776674\pi\)
\(420\) 0 0
\(421\) −0.496307 0.859630i −0.0241885 0.0418958i 0.853678 0.520802i \(-0.174367\pi\)
−0.877866 + 0.478906i \(0.841034\pi\)
\(422\) 20.2988i 0.988132i
\(423\) 0 0
\(424\) 6.52693i 0.316976i
\(425\) 1.43409 + 2.48391i 0.0695635 + 0.120487i
\(426\) 0 0
\(427\) 6.94031 12.0210i 0.335865 0.581736i
\(428\) 2.30260 3.98822i 0.111300 0.192778i
\(429\) 0 0
\(430\) 4.14369 + 7.17709i 0.199827 + 0.346110i
\(431\) 32.4527 1.56319 0.781596 0.623784i \(-0.214406\pi\)
0.781596 + 0.623784i \(0.214406\pi\)
\(432\) 0 0
\(433\) −21.2855 −1.02292 −0.511459 0.859308i \(-0.670895\pi\)
−0.511459 + 0.859308i \(0.670895\pi\)
\(434\) −1.21250 + 0.700038i −0.0582020 + 0.0336029i
\(435\) 0 0
\(436\) −11.0764 6.39494i −0.530462 0.306262i
\(437\) 27.9342 48.3835i 1.33627 2.31450i
\(438\) 0 0
\(439\) −14.7741 + 8.52982i −0.705128 + 0.407106i −0.809255 0.587458i \(-0.800129\pi\)
0.104126 + 0.994564i \(0.466795\pi\)
\(440\) −2.70340 1.92136i −0.128880 0.0915972i
\(441\) 0 0
\(442\) 1.17251i 0.0557707i
\(443\) 17.7337 10.2385i 0.842552 0.486448i −0.0155786 0.999879i \(-0.504959\pi\)
0.858131 + 0.513431i \(0.171626\pi\)
\(444\) 0 0
\(445\) −3.76986 + 6.52959i −0.178709 + 0.309532i
\(446\) 5.60415 9.70667i 0.265364 0.459624i
\(447\) 0 0
\(448\) 1.26719 0.731611i 0.0598690 0.0345654i
\(449\) 1.96862i 0.0929049i −0.998921 0.0464524i \(-0.985208\pi\)
0.998921 0.0464524i \(-0.0147916\pi\)
\(450\) 0 0
\(451\) −0.714623 + 1.00549i −0.0336503 + 0.0473468i
\(452\) −12.2279 + 7.05979i −0.575153 + 0.332065i
\(453\) 0 0
\(454\) 4.37231 7.57307i 0.205203 0.355422i
\(455\) 0.518027 + 0.299083i 0.0242855 + 0.0140212i
\(456\) 0 0
\(457\) −21.4429 + 12.3801i −1.00306 + 0.579115i −0.909151 0.416466i \(-0.863268\pi\)
−0.0939051 + 0.995581i \(0.529935\pi\)
\(458\) 19.3330 0.903372
\(459\) 0 0
\(460\) 8.71572 0.406373
\(461\) −9.80315 16.9796i −0.456578 0.790817i 0.542199 0.840250i \(-0.317592\pi\)
−0.998777 + 0.0494331i \(0.984259\pi\)
\(462\) 0 0
\(463\) −0.812232 + 1.40683i −0.0377476 + 0.0653808i −0.884282 0.466953i \(-0.845352\pi\)
0.846534 + 0.532334i \(0.178685\pi\)
\(464\) 5.07036 8.78212i 0.235386 0.407700i
\(465\) 0 0
\(466\) −3.70242 6.41278i −0.171511 0.297067i
\(467\) 6.10089i 0.282315i −0.989987 0.141158i \(-0.954918\pi\)
0.989987 0.141158i \(-0.0450825\pi\)
\(468\) 0 0
\(469\) 0.775994i 0.0358321i
\(470\) −3.13926 5.43736i −0.144803 0.250807i
\(471\) 0 0
\(472\) −3.76646 2.17457i −0.173366 0.100093i
\(473\) 24.9918 11.4410i 1.14913 0.526059i
\(474\) 0 0
\(475\) −5.55129 + 3.20504i −0.254711 + 0.147057i
\(476\) 4.19678i 0.192359i
\(477\) 0 0
\(478\) 21.8609 0.999896
\(479\) −4.09864 7.09906i −0.187272 0.324364i 0.757068 0.653336i \(-0.226631\pi\)
−0.944340 + 0.328972i \(0.893298\pi\)
\(480\) 0 0
\(481\) 2.84606 + 1.64317i 0.129769 + 0.0749223i
\(482\) −8.84950 5.10926i −0.403084 0.232721i
\(483\) 0 0
\(484\) −7.18825 + 8.32641i −0.326739 + 0.378473i
\(485\) 18.6016i 0.844657i
\(486\) 0 0
\(487\) 7.11175 0.322264 0.161132 0.986933i \(-0.448486\pi\)
0.161132 + 0.986933i \(0.448486\pi\)
\(488\) 8.21542 4.74317i 0.371894 0.214713i
\(489\) 0 0
\(490\) 4.20800 + 2.42949i 0.190098 + 0.109753i
\(491\) 7.99583 13.8492i 0.360847 0.625005i −0.627254 0.778815i \(-0.715821\pi\)
