Defining parameters
Level: | \( N \) | \(=\) | \( 29640 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 29640.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 60 \) | ||
Sturm bound: | \(13440\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(29640))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6752 | 432 | 6320 |
Cusp forms | 6689 | 432 | 6257 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(200\) | \(13\) | \(187\) | \(199\) | \(13\) | \(186\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(220\) | \(12\) | \(208\) | \(218\) | \(12\) | \(206\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(212\) | \(14\) | \(198\) | \(210\) | \(14\) | \(196\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(212\) | \(15\) | \(197\) | \(210\) | \(15\) | \(195\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(213\) | \(15\) | \(198\) | \(211\) | \(15\) | \(196\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(211\) | \(14\) | \(197\) | \(209\) | \(14\) | \(195\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(215\) | \(11\) | \(204\) | \(213\) | \(11\) | \(202\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(205\) | \(14\) | \(191\) | \(203\) | \(14\) | \(189\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(207\) | \(15\) | \(192\) | \(205\) | \(15\) | \(190\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(217\) | \(13\) | \(204\) | \(215\) | \(13\) | \(202\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(209\) | \(11\) | \(198\) | \(207\) | \(11\) | \(196\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(211\) | \(15\) | \(196\) | \(209\) | \(15\) | \(194\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(210\) | \(11\) | \(199\) | \(208\) | \(11\) | \(197\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(210\) | \(15\) | \(195\) | \(208\) | \(15\) | \(193\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(222\) | \(18\) | \(204\) | \(220\) | \(18\) | \(202\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(202\) | \(10\) | \(192\) | \(200\) | \(10\) | \(190\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(-\) | \(214\) | \(11\) | \(203\) | \(212\) | \(11\) | \(201\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(+\) | \(210\) | \(15\) | \(195\) | \(208\) | \(15\) | \(193\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(+\) | \(202\) | \(15\) | \(187\) | \(200\) | \(15\) | \(185\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(-\) | \(218\) | \(13\) | \(205\) | \(216\) | \(13\) | \(203\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(+\) | \(217\) | \(14\) | \(203\) | \(215\) | \(14\) | \(201\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(-\) | \(203\) | \(14\) | \(189\) | \(201\) | \(14\) | \(187\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(-\) | \(215\) | \(13\) | \(202\) | \(213\) | \(13\) | \(200\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(+\) | \(209\) | \(13\) | \(196\) | \(207\) | \(13\) | \(194\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(+\) | \(207\) | \(15\) | \(192\) | \(205\) | \(15\) | \(190\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(-\) | \(213\) | \(14\) | \(199\) | \(211\) | \(14\) | \(197\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(-\) | \(205\) | \(14\) | \(191\) | \(203\) | \(14\) | \(189\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(+\) | \(219\) | \(11\) | \(208\) | \(217\) | \(11\) | \(206\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(-\) | \(220\) | \(14\) | \(206\) | \(218\) | \(14\) | \(204\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(+\) | \(204\) | \(11\) | \(193\) | \(202\) | \(11\) | \(191\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(+\) | \(208\) | \(12\) | \(196\) | \(206\) | \(12\) | \(194\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(-\) | \(212\) | \(17\) | \(195\) | \(210\) | \(17\) | \(193\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(3352\) | \(204\) | \(3148\) | \(3321\) | \(204\) | \(3117\) | \(31\) | \(0\) | \(31\) | |||||||
Minus space | \(-\) | \(3400\) | \(228\) | \(3172\) | \(3368\) | \(228\) | \(3140\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(29640))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 13 | 19 | |||||||
29640.2.a.a | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-q^{5}-4q^{7}+q^{9}-6q^{11}+q^{13}+\cdots\) | |
29640.2.a.b | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-4\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}-4q^{7}+q^{9}-2q^{11}-q^{13}+\cdots\) | |
29640.2.a.c | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-2\) | $+$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}-2q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\) | |
