Properties

Label 2960.2.a.x
Level $2960$
Weight $2$
Character orbit 2960.a
Self dual yes
Analytic conductor $23.636$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2960,2,Mod(1,2960)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2960, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2960.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2960 = 2^{4} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2960.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,0,-5,0,2,0,6,0,-8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.6357189983\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.998068.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 10x^{2} + 3x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1480)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{3} - q^{5} + \beta_{2} q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 2) q^{9} + (\beta_1 - 2) q^{11} + (\beta_{4} - \beta_{3} - 1) q^{13} + \beta_{4} q^{15} + (2 \beta_{4} - \beta_{3} + \beta_{2} - 1) q^{17}+ \cdots + (3 \beta_{4} - 2 \beta_{3} + 3 \beta_{2} + \cdots - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} - 5 q^{5} + 2 q^{7} + 6 q^{9} - 8 q^{11} - 4 q^{13} + q^{15} - q^{17} - 10 q^{19} + 5 q^{21} - 4 q^{23} + 5 q^{25} - q^{27} + 11 q^{29} + 3 q^{31} - 3 q^{33} - 2 q^{35} - 5 q^{37} - 18 q^{39}+ \cdots - 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 6x^{3} + 10x^{2} + 3x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{4} - \nu^{3} - 5\nu^{2} + 3\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 3\nu^{3} + 5\nu^{2} - 13\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - \nu^{3} - 7\nu^{2} + 7\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - \nu^{3} - 7\nu^{2} + 3\nu + 6 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{4} + \beta_{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{4} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{4} + 5\beta_{3} + 2\beta_{2} + 2\beta _1 + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{4} + \beta_{3} + \beta_{2} + 8\beta _1 + 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.350931
−0.537811
−2.26473
2.75031
1.70130
0 −3.08134 0 −1.00000 0 −1.91593 0 6.49464 0
1.2 0 −1.30055 0 −1.00000 0 3.94371 0 −1.30857 0
1.3 0 −0.612608 0 −1.00000 0 −3.03374 0 −2.62471 0
1.4 0 1.14266 0 −1.00000 0 3.63076 0 −1.69433 0
1.5 0 2.85184 0 −1.00000 0 −0.624804 0 5.13298 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2960.2.a.x 5
4.b odd 2 1 1480.2.a.j 5
20.d odd 2 1 7400.2.a.o 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1480.2.a.j 5 4.b odd 2 1
2960.2.a.x 5 1.a even 1 1 trivial
7400.2.a.o 5 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2960))\):

\( T_{3}^{5} + T_{3}^{4} - 10T_{3}^{3} - 8T_{3}^{2} + 12T_{3} + 8 \) Copy content Toggle raw display
\( T_{7}^{5} - 2T_{7}^{4} - 19T_{7}^{3} + 16T_{7}^{2} + 100T_{7} + 52 \) Copy content Toggle raw display
\( T_{13}^{5} + 4T_{13}^{4} - 24T_{13}^{3} - 80T_{13}^{2} + 48T_{13} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + T^{4} - 10 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( (T + 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 2 T^{4} + \cdots + 52 \) Copy content Toggle raw display
$11$ \( T^{5} + 8 T^{4} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{5} + 4 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$17$ \( T^{5} + T^{4} + \cdots - 128 \) Copy content Toggle raw display
$19$ \( T^{5} + 10 T^{4} + \cdots + 32 \) Copy content Toggle raw display
$23$ \( T^{5} + 4 T^{4} + \cdots + 256 \) Copy content Toggle raw display
$29$ \( T^{5} - 11 T^{4} + \cdots - 208 \) Copy content Toggle raw display
$31$ \( T^{5} - 3 T^{4} + \cdots - 4736 \) Copy content Toggle raw display
$37$ \( (T + 1)^{5} \) Copy content Toggle raw display
$41$ \( T^{5} - 16 T^{4} + \cdots - 19016 \) Copy content Toggle raw display
$43$ \( T^{5} + 31 T^{4} + \cdots - 20992 \) Copy content Toggle raw display
$47$ \( T^{5} + 5 T^{4} + \cdots + 24944 \) Copy content Toggle raw display
$53$ \( T^{5} - 8 T^{4} + \cdots - 8104 \) Copy content Toggle raw display
$59$ \( T^{5} + 24 T^{4} + \cdots + 128 \) Copy content Toggle raw display
$61$ \( T^{5} + 15 T^{4} + \cdots - 12608 \) Copy content Toggle raw display
$67$ \( T^{5} + 12 T^{4} + \cdots - 19072 \) Copy content Toggle raw display
$71$ \( T^{5} + 5 T^{4} + \cdots - 1024 \) Copy content Toggle raw display
$73$ \( T^{5} - 5 T^{4} + \cdots - 3616 \) Copy content Toggle raw display
$79$ \( T^{5} + 4 T^{4} + \cdots + 512 \) Copy content Toggle raw display
$83$ \( T^{5} + 27 T^{4} + \cdots - 60976 \) Copy content Toggle raw display
$89$ \( T^{5} - 16 T^{4} + \cdots + 9536 \) Copy content Toggle raw display
$97$ \( T^{5} + 19 T^{4} + \cdots + 32 \) Copy content Toggle raw display
show more
show less