Newspace parameters
Level: | \( N \) | \(=\) | \( 296 = 2^{3} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 296.bj (of order \(36\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.36357189983\) |
Analytic rank: | \(0\) |
Dimension: | \(432\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −1.41357 | + | 0.0427573i | −1.57411 | − | 1.87595i | 1.99634 | − | 0.120881i | −0.992822 | + | 0.462961i | 2.30532 | + | 2.58448i | 1.70316 | − | 4.67940i | −2.81680 | + | 0.256231i | −0.520428 | + | 2.95149i | 1.38363 | − | 0.696876i |
19.2 | −1.40393 | − | 0.170250i | 0.454193 | + | 0.541286i | 1.94203 | + | 0.478039i | 2.89649 | − | 1.35066i | −0.545500 | − | 0.837254i | 0.668851 | − | 1.83765i | −2.64508 | − | 1.00176i | 0.434245 | − | 2.46273i | −4.29642 | + | 1.40310i |
19.3 | −1.39952 | + | 0.203356i | −1.57411 | − | 1.87595i | 1.91729 | − | 0.569199i | 0.992822 | − | 0.462961i | 2.58448 | + | 2.30532i | −1.70316 | + | 4.67940i | −2.56753 | + | 1.18650i | −0.520428 | + | 2.95149i | −1.29533 | + | 0.849817i |
19.4 | −1.35304 | + | 0.411453i | 0.454193 | + | 0.541286i | 1.66141 | − | 1.11342i | −2.89649 | + | 1.35066i | −0.837254 | − | 0.545500i | −0.668851 | + | 1.83765i | −1.78983 | + | 2.19009i | 0.434245 | − | 2.46273i | 3.36333 | − | 3.01926i |
19.5 | −1.30146 | − | 0.553347i | 1.55564 | + | 1.85393i | 1.38761 | + | 1.44032i | −0.370035 | + | 0.172550i | −0.998734 | − | 3.27363i | −0.963572 | + | 2.64739i | −1.00893 | − | 2.64236i | −0.496126 | + | 2.81367i | 0.577067 | − | 0.0198100i |
19.6 | −1.26092 | − | 0.640372i | −0.0222193 | − | 0.0264799i | 1.17985 | + | 1.61492i | −1.94098 | + | 0.905095i | 0.0110598 | + | 0.0476177i | 0.153626 | − | 0.422084i | −0.453549 | − | 2.79183i | 0.520737 | − | 2.95325i | 3.02702 | + | 0.101696i |
19.7 | −1.18560 | + | 0.770937i | 1.55564 | + | 1.85393i | 0.811312 | − | 1.82805i | 0.370035 | − | 0.172550i | −3.27363 | − | 0.998734i | 0.963572 | − | 2.64739i | 0.447418 | + | 2.79282i | −0.496126 | + | 2.81367i | −0.305689 | + | 0.489849i |
19.8 | −1.13057 | + | 0.849600i | −0.0222193 | − | 0.0264799i | 0.556360 | − | 1.92106i | 1.94098 | − | 0.905095i | 0.0476177 | + | 0.0110598i | −0.153626 | + | 0.422084i | 1.00313 | + | 2.64457i | 0.520737 | − | 2.95325i | −1.42544 | + | 2.67233i |
19.9 | −0.909329 | − | 1.08311i | −1.09340 | − | 1.30306i | −0.346241 | + | 1.96980i | 3.31963 | − | 1.54797i | −0.417097 | + | 2.36919i | −0.0461237 | + | 0.126724i | 2.44835 | − | 1.41618i | 0.0184929 | − | 0.104878i | −4.69526 | − | 2.18790i |
19.10 | −0.766172 | − | 1.18869i | 1.64673 | + | 1.96249i | −0.825961 | + | 1.82148i | 1.88463 | − | 0.878817i | 1.07112 | − | 3.46105i | 0.782841 | − | 2.15084i | 2.79800 | − | 0.413756i | −0.618722 | + | 3.50895i | −2.48859 | − | 1.56691i |
19.11 | −0.741052 | − | 1.20451i | −1.99237 | − | 2.37441i | −0.901683 | + | 1.78521i | −1.81016 | + | 0.844089i | −1.38355 | + | 4.15938i | −0.0212805 | + | 0.0584676i | 2.81849 | − | 0.236847i | −1.14735 | + | 6.50696i | 2.35813 | + | 1.55483i |