0.988100 + 0.153810i \(0.0491544\pi\)
\(492\) 0 0
\(493\) 14.5427 + 25.1887i 0.654970 + 1.13444i
\(494\) 2.62044 0.117899
\(495\) 0 0
\(496\) −0.956845 −0.0429636
\(497\) 4.17791 + 7.23635i 0.187405 + 0.324595i
\(498\) 0 0
\(499\) −7.76994 + 13.4579i −0.347830 + 0.602460i −0.985864 0.167549i \(-0.946415\pi\)
0.638033 + 0.770009i \(0.279748\pi\)
\(500\) −0.866025 0.500000i −0.0387298 0.0223607i
\(501\) 0 0
\(502\) 12.1280 7.00209i 0.541298 0.312519i
\(503\) −2.30304 −0.102687 −0.0513437 0.998681i \(-0.516350\pi\)
−0.0513437 + 0.998681i \(0.516350\pi\)
\(504\) 0 0
\(505\) 5.24670i 0.233475i
\(506\) 2.72145 28.7784i 0.120983 1.27936i
\(507\) 0 0
\(508\) −11.8000 6.81271i −0.523538 0.302265i
\(509\) 19.9168 + 11.4990i 0.882797 + 0.509683i 0.871580 0.490254i \(-0.163096\pi\)
0.0112177 + 0.999937i \(0.496429\pi\)
\(510\) 0 0
\(511\) −2.69840 4.67376i −0.119370 0.206755i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 25.2186i 1.11235i
\(515\) 5.08102 2.93353i 0.223896 0.129267i
\(516\) 0 0
\(517\) −18.9338 + 8.66771i −0.832708 + 0.381206i
\(518\) −10.1869 5.88142i −0.447588 0.258415i
\(519\) 0 0
\(520\) 0.204400 + 0.354032i 0.00896355 + 0.0155253i
\(521\) 10.3842i 0.454939i 0.973785 + 0.227470i \(0.0730453\pi\)
−0.973785 + 0.227470i \(0.926955\pi\)
\(522\) 0 0
\(523\) 15.3047i 0.669229i 0.942355 + 0.334614i \(0.108606\pi\)
−0.942355 + 0.334614i \(0.891394\pi\)
\(524\) −7.83507 13.5707i −0.342277 0.592840i
\(525\) 0 0
\(526\) 15.8988 27.5376i 0.693222 1.20070i
\(527\) 1.37220 2.37672i 0.0597740 0.103532i
\(528\) 0 0
\(529\) 26.4819 + 45.8680i 1.15139 + 1.99426i
\(530\) 6.52693 0.283512
\(531\) 0 0
\(532\) −9.37936 −0.406647
\(533\) 0.131677 0.0760238i 0.00570357 0.00329296i
\(534\) 0 0
\(535\) −3.98822 2.30260i −0.172426 0.0995501i
\(536\) −0.265166 + 0.459281i −0.0114534 + 0.0198379i
\(537\) 0 0
\(538\) −20.5956 + 11.8909i −0.887939 + 0.512652i
\(539\) 9.33585 13.1358i 0.402124 0.565798i
\(540\) 0 0
\(541\) 23.4462i 1.00803i 0.863695 + 0.504015i \(0.168144\pi\)
−0.863695 + 0.504015i \(0.831856\pi\)
\(542\) −17.7272 + 10.2348i −0.761450 + 0.439623i
\(543\) 0 0
\(544\) −1.43409 + 2.48391i −0.0614860 + 0.106497i
\(545\) −6.39494 + 11.0764i −0.273929 + 0.474459i
\(546\) 0 0
\(547\) −15.1712 + 8.75911i −0.648675 + 0.374513i −0.787948 0.615741i \(-0.788857\pi\)
0.139273 + 0.990254i \(0.455523\pi\)
\(548\) 17.0891i 0.730010i
\(549\) 0 0
\(550\) −1.92136 + 2.70340i −0.0819270 + 0.115273i
\(551\) −56.2941 + 32.5014i −2.39821 + 1.38461i
\(552\) 0 0
\(553\) −2.70697 + 4.68861i −0.115112 + 0.199380i
\(554\) −20.6454 11.9196i −0.877137 0.506415i
\(555\) 0 0
\(556\) −0.984121 + 0.568183i −0.0417360 + 0.0240963i
\(557\) −26.5254 −1.12392 −0.561958 0.827166i \(-0.689952\pi\)
−0.561958 + 0.827166i \(0.689952\pi\)
\(558\) 0 0
\(559\) −3.38789 −0.143292
\(560\) −0.731611 1.26719i −0.0309162 0.0535484i
\(561\) 0 0
\(562\) −14.6086 + 25.3028i −0.616225 + 1.06733i
\(563\) 4.88964 8.46911i 0.206074 0.356930i −0.744400 0.667733i \(-0.767265\pi\)
0.950474 + 0.310803i \(0.100598\pi\)
\(564\) 0 0
\(565\) 7.05979 + 12.2279i 0.297008 + 0.514432i
\(566\) 24.6897i 1.03779i
\(567\) 0 0
\(568\) 5.71056i 0.239610i
