Properties

Label 29640.2.a
Level $29640$
Weight $2$
Character orbit 29640.a
Rep. character $\chi_{29640}(1,\cdot)$
Character field $\Q$
Dimension $432$
Newform subspaces $60$
Sturm bound $13440$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 29640 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 29640.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 60 \)
Sturm bound: \(13440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(29640))\).

Total New Old
Modular forms 6752 432 6320
Cusp forms 6689 432 6257
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(13\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(+\)\(200\)\(13\)\(187\)\(199\)\(13\)\(186\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(+\)\(-\)\(-\)\(220\)\(12\)\(208\)\(218\)\(12\)\(206\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(+\)\(-\)\(212\)\(14\)\(198\)\(210\)\(14\)\(196\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(+\)\(212\)\(15\)\(197\)\(210\)\(15\)\(195\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(+\)\(-\)\(213\)\(15\)\(198\)\(211\)\(15\)\(196\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(+\)\(211\)\(14\)\(197\)\(209\)\(14\)\(195\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(+\)\(215\)\(11\)\(204\)\(213\)\(11\)\(202\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(-\)\(-\)\(205\)\(14\)\(191\)\(203\)\(14\)\(189\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(+\)\(-\)\(207\)\(15\)\(192\)\(205\)\(15\)\(190\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(+\)\(217\)\(13\)\(204\)\(215\)\(13\)\(202\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(+\)\(209\)\(11\)\(198\)\(207\)\(11\)\(196\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(-\)\(-\)\(211\)\(15\)\(196\)\(209\)\(15\)\(194\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(+\)\(210\)\(11\)\(199\)\(208\)\(11\)\(197\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(-\)\(-\)\(210\)\(15\)\(195\)\(208\)\(15\)\(193\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(+\)\(-\)\(222\)\(18\)\(204\)\(220\)\(18\)\(202\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(+\)\(202\)\(10\)\(192\)\(200\)\(10\)\(190\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(+\)\(-\)\(214\)\(11\)\(203\)\(212\)\(11\)\(201\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(+\)\(210\)\(15\)\(195\)\(208\)\(15\)\(193\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(+\)\(202\)\(15\)\(187\)\(200\)\(15\)\(185\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(-\)\(-\)\(218\)\(13\)\(205\)\(216\)\(13\)\(203\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(+\)\(217\)\(14\)\(203\)\(215\)\(14\)\(201\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(-\)\(-\)\(203\)\(14\)\(189\)\(201\)\(14\)\(187\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(+\)\(-\)\(215\)\(13\)\(202\)\(213\)\(13\)\(200\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(+\)\(209\)\(13\)\(196\)\(207\)\(13\)\(194\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(+\)\(207\)\(15\)\(192\)\(205\)\(15\)\(190\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(-\)\(-\)\(213\)\(14\)\(199\)\(211\)\(14\)\(197\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(+\)\(-\)\(205\)\(14\)\(191\)\(203\)\(14\)\(189\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(+\)\(219\)\(11\)\(208\)\(217\)\(11\)\(206\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(+\)\(-\)\(220\)\(14\)\(206\)\(218\)\(14\)\(204\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(+\)\(204\)\(11\)\(193\)\(202\)\(11\)\(191\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(+\)\(208\)\(12\)\(196\)\(206\)\(12\)\(194\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(-\)\(-\)\(212\)\(17\)\(195\)\(210\)\(17\)\(193\)\(2\)\(0\)\(2\)
Plus space\(+\)\(3352\)\(204\)\(3148\)\(3321\)\(204\)\(3117\)\(31\)\(0\)\(31\)
Minus space\(-\)\(3400\)\(228\)\(3172\)\(3368\)\(228\)\(3140\)\(32\)\(0\)\(32\)

Trace form

\( 432 q + 432 q^{9} + 432 q^{25} + 432 q^{49} - 8 q^{57} - 32 q^{59} - 16 q^{61} - 32 q^{67} - 48 q^{73} - 64 q^{77} + 432 q^{81} - 32 q^{83} - 16 q^{85} - 96 q^{89} - 32 q^{93} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(29640))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 13 19
29640.2.a.a 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.a \(0\) \(-1\) \(-1\) \(-4\) $+$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-4q^{7}+q^{9}-6q^{11}+q^{13}+\cdots\)
29640.2.a.b 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.b \(0\) \(-1\) \(-1\) \(-4\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-4q^{7}+q^{9}-2q^{11}-q^{13}+\cdots\)
29640.2.a.c 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.c \(0\) \(-1\) \(-1\) \(-2\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
29640.2.a.d 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.d \(0\) \(-1\) \(-1\) \(-1\) $+$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-q^{7}+q^{9}-3q^{11}+q^{13}+\cdots\)
29640.2.a.e 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.e \(0\) \(-1\) \(-1\) \(4\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+4q^{7}+q^{9}-4q^{11}-q^{13}+\cdots\)
29640.2.a.f 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.f \(0\) \(-1\) \(-1\) \(5\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+5q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\)