29640.2.a.d | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(-1\) | $+$ | $+$ | $+$ | $-$ | $+$ | \(q-q^{3}-q^{5}-q^{7}+q^{9}-3q^{11}+q^{13}+\cdots\) | |
29640.2.a.e | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(4\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}+4q^{7}+q^{9}-4q^{11}-q^{13}+\cdots\) | |
29640.2.a.f | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(-1\) | \(5\) | $-$ | $+$ | $+$ | $+$ | $-$ | \(q-q^{3}-q^{5}+5q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\) | |
29640.2.a.g | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-4\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\) | |
29640.2.a.h | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(-4\) | $-$ | $+$ | $-$ | $-$ | $+$ | \(q-q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}+q^{13}+\cdots\) | |
29640.2.a.i | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | $-$ | \(q-q^{3}+q^{5}+q^{9}-6q^{11}-q^{13}-q^{15}+\cdots\) | |
29640.2.a.j | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(2\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{3}+q^{5}+2q^{7}+q^{9}-6q^{11}+q^{13}+\cdots\) | |
29640.2.a.k | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(-1\) | \(1\) | \(2\) | $-$ | $+$ | $-$ | $-$ | $-$ | \(q-q^{3}+q^{5}+2q^{7}+q^{9}+q^{13}-q^{15}+\cdots\) | |
29640.2.a.l | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(-4\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{5}-4q^{7}+q^{9}-4q^{11}-q^{13}+\cdots\) | |
29640.2.a.m | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $-$ | \(q+q^{3}-q^{5}+q^{9}-4q^{11}-q^{13}-q^{15}+\cdots\) | |
29640.2.a.n | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $-$ | \(q+q^{3}-q^{5}+q^{9}+q^{13}-q^{15}-2q^{17}+\cdots\) | |
29640.2.a.o | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(-1\) | \(2\) | $-$ | $-$ | $+$ | $+$ | $+$ | \(q+q^{3}-q^{5}+2q^{7}+q^{9}+2q^{11}-q^{13}+\cdots\) | |
29640.2.a.p | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-5\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}-5q^{7}+q^{9}-5q^{11}+q^{13}+\cdots\) | |
29640.2.a.q | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\) | |
29640.2.a.r | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-4\) | $-$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}+q^{13}+\cdots\) | |
29640.2.a.s | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}+q^{5}-2q^{7}+q^{9}-2q^{11}-q^{13}+\cdots\) | |
29640.2.a.t | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | $+$ | \(q+q^{3}+q^{5}-2q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\) | |
29640.2.a.u | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+q^{5}+q^{9}-4q^{11}-q^{13}+q^{15}+\cdots\) | |
29640.2.a.v | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | $-$ | \(q+q^{3}+q^{5}+q^{9}+4q^{11}+q^{13}+q^{15}+\cdots\) | |
29640.2.a.w | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $-$ | $+$ | \(q+q^{3}+q^{5}+4q^{7}+q^{9}-5q^{11}+q^{13}+\cdots\) | |
29640.2.a.x | $1$ | $236.677$ | \(\Q\) | None | \(0\) | \(1\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $+$ | $-$ | \(q+q^{3}+q^{5}+4q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\) | |
29640.2.a.y | $2$ | $236.677$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-2\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
29640.2.a.z | $2$ | $236.677$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
29640.2.a.ba | $2$ | $236.677$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(2\) | \(-2\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
29640.2.a.bb | $3$ | $236.677$ | 3.3.568.1 | None | \(0\) | \(3\) | \(3\) | \(0\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
29640.2.a.bc | $9$ | $236.677$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(9\) | \(3\) | $+$ | $-$ | $-$ | $+$ | $-$ | ||
29640.2.a.bd | $9$ | $236.677$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(0\) | \(9\) | \(9\) | \(4\) | $+$ | $-$ | $-$ | $+$ | $+$ | ||
29640.2.a.be | $10$ | $236.677$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-10\) | \(-10\) | \(10\) | $+$ | $+$ | $+$ | $+$ | $-$ | ||
29640.2.a.bf | $10$ | $236.677$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(-10\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | $-$ | ||
29640.2.a.bg | $10$ | $236.677$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(10\) | \(10\) | \(-3\) | $+$ | $-$ | $-$ | $-$ | $-$ | ||
29640.2.a.bh | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(-11\) | \(-11\) | \(-2\) | $-$ | $+$ | $+$ | $+$ | $+$ | ||
29640.2.a.bi | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(-11\) | \(11\) | \(-8\) | $-$ | $+$ | $-$ | $-$ | $-$ | ||
29640.2.a.bj | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(-11\) | \(11\) | \(4\) | $+$ | $+$ | $-$ | $-$ | $+$ | ||