\(569\) 7.06816 + 12.2424i 0.296313 + 0.513229i 0.975289 0.220931i \(-0.0709096\pi\)
−0.678977 + 0.734160i \(0.737576\pi\)
\(570\) 0 0
\(571\) 7.96470 + 4.59842i 0.333312 + 0.192438i 0.657311 0.753620i \(-0.271694\pi\)
−0.323998 + 0.946058i \(0.605027\pi\)
\(572\) 1.23280 0.564363i 0.0515459 0.0235972i
\(573\) 0 0
\(574\) −0.471313 + 0.272112i −0.0196722 + 0.0113578i
\(575\) 8.71572i 0.363471i
\(576\) 0 0
\(577\) −15.6154 −0.650078 −0.325039 0.945701i \(-0.605377\pi\)
−0.325039 + 0.945701i \(0.605377\pi\)
\(578\) 4.38678 + 7.59813i 0.182466 + 0.316041i
\(579\) 0 0
\(580\) −8.78212 5.07036i −0.364658 0.210535i
\(581\) 16.3846 + 9.45965i 0.679748 + 0.392453i
\(582\) 0 0
\(583\) 2.03801 21.5512i 0.0844056 0.892561i
\(584\) 3.68830i 0.152623i
\(585\) 0 0
\(586\) 17.6876 0.730667
\(587\) −17.4235 + 10.0594i −0.719143 + 0.415197i −0.814437 0.580252i \(-0.802954\pi\)
0.0952943 + 0.995449i \(0.469621\pi\)
\(588\) 0 0
\(589\) 5.31172 + 3.06673i 0.218866 + 0.126362i
\(590\) −2.17457 + 3.76646i −0.0895256 + 0.155063i
\(591\) 0 0
\(592\) −4.01950 6.96198i −0.165201 0.286136i
\(593\) 13.8771 0.569865 0.284933 0.958548i \(-0.408029\pi\)
0.284933 + 0.958548i \(0.408029\pi\)
\(594\) 0 0
\(595\) 4.19678 0.172051
\(596\) −0.817421 1.41582i −0.0334829 0.0579941i
\(597\) 0 0
\(598\) −1.78150 + 3.08564i −0.0728508 + 0.126181i
\(599\) −20.0579 11.5804i −0.819545 0.473164i 0.0307148 0.999528i \(-0.490222\pi\)
−0.850259 + 0.526364i \(0.823555\pi\)
\(600\) 0 0
\(601\) 5.48392 3.16615i 0.223694 0.129150i −0.383966 0.923347i \(-0.625442\pi\)
0.607660 + 0.794198i \(0.292109\pi\)
\(602\) 12.1263 0.494230
\(603\) 0 0
\(604\) 21.4479i 0.872701i
\(605\) 8.32641 + 7.18825i 0.338517 + 0.292244i
\(606\) 0 0
\(607\) −14.6550 8.46104i −0.594826 0.343423i 0.172177 0.985066i \(-0.444920\pi\)
−0.767004 + 0.641643i \(0.778253\pi\)
\(608\) −5.55129 3.20504i −0.225134 0.129981i
\(609\) 0 0
\(610\) −4.74317 8.21542i −0.192045 0.332633i
\(611\) 2.56666 0.103836
\(612\) 0 0
\(613\) 27.0260i 1.09157i −0.837926 0.545784i \(-0.816232\pi\)
0.837926 0.545784i \(-0.183768\pi\)
\(614\) 9.01863 5.20691i 0.363962 0.210134i
\(615\) 0 0
\(616\) −4.41256 + 2.02003i −0.177787 + 0.0813892i
\(617\) −2.04849 1.18270i −0.0824693 0.0476137i 0.458198 0.888850i \(-0.348495\pi\)
−0.540668 + 0.841236i \(0.681828\pi\)
\(618\) 0 0
\(619\) −13.1543 22.7840i −0.528717 0.915765i −0.999439 0.0334835i \(-0.989340\pi\)
0.470722 0.882282i \(-0.343993\pi\)
\(620\) 0.956845i 0.0384278i
\(621\) 0 0
\(622\) 0.298325i 0.0119617i
\(623\) 5.51615 + 9.55425i 0.221000 + 0.382783i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 6.60789 11.4452i 0.264104 0.457442i
\(627\) 0 0
\(628\) −5.03859 8.72709i −0.201061 0.348249i
\(629\) 23.0573 0.919354
\(630\) 0 0
\(631\) −3.15671 −0.125667 −0.0628333 0.998024i \(-0.520014\pi\)
−0.0628333 + 0.998024i \(0.520014\pi\)
\(632\) −3.20431 + 1.85001i −0.127460 + 0.0735893i
\(633\) 0 0
\(634\) −26.8991 15.5302i −1.06830 0.616784i
\(635\) −6.81271 + 11.8000i −0.270354 + 0.468267i
\(636\) 0 0
\(637\) −1.72023 + 0.993177i −0.0681581 + 0.0393511i
\(638\) −19.4840 + 27.4144i −0.771378 + 1.08535i
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) −0.682071 + 0.393794i −0.0269402 + 0.0155539i −0.513410 0.858144i \(-0.671618\pi\)
