Properties

Label 2952.2.j.c.2377.5
Level $2952$
Weight $2$
Character 2952.2377
Analytic conductor $23.572$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2952,2,Mod(2377,2952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2952.2377"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2952 = 2^{3} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2952.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.5718386767\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1229312.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 10x^{4} + 24x^{2} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 328)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2377.5
Root \(2.54832i\) of defining polynomial
Character \(\chi\) \(=\) 2952.2377
Dual form 2952.2.j.c.2377.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.60388 q^{5} -4.31182i q^{7} -2.04360i q^{11} -6.35542i q^{13} +5.65685i q^{17} +0.784829i q^{19} +4.98792 q^{23} +7.98792 q^{25} +0.698564i q^{29} +4.98792 q^{31} -15.5393i q^{35} -3.60388 q^{37} +(0.780167 + 6.35542i) q^{41} -8.98792 q^{43} -4.62271i q^{47} -11.5918 q^{49} -1.81897i q^{53} -7.36487i q^{55} -5.42758 q^{59} +11.4276 q^{61} -22.9041i q^{65} -10.6672i q^{67} -12.7971i q^{71} -2.61596 q^{73} -8.81163 q^{77} +4.62271i q^{79} -0.439665 q^{83} +20.3866i q^{85} +13.3326i q^{89} -27.4034 q^{91} +2.82843i q^{95} +9.57152i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{5} - 8 q^{23} + 10 q^{25} - 8 q^{31} - 4 q^{37} + 2 q^{41} - 16 q^{43} - 14 q^{49} + 36 q^{61} - 36 q^{73} - 8 q^{83} - 56 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2952\mathbb{Z}\right)^\times\).

\(n\) \(1441\) \(1477\) \(2215\) \(2297\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.60388 1.61170 0.805851 0.592118i \(-0.201708\pi\)
0.805851 + 0.592118i \(0.201708\pi\)
\(6\) 0 0
\(7\) 4.31182i 1.62971i −0.579661 0.814857i \(-0.696815\pi\)
0.579661 0.814857i \(-0.303185\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.04360i 0.616168i −0.951359 0.308084i \(-0.900312\pi\)
0.951359 0.308084i \(-0.0996878\pi\)
\(12\) 0 0
\(13\) 6.35542i 1.76268i −0.472486 0.881338i \(-0.656643\pi\)
0.472486 0.881338i \(-0.343357\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.65685i 1.37199i 0.727607 + 0.685994i \(0.240633\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 0.784829i 0.180052i 0.995939 + 0.0900261i \(0.0286950\pi\)
−0.995939 + 0.0900261i \(0.971305\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.98792 1.04005 0.520026 0.854150i \(-0.325922\pi\)
0.520026 + 0.854150i \(0.325922\pi\)
\(24\) 0 0
\(25\) 7.98792 1.59758
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.698564i 0.129720i 0.997894 + 0.0648600i \(0.0206601\pi\)
−0.997894 + 0.0648600i \(0.979340\pi\)
\(30\) 0 0
\(31\) 4.98792 0.895857 0.447928 0.894069i \(-0.352162\pi\)
0.447928 + 0.894069i \(0.352162\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 15.5393i 2.62661i
\(36\) 0 0
\(37\) −3.60388 −0.592473 −0.296237 0.955115i \(-0.595732\pi\)
−0.296237 + 0.955115i \(0.595732\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.780167 + 6.35542i 0.121842 + 0.992550i
\(42\) 0 0
\(43\) −8.98792 −1.37064 −0.685322 0.728240i \(-0.740339\pi\)
−0.685322 + 0.728240i \(0.740339\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.62271i 0.674292i −0.941452 0.337146i \(-0.890538\pi\)
0.941452 0.337146i \(-0.109462\pi\)
\(48\) 0 0
\(49\) −11.5918 −1.65597
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.81897i 0.249855i −0.992166 0.124928i \(-0.960130\pi\)
0.992166 0.124928i \(-0.0398699\pi\)
\(54\) 0 0
\(55\) 7.36487i 0.993079i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.42758 −0.706611 −0.353306 0.935508i \(-0.614942\pi\)
−0.353306 + 0.935508i \(0.614942\pi\)
\(60\) 0 0
\(61\) 11.4276 1.46315 0.731576 0.681760i \(-0.238785\pi\)
0.731576 + 0.681760i \(0.238785\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 22.9041i 2.84091i
\(66\) 0 0
\(67\) 10.6672i 1.30321i −0.758558 0.651605i \(-0.774096\pi\)