29640.2.a.bk | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(11\) | \(-11\) | \(-3\) | $+$ | $-$ | $+$ | $-$ | $+$ | ||
29640.2.a.bl | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(11\) | \(-11\) | \(2\) | $-$ | $-$ | $+$ | $+$ | $+$ | ||
29640.2.a.bm | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(11\) | \(11\) | \(-5\) | $-$ | $-$ | $-$ | $-$ | $+$ | ||
29640.2.a.bn | $11$ | $236.677$ | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(0\) | \(11\) | \(11\) | \(-4\) | $-$ | $-$ | $-$ | $+$ | $-$ | ||
29640.2.a.bo | $12$ | $236.677$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-12\) | \(-12\) | \(6\) | $+$ | $+$ | $+$ | $-$ | $+$ | ||
29640.2.a.bp | $12$ | $236.677$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-12\) | \(12\) | \(7\) | $+$ | $+$ | $-$ | $+$ | $-$ | ||
29640.2.a.bq | $12$ | $236.677$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-12\) | \(12\) | \(11\) | $-$ | $+$ | $-$ | $-$ | $+$ | ||
29640.2.a.br | $12$ | $236.677$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(12\) | \(-12\) | \(0\) | $-$ | $-$ | $+$ | $-$ | $+$ | ||
29640.2.a.bs | $13$ | $236.677$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-13\) | \(-13\) | \(-7\) | $+$ | $+$ | $+$ | $+$ | $+$ | ||
29640.2.a.bt | $13$ | $236.677$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-13\) | \(-13\) | \(-4\) | $-$ | $+$ | $+$ | $+$ | $-$ | ||
29640.2.a.bu | $13$ | $236.677$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-13\) | \(-13\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | $-$ | ||
29640.2.a.bv | $13$ | $236.677$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-13\) | \(-13\) | \(2\) | $-$ | $+$ | $+$ | $-$ | $+$ | ||
29640.2.a.bw | $13$ | $236.677$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(13\) | \(-13\) | \(-10\) | $+$ | $-$ | $+$ | $+$ | $-$ | ||
29640.2.a.bx | $13$ | $236.677$ | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(13\) | \(-13\) | \(1\) | $-$ | $-$ | $+$ | $+$ | $-$ | ||
29640.2.a.by | $14$ | $236.677$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-14\) | \(14\) | \(-3\) | $-$ | $+$ | $-$ | $+$ | $+$ | ||
29640.2.a.bz | $14$ | $236.677$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-14\) | \(14\) | \(-3\) | $+$ | $+$ | $-$ | $-$ | $-$ | ||
29640.2.a.ca | $14$ | $236.677$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(-14\) | \(14\) | \(-2\) | $-$ | $+$ | $-$ | $+$ | $-$ | ||
29640.2.a.cb | $14$ | $236.677$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(0\) | \(14\) | \(14\) | \(5\) | $-$ | $-$ | $-$ | $+$ | $+$ | ||
29640.2.a.cc | $15$ | $236.677$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-15\) | \(-15\) | \(0\) | $+$ | $+$ | $+$ | $-$ | $-$ | ||
29640.2.a.cd | $15$ | $236.677$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(-15\) | \(15\) | \(-2\) | $+$ | $+$ | $-$ | $+$ | $+$ | ||
29640.2.a.ce | $15$ | $236.677$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(15\) | \(-15\) | \(6\) | $+$ | $-$ | $+$ | $-$ | $-$ | ||
29640.2.a.cf | $15$ | $236.677$ | \(\mathbb{Q}[x]/(x^{15} - \cdots)\) | None | \(0\) | \(15\) | \(-15\) | \(9\) | $+$ | $-$ | $+$ | $+$ | $+$ | ||
29640.2.a.cg | $16$ | $236.677$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(16\) | \(16\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | $+$ | ||
29640.2.a.ch | $16$ | $236.677$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(16\) | \(16\) | \(10\) | $-$ | $-$ | $-$ | $-$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(29640))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(29640)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(247))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(380))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(456))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(494))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(570))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(741))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(760))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(988))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1235))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1482))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1976))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2470))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2964))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3705))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4940))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5928))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7410))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(9880))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14820))\)\(^{\oplus 2}\)