0.486469 + 0.873698i \(0.338285\pi\)
\(642\) 0 0
\(643\) −22.0915 + 38.2635i −0.871202 + 1.50897i −0.0104479 + 0.999945i \(0.503326\pi\)
−0.860754 + 0.509021i \(0.830008\pi\)
\(644\) 6.37652 11.0445i 0.251270 0.435212i
\(645\) 0 0
\(646\) 15.9221 9.19261i 0.626445 0.361678i
\(647\) 32.5409i 1.27932i 0.768660 + 0.639658i \(0.220924\pi\)
−0.768660 + 0.639658i \(0.779076\pi\)
\(648\) 0 0
\(649\) 11.7575 + 8.35626i 0.461521 + 0.328012i
\(650\) 0.354032 0.204400i 0.0138863 0.00801724i
\(651\) 0 0
\(652\) −6.23893 + 10.8061i −0.244335 + 0.423201i
\(653\) 6.74882 + 3.89643i 0.264102 + 0.152479i 0.626204 0.779659i \(-0.284608\pi\)
−0.362103 + 0.932138i \(0.617941\pi\)
\(654\) 0 0
\(655\) −13.5707 + 7.83507i −0.530253 + 0.306141i
\(656\) −0.371936 −0.0145217
\(657\) 0 0
\(658\) −9.18687 −0.358142
\(659\) −13.9665 24.1907i −0.544058 0.942337i −0.998666 0.0516447i \(-0.983554\pi\)
0.454607 0.890692i \(-0.349780\pi\)
\(660\) 0 0
\(661\) −19.0092 + 32.9249i −0.739372 + 1.28063i 0.213407 + 0.976963i \(0.431544\pi\)
−0.952778 + 0.303666i \(0.901789\pi\)
\(662\) −16.3056 + 28.2421i −0.633734 + 1.09766i
\(663\) 0 0
\(664\) 6.46495 + 11.1976i 0.250889 + 0.434552i
\(665\) 9.37936i 0.363716i
\(666\) 0 0
\(667\) 88.3837i 3.42223i
\(668\) 5.53040 + 9.57893i 0.213978 + 0.370620i
\(669\) 0 0
\(670\) 0.459281 + 0.265166i 0.0177436 + 0.0102443i
\(671\) −28.6075 + 13.0962i −1.10438 + 0.505574i
\(672\) 0 0
\(673\) −15.5254 + 8.96360i −0.598460 + 0.345521i −0.768436 0.639927i \(-0.778965\pi\)
0.169975 + 0.985448i \(0.445631\pi\)
\(674\) 9.98305i 0.384533i
\(675\) 0 0
\(676\) 12.8329 0.493572
\(677\) −22.3964 38.7917i −0.860763 1.49088i −0.871194 0.490939i \(-0.836654\pi\)
0.0104315 0.999946i \(-0.496679\pi\)
\(678\) 0 0
\(679\) −23.5718 13.6092i −0.904601 0.522272i
\(680\) 2.48391 + 1.43409i 0.0952537 + 0.0549948i
\(681\) 0 0
\(682\) 3.15940 + 0.298771i 0.120980 + 0.0114405i
\(683\) 20.5416i 0.786004i −0.919538 0.393002i \(-0.871437\pi\)
0.919538 0.393002i \(-0.128563\pi\)
\(684\) 0 0
\(685\) −17.0891 −0.652940
\(686\) 15.0276 8.67616i 0.573755 0.331257i
\(687\) 0 0
\(688\) 7.17709 + 4.14369i 0.273624 + 0.157977i
\(689\) −1.33411 + 2.31074i −0.0508254 + 0.0880322i
\(690\) 0 0
\(691\) 7.19339 + 12.4593i 0.273649 + 0.473974i 0.969793 0.243928i \(-0.0784359\pi\)
−0.696144 + 0.717902i \(0.745103\pi\)
\(692\) −1.09176 −0.0415026
\(693\) 0 0
\(694\) −25.7147 −0.976118
\(695\) 0.568183 + 0.984121i 0.0215524 + 0.0373298i
\(696\) 0 0
\(697\) 0.533389 0.923857i 0.0202036 0.0349936i
\(698\) −19.2655 11.1229i −0.729210 0.421009i
\(699\) 0 0
\(700\) −1.26719 + 0.731611i −0.0478952 + 0.0276523i
\(701\) −46.7089 −1.76417 −0.882085 0.471090i \(-0.843861\pi\)
−0.882085 + 0.471090i \(0.843861\pi\)
\(702\) 0 0
\(703\) 51.5306i 1.94351i
\(704\) −3.30189 0.312246i −0.124445 0.0117682i
\(705\) 0 0
\(706\) −12.7595 7.36672i −0.480211 0.277250i
\(707\) 6.64855 + 3.83854i 0.250044 + 0.144363i
\(708\) 0 0
\(709\) −17.1659 29.7323i −0.644680 1.11662i −0.984375 0.176083i \(-0.943657\pi\)
0.339695 0.940536i \(-0.389676\pi\)
\(710\) 5.71056 0.214313
\(711\) 0 0
\(712\) 7.53973i 0.282563i
\(713\) −7.22230 + 4.16980i −0.270477 + 0.156160i