0.758558 0.651605i \(-0.225904\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.7971i 1.51874i −0.650661 0.759368i \(-0.725508\pi\)
0.650661 0.759368i \(-0.274492\pi\)
\(72\) 0 0
\(73\) −2.61596 −0.306175 −0.153087 0.988213i \(-0.548922\pi\)
−0.153087 + 0.988213i \(0.548922\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.81163 −1.00418
\(78\) 0 0
\(79\) 4.62271i 0.520096i 0.965596 + 0.260048i \(0.0837383\pi\)
−0.965596 + 0.260048i \(0.916262\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.439665 −0.0482595 −0.0241298 0.999709i \(-0.507681\pi\)
−0.0241298 + 0.999709i \(0.507681\pi\)
\(84\) 0 0
\(85\) 20.3866i 2.21124i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.3326i 1.41325i 0.707586 + 0.706627i \(0.249784\pi\)
−0.707586 + 0.706627i \(0.750216\pi\)
\(90\) 0 0
\(91\) −27.4034 −2.87266
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.82843i 0.290191i
\(96\) 0 0
\(97\) 9.57152i 0.971840i 0.874003 + 0.485920i \(0.161515\pi\)
−0.874003 + 0.485920i \(0.838485\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.23501i 0.520903i −0.965487 0.260451i \(-0.916129\pi\)
0.965487 0.260451i \(-0.0838714\pi\)
\(102\) 0 0
\(103\) −6.41550 −0.632138 −0.316069 0.948736i \(-0.602363\pi\)
−0.316069 + 0.948736i \(0.602363\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.4155 −1.78029 −0.890147 0.455674i \(-0.849398\pi\)
−0.890147 + 0.455674i \(0.849398\pi\)
\(108\) 0 0
\(109\) 0.698564i 0.0669103i −0.999440 0.0334551i \(-0.989349\pi\)
0.999440 0.0334551i \(-0.0106511\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.7995 −1.11001 −0.555004 0.831848i \(-0.687283\pi\)
−0.555004 + 0.831848i \(0.687283\pi\)
\(114\) 0 0
\(115\) 17.9758 1.67626
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 24.3913 2.23595
\(120\) 0 0
\(121\) 6.82371 0.620337
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.7681 0.963127
\(126\) 0 0
\(127\) 16.5483 1.46842 0.734210 0.678922i \(-0.237553\pi\)
0.734210 + 0.678922i \(0.237553\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) 3.38404 0.293434
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.51754i 0.215088i 0.994200 + 0.107544i \(0.0342986\pi\)
−0.994200 + 0.107544i \(0.965701\pi\)
\(138\) 0 0
\(139\) 18.9638 1.60848 0.804242 0.594301i \(-0.202571\pi\)
0.804242 + 0.594301i \(0.202571\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −12.9879 −1.08610
\(144\) 0 0
\(145\) 2.51754i 0.209070i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.83788i 0.314411i 0.987566 + 0.157206i \(0.0502486\pi\)
−0.987566 + 0.157206i \(0.949751\pi\)
\(150\) 0 0
\(151\) 12.6246i 1.02737i −0.857978 0.513686i \(-0.828279\pi\)
0.857978 0.513686i \(-0.171721\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 17.9758 1.44385
\(156\) 0 0
\(157\) 2.44075i 0.194793i −0.995246 0.0973967i \(-0.968948\pi\)
0.995246 0.0973967i \(-0.0310515\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 21.5070i 1.69499i
\(162\) 0 0
\(163\) −10.4155 −0.815805 −0.407903 0.913025i \(-0.633740\pi\)
−0.407903 + 0.913025i \(0.633740\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.6255i 1.20914i 0.796552 + 0.604570i \(0.206655\pi\)
−0.796552 + 0.604570i \(0.793345\pi\)
\(168\) 0 0
\(169\) −27.3913 −2.10703
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 34.4425i 2.60361i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.6672i 0.797307i 0.917102 + 0.398653i \(0.130522\pi\)
−0.917102 + 0.398653i \(0.869478\pi\)
\(180\) 0 0
\(181\) 1.81897i 0.135203i 0.997712 + 0.0676016i \(0.0215347\pi\)
−0.997712 + 0.0676016i \(0.978465\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.9879 −0.954891
\(186\) 0 0
\(187\) 11.5603 0.845375
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.9705i 1.30030i −0.759805 0.650151i \(-0.774706\pi\)
0.759805 0.650151i \(-0.225294\pi\)
\(192\) 0 0
\(193\) 4.53644i 0.326540i 0.986581 + 0.163270i \(0.0522042\pi\)
−0.986581 + 0.163270i \(0.947796\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.40342 0.669966 0.334983 0.942224i \(-0.391269\pi\)