29640.2.a.g 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.g \(0\) \(-1\) \(1\) \(-4\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
29640.2.a.h 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.h \(0\) \(-1\) \(1\) \(-4\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}+q^{13}+\cdots\)
29640.2.a.i 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.i \(0\) \(-1\) \(1\) \(0\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+q^{9}-6q^{11}-q^{13}-q^{15}+\cdots\)
29640.2.a.j 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.j \(0\) \(-1\) \(1\) \(2\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+2q^{7}+q^{9}-6q^{11}+q^{13}+\cdots\)
29640.2.a.k 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.k \(0\) \(-1\) \(1\) \(2\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+2q^{7}+q^{9}+q^{13}-q^{15}+\cdots\)
29640.2.a.l 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.l \(0\) \(1\) \(-1\) \(-4\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-4q^{7}+q^{9}-4q^{11}-q^{13}+\cdots\)
29640.2.a.m 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.m \(0\) \(1\) \(-1\) \(0\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{9}-4q^{11}-q^{13}-q^{15}+\cdots\)
29640.2.a.n 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.n \(0\) \(1\) \(-1\) \(0\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+q^{9}+q^{13}-q^{15}-2q^{17}+\cdots\)
29640.2.a.o 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.o \(0\) \(1\) \(-1\) \(2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+2q^{7}+q^{9}+2q^{11}-q^{13}+\cdots\)
29640.2.a.p 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.p \(0\) \(1\) \(1\) \(-5\) $+$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-5q^{7}+q^{9}-5q^{11}+q^{13}+\cdots\)
29640.2.a.q 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.q \(0\) \(1\) \(1\) \(-4\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
29640.2.a.r 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.r \(0\) \(1\) \(1\) \(-4\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-4q^{7}+q^{9}+4q^{11}+q^{13}+\cdots\)
29640.2.a.s 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.s \(0\) \(1\) \(1\) \(-2\) $+$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}+q^{9}-2q^{11}-q^{13}+\cdots\)
29640.2.a.t 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.t \(0\) \(1\) \(1\) \(-2\) $+$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}+q^{9}+4q^{11}-q^{13}+\cdots\)
29640.2.a.u 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.u \(0\) \(1\) \(1\) \(0\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{9}-4q^{11}-q^{13}+q^{15}+\cdots\)
29640.2.a.v 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.v \(0\) \(1\) \(1\) \(0\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+q^{9}+4q^{11}+q^{13}+q^{15}+\cdots\)
29640.2.a.w 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.w \(0\) \(1\) \(1\) \(4\) $+$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+4q^{7}+q^{9}-5q^{11}+q^{13}+\cdots\)
29640.2.a.x 29640.a 1.a $1$ $236.677$ \(\Q\) None 29640.2.a.x \(0\) \(1\) \(1\) \(4\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}+4q^{7}+q^{9}+3q^{11}-q^{13}+\cdots\)
29640.2.a.y 29640.a 1.a $2$ $236.677$ \(\Q(\sqrt{17}) \) None 29640.2.a.y \(0\) \(-2\) \(-2\) \(0\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.z 29640.a 1.a $2$ $236.677$ \(\Q(\sqrt{5}) \) None 29640.2.a.z \(0\) \(2\) \(-2\) \(0\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.ba 29640.a 1.a $2$ $236.677$ \(\Q(\sqrt{17}) \) None 29640.2.a.ba \(0\) \(2\) \(-2\) \(0\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bb 29640.a 1.a $3$ $236.677$ 3.3.568.1 None 29640.2.a.bb \(0\) \(3\) \(3\) \(0\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bc 29640.a 1.a $9$ $236.677$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 29640.2.a.bc \(0\) \(9\) \(9\) \(3\) $+$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bd 29640.a 1.a $9$ $236.677$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 29640.2.a.bd \(0\) \(9\) \(9\) \(4\) $+$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.be 29640.a 1.a $10$ $236.677$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 29640.2.a.be \(0\) \(-10\) \(-10\) \(10\) $+$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bf 29640.a 1.a $10$ $236.677$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 29640.2.a.bf \(0\) \(10\) \(-10\) \(-3\) $-$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.bg 29640.a 1.a $10$ $236.677$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 29640.2.a.bg \(0\) \(10\) \(10\) \(-3\) $+$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.bh 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bh \(0\) \(-11\) \(-11\) \(-2\) $-$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.bi 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bi \(0\) \(-11\) \(11\) \(-8\) $-$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.bj 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bj \(0\) \(-11\) \(11\) \(4\) $+$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bk 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bk \(0\) \(11\) \(-11\) \(-3\) $+$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bl 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bl \(0\) \(11\) \(-11\) \(2\) $-$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.bm 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bm \(0\) \(11\) \(11\) \(-5\) $-$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bn 29640.a 1.a $11$ $236.677$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 29640.2.a.bn \(0\) \(11\) \(11\) \(-4\) $-$ $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bo 29640.a 1.a $12$ $236.677$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 29640.2.a.bo \(0\) \(-12\) \(-12\) \(6\) $+$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bp 29640.a 1.a $12$ $236.677$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 29640.2.a.bp \(0\) \(-12\) \(12\) \(7\) $+$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bq 29640.a 1.a $12$ $236.677$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 29640.2.a.bq \(0\) \(-12\) \(12\) \(11\) $-$ $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.br 29640.a 1.a $12$ $236.677$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 29640.2.a.br \(0\) \(12\) \(-12\) \(0\) $-$ $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bs 29640.a 1.a $13$ $236.677$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 29640.2.a.bs \(0\) \(-13\) \(-13\) \(-7\) $+$ $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.bt 29640.a 1.a $13$ $236.677$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 29640.2.a.bt \(0\) \(-13\) \(-13\) \(-4\) $-$ $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bu 29640.a 1.a $13$ $236.677$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 29640.2.a.bu \(0\) \(-13\) \(-13\) \(-3\) $-$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.bv 29640.a 1.a $13$ $236.677$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 29640.2.a.bv \(0\) \(-13\) \(-13\) \(2\) $-$ $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.bw 29640.a 1.a $13$ $236.677$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 29640.2.a.bw \(0\) \(13\) \(-13\) \(-10\) $+$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.bx 29640.a 1.a $13$ $236.677$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None 29640.2.a.bx \(0\) \(13\) \(-13\) \(1\) $-$ $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.by 29640.a 1.a $14$ $236.677$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 29640.2.a.by \(0\) \(-14\) \(14\) \(-3\) $-$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.bz 29640.a 1.a $14$ $236.677$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 29640.2.a.bz \(0\) \(-14\) \(14\) \(-3\) $+$ $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.ca 29640.a 1.a $14$ $236.677$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 29640.2.a.ca \(0\) \(-14\) \(14\) \(-2\) $-$ $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$
29640.2.a.cb 29640.a 1.a $14$ $236.677$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 29640.2.a.cb \(0\) \(14\) \(14\) \(5\) $-$ $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.cc 29640.a 1.a $15$ $236.677$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 29640.2.a.cc \(0\) \(-15\) \(-15\) \(0\) $+$ $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.cd 29640.a 1.a $15$ $236.677$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 29640.2.a.cd \(0\) \(-15\) \(15\) \(-2\) $+$ $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.ce 29640.a 1.a $15$ $236.677$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 29640.2.a.ce \(0\) \(15\) \(-15\) \(6\) $+$ $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$
29640.2.a.cf 29640.a 1.a $15$ $236.677$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 29640.2.a.cf \(0\) \(15\) \(-15\) \(9\) $+$ $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$
29640.2.a.cg 29640.a 1.a $16$ $236.677$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 29640.2.a.cg \(0\) \(16\) \(16\) \(-1\) $+$ $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$
29640.2.a.ch 29640.a 1.a $16$ $236.677$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 29640.2.a.ch \(0\) \(16\) \(16\) \(10\) $-$ $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(29640))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(29640)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(228))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(247))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(380))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(456))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(494))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(570))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(741))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(760))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(988))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1140))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1235))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1482))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1976))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2280))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2470))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2964))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3705))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4940))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5928))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(7410))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(9880))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14820))\)\(^{\oplus 2}\)