\(714\) 0 0
\(715\) −0.564363 1.23280i −0.0211060 0.0461040i
\(716\) 1.19836 + 0.691871i 0.0447847 + 0.0258564i
\(717\) 0 0
\(718\) 4.86682 + 8.42959i 0.181628 + 0.314589i
\(719\) 33.4924i 1.24906i −0.781002 0.624528i \(-0.785291\pi\)
0.781002 0.624528i \(-0.214709\pi\)
\(720\) 0 0
\(721\) 8.58480i 0.319715i
\(722\) 11.0445 + 19.1297i 0.411035 + 0.711933i
\(723\) 0 0
\(724\) 3.55137 6.15114i 0.131985 0.228605i
\(725\) −5.07036 + 8.78212i −0.188309 + 0.326160i
\(726\) 0 0
\(727\) −19.3784 33.5643i −0.718704 1.24483i −0.961514 0.274757i \(-0.911402\pi\)
0.242810 0.970074i \(-0.421931\pi\)
\(728\) 0.598166 0.0221695
\(729\) 0 0
\(730\) −3.68830 −0.136510
\(731\) −20.5851 + 11.8848i −0.761369 + 0.439577i
\(732\) 0 0
\(733\) −12.7756 7.37599i −0.471877 0.272438i 0.245148 0.969486i \(-0.421163\pi\)
−0.717025 + 0.697047i \(0.754497\pi\)
\(734\) 0.747133 1.29407i 0.0275772 0.0477651i
\(735\) 0 0
\(736\) 7.54804 4.35786i 0.278224 0.160633i
\(737\) 1.01896 1.43370i 0.0375338 0.0528110i
\(738\) 0 0
\(739\) 12.4999i 0.459815i −0.973212 0.229908i \(-0.926158\pi\)
0.973212 0.229908i \(-0.0738424\pi\)
\(740\) −6.96198 + 4.01950i −0.255928 + 0.147760i
\(741\) 0 0
\(742\) 4.77518 8.27085i 0.175302 0.303632i
\(743\) 18.4678 31.9872i 0.677518 1.17349i −0.298209 0.954501i \(-0.596389\pi\)
0.975726 0.218994i \(-0.0702776\pi\)
\(744\) 0 0
\(745\) −1.41582 + 0.817421i −0.0518715 + 0.0299480i
\(746\) 7.02427i 0.257177i
\(747\) 0 0
\(748\) 5.51080 7.75383i 0.201495 0.283508i
\(749\) −5.83565 + 3.36922i −0.213230 + 0.123108i
\(750\) 0 0
\(751\) 20.1184 34.8461i 0.734131 1.27155i −0.220972 0.975280i \(-0.570923\pi\)
0.955103 0.296273i \(-0.0957438\pi\)
\(752\) −5.43736 3.13926i −0.198280 0.114477i
\(753\) 0 0
\(754\) 3.59014 2.07277i 0.130745 0.0754857i
\(755\) 21.4479 0.780567
\(756\) 0 0
\(757\) 30.6089 1.11250 0.556250 0.831015i \(-0.312240\pi\)
0.556250 + 0.831015i \(0.312240\pi\)
\(758\) −0.00526523 0.00911964i −0.000191242 0.000331240i
\(759\) 0 0
\(760\) −3.20504 + 5.55129i −0.116259 + 0.201366i
\(761\) 23.5229 40.7428i 0.852703 1.47692i −0.0260566 0.999660i \(-0.508295\pi\)
0.878760 0.477265i \(-0.158372\pi\)
\(762\) 0 0
\(763\) 9.35722 + 16.2072i 0.338754 + 0.586739i
\(764\) 3.89205i 0.140809i
\(765\) 0 0
\(766\) 13.6980i 0.494928i
\(767\) −0.888965 1.53973i −0.0320987 0.0555965i
\(768\) 0 0
\(769\) 11.4047 + 6.58448i 0.411262 + 0.237442i 0.691332 0.722537i \(-0.257024\pi\)
−0.280070 + 0.959980i \(0.590358\pi\)
\(770\) 2.02003 + 4.41256i 0.0727967 + 0.159018i
\(771\) 0 0
\(772\) −1.94393 + 1.12233i −0.0699634 + 0.0403934i
\(773\) 39.4631i 1.41939i −0.704510 0.709694i \(-0.748833\pi\)
0.704510 0.709694i \(-0.251167\pi\)
\(774\) 0 0
\(775\) 0.956845 0.0343709
\(776\) −9.30082 16.1095i −0.333880 0.578297i
\(777\) 0 0
\(778\) 28.5177 + 16.4647i 1.02241 + 0.590287i
\(779\) 2.06472 + 1.19207i 0.0739764 + 0.0427103i
\(780\) 0 0
\(781\) 1.78310 18.8557i 0.0638042 0.674708i
\(782\) 24.9982i 0.893935i
\(783\) 0 0
\(784\) 4.85898 0.173535
\(785\) −8.72709 + 5.03859i −0.311483 + 0.179835i
\(786\) 0 0
\(787\) 14.6316 + 8.44756i 0.521561 + 0.301123i 0.737573 0.675267i \(-0.235972\pi\)
−0.216012 + 0.976391i \(0.569305\pi\)
\(788\) −11.6064 + 20.1029i −0.413461 + 0.716136i