0.334983 + 0.942224i \(0.391269\pi\)
\(198\) 0 0
\(199\) 11.0891i 0.786084i −0.919520 0.393042i \(-0.871423\pi\)
0.919520 0.393042i \(-0.128577\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.01208 0.211407
\(204\) 0 0
\(205\) 2.81163 + 22.9041i 0.196373 + 1.59969i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.60388 0.110942
\(210\) 0 0
\(211\) 25.5695i 1.76028i 0.474716 + 0.880139i \(0.342551\pi\)
−0.474716 + 0.880139i \(0.657449\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −32.3913 −2.20907
\(216\) 0 0
\(217\) 21.5070i 1.45999i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 35.9517 2.41837
\(222\) 0 0
\(223\) 14.4155 0.965333 0.482667 0.875804i \(-0.339668\pi\)
0.482667 + 0.875804i \(0.339668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.0303i 0.665731i 0.942974 + 0.332866i \(0.108016\pi\)
−0.942974 + 0.332866i \(0.891984\pi\)
\(228\) 0 0
\(229\) 18.4445i 1.21885i −0.792846 0.609423i \(-0.791401\pi\)
0.792846 0.609423i \(-0.208599\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.1269i 1.05651i −0.849087 0.528253i \(-0.822847\pi\)
0.849087 0.528253i \(-0.177153\pi\)
\(234\) 0 0
\(235\) 16.6597i 1.08676i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.19237i 0.400551i 0.979740 + 0.200276i \(0.0641837\pi\)
−0.979740 + 0.200276i \(0.935816\pi\)
\(240\) 0 0
\(241\) −0.572417 −0.0368726 −0.0184363 0.999830i \(-0.505869\pi\)
−0.0184363 + 0.999830i \(0.505869\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −41.7754 −2.66893
\(246\) 0 0
\(247\) 4.98792 0.317374
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.12067 0.196975 0.0984875 0.995138i \(-0.468600\pi\)
0.0984875 + 0.995138i \(0.468600\pi\)
\(252\) 0 0
\(253\) 10.1933i 0.640847i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.1933i 0.635841i −0.948117 0.317920i \(-0.897016\pi\)
0.948117 0.317920i \(-0.102984\pi\)
\(258\) 0 0
\(259\) 15.5393i 0.965563i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.0549i 0.681675i −0.940122 0.340838i \(-0.889289\pi\)
0.940122 0.340838i \(-0.110711\pi\)
\(264\) 0 0
\(265\) 6.55535i 0.402692i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.54825 −0.155370 −0.0776849 0.996978i \(-0.524753\pi\)
−0.0776849 + 0.996978i \(0.524753\pi\)
\(270\) 0 0
\(271\) −4.98792 −0.302994 −0.151497 0.988458i \(-0.548409\pi\)
−0.151497 + 0.988458i \(0.548409\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.3241i 0.984380i
\(276\) 0 0
\(277\) −7.16421 −0.430456 −0.215228 0.976564i \(-0.569049\pi\)
−0.215228 + 0.976564i \(0.569049\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.5259i 1.40344i 0.712454 + 0.701719i \(0.247584\pi\)
−0.712454 + 0.701719i \(0.752416\pi\)
\(282\) 0 0
\(283\) 18.9638 1.12728 0.563639 0.826021i \(-0.309401\pi\)
0.563639 + 0.826021i \(0.309401\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 27.4034 3.36394i 1.61757 0.198567i
\(288\) 0 0
\(289\) −15.0000 −0.882353
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.37433i 0.489233i 0.969620 + 0.244617i \(0.0786621\pi\)
−0.969620 + 0.244617i \(0.921338\pi\)
\(294\) 0 0
\(295\) −19.5603 −1.13885
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 31.7003i 1.83328i
\(300\) 0 0
\(301\) 38.7543i 2.23376i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 41.1836 2.35817
\(306\) 0 0
\(307\) −4.87933 −0.278478 −0.139239 0.990259i \(-0.544466\pi\)
−0.139239 + 0.990259i \(0.544466\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.56963i 0.145710i 0.997343 + 0.0728552i \(0.0232111\pi\)
−0.997343 + 0.0728552i \(0.976789\pi\)
\(312\) 0 0
\(313\) 21.7837i 1.23129i 0.788024 + 0.615644i \(0.211104\pi\)
−0.788024 + 0.615644i \(0.788896\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 25.3449i 1.42351i −0.702427 0.711755i \(-0.747900\pi\)
0.702427 0.711755i \(-0.252100\pi\)
\(318\) 0 0
\(319\) 1.42758 0.0799293
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.43967 −0.247030
\(324\) 0 0
