Newspace parameters
Level: | \( N \) | \(=\) | \( 29640 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 29640.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(236.676591591\) |
Dimension: | \(11\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) |
|
|
Defining polynomial: |
\( x^{11} - x^{10} - 24x^{9} + 42x^{8} + 144x^{7} - 377x^{6} + 28x^{5} + 456x^{4} - 180x^{3} - 157x^{2} + 61x - 1 \)
|
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \( -1 \) |
\(3\) | \( -1 \) |
\(5\) | \( -1 \) |
\(13\) | \( +1 \) |
\(19\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
Twists of this newform have not been computed.