\(789\) 0 0
\(790\) 1.85001 + 3.20431i 0.0658203 + 0.114004i
\(791\) 20.6601 0.734588
\(792\) 0 0
\(793\) 3.87802 0.137713
\(794\) 3.56688 + 6.17802i 0.126584 + 0.219250i
\(795\) 0 0
\(796\) 2.05232 3.55472i 0.0727425 0.125994i
\(797\) 18.9139 + 10.9200i 0.669966 + 0.386805i 0.796064 0.605213i \(-0.206912\pi\)
−0.126098 + 0.992018i \(0.540245\pi\)
\(798\) 0 0
\(799\) 15.5953 9.00395i 0.551722 0.318537i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 16.8322i 0.594366i
\(803\) −1.15165 + 12.1784i −0.0406410 + 0.429765i
\(804\) 0 0
\(805\) −11.0445 6.37652i −0.389266 0.224743i
\(806\) −0.338754 0.195579i −0.0119321 0.00688899i
\(807\) 0 0
\(808\) 2.62335 + 4.54377i 0.0922891 + 0.159849i
\(809\) −50.4245 −1.77283 −0.886415 0.462892i \(-0.846812\pi\)
−0.886415 + 0.462892i \(0.846812\pi\)
\(810\) 0 0
\(811\) 28.8565i 1.01329i −0.862155 0.506645i \(-0.830886\pi\)
0.862155 0.506645i \(-0.169114\pi\)
\(812\) −12.8502 + 7.41906i −0.450953 + 0.260358i
\(813\) 0 0
\(814\) 11.0981 + 24.2428i 0.388989 + 0.849710i
\(815\) 10.8061 + 6.23893i 0.378523 + 0.218540i
\(816\) 0 0
\(817\) −26.5614 46.0057i −0.929265 1.60953i
\(818\) 4.86660i 0.170157i
\(819\) 0 0
\(820\) 0.371936i 0.0129886i
\(821\) 8.57640 + 14.8548i 0.299319 + 0.518435i 0.975980 0.217859i \(-0.0699073\pi\)
−0.676662 + 0.736294i \(0.736574\pi\)
\(822\) 0 0
\(823\) 9.45293 16.3730i 0.329509 0.570726i −0.652906 0.757439i \(-0.726450\pi\)
0.982414 + 0.186713i \(0.0597836\pi\)
\(824\) 2.93353 5.08102i 0.102194 0.177006i
\(825\) 0 0
\(826\) 3.18188 + 5.51117i 0.110712 + 0.191758i
\(827\) −39.7322 −1.38162 −0.690812 0.723034i \(-0.742747\pi\)
−0.690812 + 0.723034i \(0.742747\pi\)
\(828\) 0 0
\(829\) 13.6747 0.474942 0.237471 0.971395i \(-0.423681\pi\)
0.237471 + 0.971395i \(0.423681\pi\)
\(830\) 11.1976 6.46495i 0.388675 0.224402i
\(831\) 0 0
\(832\) 0.354032 + 0.204400i 0.0122738 + 0.00708630i
\(833\) −6.96821 + 12.0693i −0.241434 + 0.418176i
\(834\) 0 0
\(835\) 9.57893 5.53040i 0.331493 0.191387i
\(836\) 17.3290 + 12.3161i 0.599336 + 0.425960i
\(837\) 0 0
\(838\) 13.8685i 0.479080i
\(839\) −1.79292 + 1.03514i −0.0618984 + 0.0357371i −0.530630 0.847604i \(-0.678045\pi\)
0.468731 + 0.883341i \(0.344711\pi\)
\(840\) 0 0
\(841\) −36.9171 + 63.9424i −1.27300 + 2.20491i
\(842\) −0.496307 + 0.859630i −0.0171039 + 0.0296248i
\(843\) 0 0
\(844\) −17.5793 + 10.1494i −0.605105 + 0.349357i
\(845\) 12.8329i 0.441465i
\(846\) 0 0
\(847\) 15.2006 5.29211i 0.522297 0.181839i
\(848\) 5.65249 3.26347i 0.194107 0.112068i
\(849\) 0 0
\(850\) 1.43409 2.48391i 0.0491888 0.0851975i
\(851\) −60.6787 35.0329i −2.08004 1.20091i
\(852\) 0 0
\(853\) −25.0714 + 14.4750i −0.858429 + 0.495614i −0.863486 0.504373i \(-0.831724\pi\)
0.00505717 + 0.999987i \(0.498390\pi\)
\(854\) −13.8806 −0.474985
\(855\) 0 0
\(856\) −4.60520 −0.157403
\(857\) 16.2842 + 28.2051i 0.556259 + 0.963469i 0.997804 + 0.0662300i \(0.0210971\pi\)
−0.441545 + 0.897239i \(0.645570\pi\)
\(858\) 0 0
\(859\) 18.4352 31.9307i 0.629001 1.08946i −0.358751 0.933433i \(-0.616797\pi\)
0.987752 0.156029i \(-0.0498693\pi\)
\(860\) 4.14369 7.17709i 0.141299 0.244737i
\(861\) 0 0
\(862\) −16.2264 28.1049i −0.552672 0.957256i