\(325\) 50.7666i 2.81602i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −19.9323 −1.09890
\(330\) 0 0
\(331\) 18.3924i 1.01094i 0.862845 + 0.505468i \(0.168680\pi\)
−0.862845 + 0.505468i \(0.831320\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 38.4434i 2.10039i
\(336\) 0 0
\(337\) 16.2392 0.884606 0.442303 0.896866i \(-0.354162\pi\)
0.442303 + 0.896866i \(0.354162\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.1933i 0.551998i
\(342\) 0 0
\(343\) 19.7990i 1.06904i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.7033i 1.00404i 0.864855 + 0.502022i \(0.167410\pi\)
−0.864855 + 0.502022i \(0.832590\pi\)
\(348\) 0 0
\(349\) 23.2513 1.24461 0.622307 0.782774i \(-0.286196\pi\)
0.622307 + 0.782774i \(0.286196\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.4082 −1.03299 −0.516497 0.856289i \(-0.672764\pi\)
−0.516497 + 0.856289i \(0.672764\pi\)
\(354\) 0 0
\(355\) 46.1192i 2.44775i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.5603 0.610131 0.305066 0.952331i \(-0.401322\pi\)
0.305066 + 0.952331i \(0.401322\pi\)
\(360\) 0 0
\(361\) 18.3840 0.967581
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.42758 −0.493462
\(366\) 0 0
\(367\) −32.9396 −1.71943 −0.859716 0.510772i \(-0.829360\pi\)
−0.859716 + 0.510772i \(0.829360\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.84309 −0.407193
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.43967 0.228654
\(378\) 0 0
\(379\) 2.57242 0.132136 0.0660681 0.997815i \(-0.478955\pi\)
0.0660681 + 0.997815i \(0.478955\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.0227i 0.869817i 0.900475 + 0.434909i \(0.143219\pi\)
−0.900475 + 0.434909i \(0.856781\pi\)
\(384\) 0 0
\(385\) −31.7560 −1.61844
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −13.1207 −0.665244 −0.332622 0.943060i \(-0.607933\pi\)
−0.332622 + 0.943060i \(0.607933\pi\)
\(390\) 0 0
\(391\) 28.2159i 1.42694i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.6597i 0.838239i
\(396\) 0 0
\(397\) 11.7356i 0.588991i 0.955653 + 0.294495i \(0.0951515\pi\)
−0.955653 + 0.294495i \(0.904848\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.1521 1.20610 0.603050 0.797703i \(-0.293952\pi\)
0.603050 + 0.797703i \(0.293952\pi\)
\(402\) 0 0
\(403\) 31.7003i 1.57910i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.36487i 0.365063i
\(408\) 0 0
\(409\) 24.9444 1.23342 0.616710 0.787190i \(-0.288465\pi\)
0.616710 + 0.787190i \(0.288465\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 23.4028i 1.15157i
\(414\) 0 0
\(415\) −1.58450 −0.0777800
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 29.4276 1.43763 0.718816 0.695201i \(-0.244684\pi\)
0.718816 + 0.695201i \(0.244684\pi\)
\(420\) 0 0
\(421\) 28.1391i 1.37142i −0.727876 0.685709i \(-0.759492\pi\)
0.727876 0.685709i \(-0.240508\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 45.1865i 2.19187i
\(426\) 0 0
\(427\) 49.2737i 2.38452i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.57242 −0.316582 −0.158291 0.987392i \(-0.550598\pi\)
−0.158291 + 0.987392i \(0.550598\pi\)
\(432\) 0 0
\(433\) 26.3913 1.26829 0.634143 0.773215i \(-0.281353\pi\)
0.634143 + 0.773215i \(0.281353\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.91466i 0.187264i
\(438\) 0 0
\(439\) 9.79614i 0.467544i 0.972291 + 0.233772i \(0.0751070\pi\)
−0.972291 + 0.233772i \(0.924893\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.5362 −0.833169 −0.416584 0.909097i \(-0.636773\pi\)
−0.416584 + 0.909097i \(0.636773\pi\)
\(444\) 0 0
\(445\) 48.0491i 2.27775i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.8431 0.842067 0.421034 0.907045i \(-0.361667\pi\)
0.421034 + 0.907045i \(0.361667\pi\)
\(450\) 0 0
\(451\) 12.9879 1.59435i 0.611577 0.0750749i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −98.7585 −4.62987
\(456\) 0 0
\(457\) 17.8691i 0.835879i 0.908475 + 0.417940i \(0.137248\pi\)
−0.908475 + 0.417940i \(0.862752\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0194 0.839246 0.419623 0.907698i \(-0.362162\pi\)