19.12 | −0.707435 | + | 1.22456i | −1.09340 | − | 1.30306i | −0.999072 | − | 1.73259i | −3.31963 | + | 1.54797i | 2.36919 | − | 0.417097i | 0.0461237 | − | 0.126724i | 2.82843 | + | 0.00227264i | 0.0184929 | − | 0.104878i | 0.452848 | − | 5.16016i |
19.13 | −0.625887 | − | 1.26817i | 0.394884 | + | 0.470604i | −1.21653 | + | 1.58747i | −2.94726 | + | 1.37433i | 0.349655 | − | 0.795327i | 1.11776 | − | 3.07102i | 2.77460 | + | 0.549195i | 0.455409 | − | 2.58276i | 3.58755 | + | 2.87746i |
19.14 | −0.548118 | + | 1.30367i | 1.64673 | + | 1.96249i | −1.39913 | − | 1.42914i | −1.88463 | + | 0.878817i | −3.46105 | + | 1.07112i | −0.782841 | + | 2.15084i | 2.63002 | − | 1.04068i | −0.618722 | + | 3.50895i | −0.112691 | − | 2.93864i |
19.15 | −0.520633 | + | 1.31489i | −1.99237 | − | 2.37441i | −1.45788 | − | 1.36915i | 1.81016 | − | 0.844089i | 4.15938 | − | 1.38355i | 0.0212805 | − | 0.0584676i | 2.55931 | − | 1.20413i | −1.14735 | + | 6.50696i | 0.167459 | + | 2.81962i |
19.16 | −0.396163 | + | 1.35759i | 0.394884 | + | 0.470604i | −1.68611 | − | 1.07565i | 2.94726 | − | 1.37433i | −0.795327 | + | 0.349655i | −1.11776 | + | 3.07102i | 2.12827 | − | 1.86291i | 0.455409 | − | 2.58276i | 0.698185 | + | 4.54564i |
19.17 | −0.203547 | − | 1.39949i | −0.111309 | − | 0.132653i | −1.91714 | + | 0.569723i | −1.52536 | + | 0.711286i | −0.162990 | + | 0.182777i | −1.41720 | + | 3.89371i | 1.18755 | + | 2.56705i | 0.515737 | − | 2.92489i | 1.30592 | + | 1.98994i |
19.18 | 0.0425643 | + | 1.41357i | −0.111309 | − | 0.132653i | −1.99638 | + | 0.120336i | 1.52536 | − | 0.711286i | 0.182777 | − | 0.162990i | 1.41720 | − | 3.89371i | −0.255078 | − | 2.81690i | 0.515737 | − | 2.92489i | 1.07038 | + | 2.12593i |
19.19 | 0.0503325 | − | 1.41332i | −0.664239 | − | 0.791609i | −1.99493 | − | 0.142272i | 1.97716 | − | 0.921964i | −1.15223 | + | 0.898937i | 0.455696 | − | 1.25201i | −0.301485 | + | 2.81231i | 0.335513 | − | 1.90279i | −1.20351 | − | 2.84076i |
19.20 | 0.0962239 | − | 1.41094i | 2.07362 | + | 2.47124i | −1.98148 | − | 0.271532i | −2.60899 | + | 1.21659i | 3.68629 | − | 2.68795i | −0.605843 | + | 1.66454i | −0.573780 | + | 2.76962i | −1.28620 | + | 7.29438i | 1.46549 | + | 3.79819i |
See next 80 embeddings (of 432 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
37.i | odd | 36 | 1 | inner |
296.bj | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 296.2.bj.a | ✓ | 432 |
8.d | odd | 2 | 1 | inner | 296.2.bj.a | ✓ | 432 |
37.i | odd | 36 | 1 | inner | 296.2.bj.a | ✓ | 432 |
296.bj | even | 36 | 1 | inner | 296.2.bj.a | ✓ | 432 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
296.2.bj.a | ✓ | 432 | 1.a | even | 1 | 1 | trivial |
296.2.bj.a | ✓ | 432 | 8.d | odd | 2 | 1 | inner |
296.2.bj.a | ✓ | 432 | 37.i | odd | 36 | 1 | inner |
296.2.bj.a | ✓ | 432 | 296.bj | even | 36 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(296, [\chi])\).