\(863\) 4.56993i 0.155562i −0.996970 0.0777810i \(-0.975216\pi\)
0.996970 0.0777810i \(-0.0247835\pi\)
\(864\) 0 0
\(865\) 1.09176i 0.0371211i
\(866\) 10.6428 + 18.4338i 0.361656 + 0.626407i
\(867\) 0 0
\(868\) 1.21250 + 0.700038i 0.0411550 + 0.0237609i
\(869\) 11.1579 5.10799i 0.378507 0.173277i
\(870\) 0 0
\(871\) −0.187754 + 0.108400i −0.00636182 + 0.00367300i
\(872\) 12.7899i 0.433120i
\(873\) 0 0
\(874\) −55.8684 −1.88978
\(875\) 0.731611 + 1.26719i 0.0247330 + 0.0428387i
\(876\) 0 0
\(877\) 17.0398 + 9.83791i 0.575392 + 0.332203i 0.759300 0.650741i \(-0.225542\pi\)
−0.183908 + 0.982943i \(0.558875\pi\)
\(878\) 14.7741 + 8.52982i 0.498601 + 0.287867i
\(879\) 0 0
\(880\) −0.312246 + 3.30189i −0.0105258 + 0.111307i
\(881\) 8.71014i 0.293452i −0.989177 0.146726i \(-0.953126\pi\)
0.989177 0.146726i \(-0.0468736\pi\)
\(882\) 0 0
\(883\) 2.01439 0.0677898 0.0338949 0.999425i \(-0.489209\pi\)
0.0338949 + 0.999425i \(0.489209\pi\)
\(884\) −1.01543 + 0.586256i −0.0341524 + 0.0197179i
\(885\) 0 0
\(886\) −17.7337 10.2385i −0.595774 0.343971i
\(887\) −10.9218 + 18.9171i −0.366718 + 0.635174i −0.989050 0.147579i \(-0.952852\pi\)
0.622332 + 0.782753i \(0.286185\pi\)
\(888\) 0 0
\(889\) 9.96850 + 17.2660i 0.334333 + 0.579081i
\(890\) 7.53973 0.252732
\(891\) 0 0
\(892\) −11.2083 −0.375282
\(893\) 20.1229 + 34.8539i 0.673387 + 1.16634i
\(894\) 0 0
\(895\) 0.691871 1.19836i 0.0231267 0.0400566i
\(896\) −1.26719 0.731611i −0.0423338 0.0244414i
\(897\) 0 0
\(898\) −1.70487 + 0.984309i −0.0568924 + 0.0328468i
\(899\) 9.70310 0.323617
\(900\) 0 0
\(901\) 18.7204i 0.623667i
\(902\) 1.22809 + 0.116135i 0.0408910 + 0.00386689i
\(903\) 0 0
\(904\) 12.2279 + 7.05979i 0.406695 + 0.234805i
\(905\) −6.15114 3.55137i −0.204471 0.118051i
\(906\) 0 0
\(907\) −0.563770 0.976478i −0.0187197 0.0324234i 0.856514 0.516124i \(-0.172626\pi\)
−0.875233 + 0.483701i \(0.839292\pi\)
\(908\) −8.74462 −0.290201
\(909\) 0 0
\(910\) 0.598166i 0.0198290i
\(911\) −24.9307 + 14.3937i −0.825990 + 0.476885i −0.852478 0.522764i \(-0.824901\pi\)
0.0264878 + 0.999649i \(0.491568\pi\)
\(912\) 0 0
\(913\) −17.8502 38.9920i −0.590754 1.29045i
\(914\) 21.4429 + 12.3801i 0.709268 + 0.409496i
\(915\) 0 0
\(916\) −9.66650 16.7429i −0.319390 0.553200i
\(917\) 22.9289i 0.757179i
\(918\) 0 0
\(919\) 32.9443i 1.08673i −0.839496 0.543366i \(-0.817150\pi\)
0.839496 0.543366i \(-0.182850\pi\)
\(920\) −4.35786 7.54804i −0.143674 0.248851i
\(921\) 0 0
\(922\) −9.80315 + 16.9796i −0.322850 + 0.559192i
\(923\) −1.16724 + 2.02172i −0.0384202 + 0.0665457i
\(924\) 0 0
\(925\) 4.01950 + 6.96198i 0.132160 + 0.228909i
\(926\) 1.62446 0.0533832
\(927\) 0 0
\(928\) −10.1407 −0.332886
\(929\) −49.2616 + 28.4412i −1.61622 + 0.933126i −0.628336 + 0.777942i \(0.716264\pi\)
−0.987886 + 0.155184i \(0.950403\pi\)
\(930\) 0 0
\(931\) −26.9736 15.5732i −0.884024 0.510392i
\(932\) −3.70242 + 6.41278i −0.121277 + 0.210058i
\(933\) 0 0
\(934\) −5.28352 + 3.05044i −0.172882 + 0.0998136i
\(935\) −7.75383 5.51080i −0.253577 0.180222i
\(936\) 0 0
\(937\) 17.6228i 0.575713i 0.957674 + 0.287856i \(0.0929426\pi\)
−0.957674 + 0.287856i \(0.907057\pi\)
\(938\) 0.672030 0.387997i 0.0219426 0.0126685i
\(939\) 0 0
\(940\) −3.13926 + 5.43736i −0.102391 + 0.177347i
\(941\) 19.4993 33.7738i 0.635659 1.10099i −0.350716 0.936482i \(-0.614062\pi\)
0.986375 0.164512i \(-0.0526048\pi\)
\(942\) 0 0
\(943\) −2.80739 + 1.62085i −0.0914211 + 0.0527820i
\(944\) 4.34914i 0.141552i
\(945\) 0 0
\(946\) −22.4041 15.9230i −0.728421 0.517703i
\(947\) 7.93143 4.57921i 0.257737 0.148804i −0.365565 0.930786i \(-0.619124\pi\)
0.623302 + 0.781981i \(0.285791\pi\)
\(948\) 0 0
\(949\) 0.753889 1.30577i 0.0244723 0.0423872i
\(950\) 5.55129 + 3.20504i 0.180108 + 0.103985i
\(951\) 0 0
\(952\) 3.63452 2.09839i 0.117795 0.0680092i
\(953\) −48.7898 −1.58046 −0.790229 0.612812i \(-0.790038\pi\)
−0.790229 + 0.612812i \(0.790038\pi\)
\(954\) 0 0
\(955\) −3.89205 −0.125944
\(956\) −10.9305 18.9321i −0.353517 0.612309i
\(957\) 0 0
\(958\) −4.09864 + 7.09906i −0.132421 + 0.229360i
\(959\) −12.5026 + 21.6551i −0.403729 + 0.699279i
\(960\) 0 0
\(961\) 15.0422 + 26.0539i 0.485233 + 0.840448i
\(962\) 3.28635i 0.105956i
\(963\) 0 0
\(964\) 10.2185i 0.329117i
\(965\) 1.12233 + 1.94393i 0.0361289 + 0.0625772i
\(966\) 0 0
\(967\) 0.754349 + 0.435524i 0.0242582 + 0.0140055i 0.512080 0.858938i \(-0.328875\pi\)
−0.487822 + 0.872943i \(0.662208\pi\)
\(968\) 10.8050 + 2.06200i 0.347286 + 0.0662753i
\(969\) 0 0
\(970\) −16.1095 + 9.30082i −0.517244 + 0.298631i
\(971\) 44.1711i 1.41752i −0.705450 0.708760i \(-0.749255\pi\)
0.705450 0.708760i \(-0.250745\pi\)
\(972\) 0 0
\(973\) 1.66275 0.0533055
\(974\) −3.55587 6.15895i −0.113938 0.197346i
\(975\) 0 0
\(976\) −8.21542 4.74317i −0.262969 0.151825i
\(977\) −0.390201 0.225283i −0.0124836 0.00720743i 0.493745 0.869607i \(-0.335628\pi\)
−0.506229 + 0.862399i \(0.668961\pi\)
\(978\) 0 0
\(979\) 2.35425 24.8954i 0.0752421 0.795660i
\(980\) 4.85898i 0.155214i
\(981\) 0 0
\(982\) −15.9917 −0.510315
\(983\) 31.0951 17.9528i 0.991781 0.572605i 0.0859745 0.996297i \(-0.472600\pi\)
0.905806 + 0.423693i \(0.139266\pi\)
\(984\) 0 0
\(985\) 20.1029 + 11.6064i 0.640531 + 0.369811i
\(986\) 14.5427 25.1887i 0.463134 0.802171i
\(987\) 0 0
\(988\) −1.31022 2.26937i −0.0416837 0.0721983i
\(989\) 72.2306 2.29680
\(990\) 0 0
\(991\) 8.10243 0.257382 0.128691 0.991685i \(-0.458922\pi\)
0.128691 + 0.991685i \(0.458922\pi\)
\(992\) 0.478423 + 0.828652i 0.0151899 + 0.0263097i
\(993\) 0 0
\(994\) 4.17791 7.23635i 0.132515 0.229523i
\(995\) −3.55472 2.05232i −0.112692 0.0650629i
\(996\) 0 0
\(997\) 34.1931 19.7414i 1.08291 0.625216i 0.151227 0.988499i \(-0.451678\pi\)
0.931679 + 0.363283i \(0.118344\pi\)
\(998\) 15.5399 0.491906
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2970.2.t.a.2771.17 48
3.2 odd 2 990.2.t.b.131.19 yes 48
9.2 odd 6 2970.2.t.b.791.17 48
9.7 even 3 990.2.t.a.461.19 yes 48
11.10 odd 2 2970.2.t.b.2771.17 48
33.32 even 2 990.2.t.a.131.19 48
99.43 odd 6 990.2.t.b.461.19 yes 48
99.65 even 6 inner 2970.2.t.a.791.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
990.2.t.a.131.19 48 33.32 even 2
990.2.t.a.461.19 yes 48 9.7 even 3
990.2.t.b.131.19 yes 48 3.2 odd 2
990.2.t.b.461.19 yes 48 99.43 odd 6
2970.2.t.a.791.17 48 99.65 even 6 inner
2970.2.t.a.2771.17 48 1.1 even 1 trivial
2970.2.t.b.791.17 48 9.2 odd 6
2970.2.t.b.2771.17 48 11.10 odd 2