0.419623 + 0.907698i \(0.362162\pi\)
\(462\) 0 0
\(463\) 36.8216i 1.71125i 0.517599 + 0.855624i \(0.326826\pi\)
−0.517599 + 0.855624i \(0.673174\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.84309 0.177837 0.0889184 0.996039i \(-0.471659\pi\)
0.0889184 + 0.996039i \(0.471659\pi\)
\(468\) 0 0
\(469\) −45.9952 −2.12386
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.3677i 0.844547i
\(474\) 0 0
\(475\) 6.26915i 0.287648i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.4862i 0.570510i 0.958452 + 0.285255i \(0.0920782\pi\)
−0.958452 + 0.285255i \(0.907922\pi\)
\(480\) 0 0
\(481\) 22.9041i 1.04434i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 34.4946i 1.56632i
\(486\) 0 0
\(487\) −17.2707 −0.782609 −0.391304 0.920261i \(-0.627976\pi\)
−0.391304 + 0.920261i \(0.627976\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.9638 0.494787 0.247394 0.968915i \(-0.420426\pi\)
0.247394 + 0.968915i \(0.420426\pi\)
\(492\) 0 0
\(493\) −3.95167 −0.177974
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −55.1788 −2.47511
\(498\) 0 0
\(499\) 13.8218i 0.618747i −0.950941 0.309374i \(-0.899881\pi\)
0.950941 0.309374i \(-0.100119\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.9780i 1.60418i −0.597205 0.802089i \(-0.703722\pi\)
0.597205 0.802089i \(-0.296278\pi\)
\(504\) 0 0
\(505\) 18.8663i 0.839540i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.7420i 1.18532i 0.805453 + 0.592660i \(0.201922\pi\)
−0.805453 + 0.592660i \(0.798078\pi\)
\(510\) 0 0
\(511\) 11.2795i 0.498977i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −23.1207 −1.01882
\(516\) 0 0
\(517\) −9.44696 −0.415477
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.9517i 0.655044i −0.944844 0.327522i \(-0.893786\pi\)
0.944844 0.327522i \(-0.106214\pi\)
\(522\) 0 0
\(523\) −39.2465 −1.71613 −0.858065 0.513541i \(-0.828333\pi\)
−0.858065 + 0.513541i \(0.828333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.2159i 1.22911i
\(528\) 0 0
\(529\) 1.87933 0.0817100
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 40.3913 4.95829i 1.74954 0.214767i
\(534\) 0 0
\(535\) −66.3672 −2.86930
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.6890i 1.02036i
\(540\) 0 0
\(541\) 3.69096 0.158687 0.0793433 0.996847i \(-0.474718\pi\)
0.0793433 + 0.996847i \(0.474718\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.51754i 0.107839i
\(546\) 0 0
\(547\) 3.75162i 0.160407i −0.996778 0.0802037i \(-0.974443\pi\)
0.996778 0.0802037i \(-0.0255571\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.548253 −0.0233564
\(552\) 0 0
\(553\) 19.9323 0.847607
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.4634i 0.867061i 0.901139 + 0.433531i \(0.142732\pi\)
−0.901139 + 0.433531i \(0.857268\pi\)
\(558\) 0 0
\(559\) 57.1220i 2.41600i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.0188i 1.09656i 0.836295 + 0.548280i \(0.184717\pi\)
−0.836295 + 0.548280i \(0.815283\pi\)
\(564\) 0 0
\(565\) −42.5241 −1.78900
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.61596 0.109667 0.0548333 0.998496i \(-0.482537\pi\)
0.0548333 + 0.998496i \(0.482537\pi\)
\(570\) 0 0
\(571\) 36.9874i 1.54787i −0.633262 0.773937i \(-0.718284\pi\)
0.633262 0.773937i \(-0.281716\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 39.8431 1.66157
\(576\) 0 0
\(577\) 10.1933i 0.424353i −0.977231 0.212176i \(-0.931945\pi\)
0.977231 0.212176i \(-0.0680551\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.89576i 0.0786492i
\(582\) 0 0
\(583\) −3.71725 −0.153953
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.9145i 1.15216i 0.817395 + 0.576078i \(0.195417\pi\)
−0.817395 + 0.576078i \(0.804583\pi\)
\(588\) 0 0
\(589\) 3.91466i 0.161301i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 36.8585i 1.51360i 0.653647 + 0.756799i \(0.273238\pi\)
−0.653647 + 0.756799i \(0.726762\pi\)
\(594\) 0 0
\(595\) 87.9033 3.60369
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 10.3069 0.421129 0.210565 0.977580i \(-0.432470\pi\)
0.210565 + 0.977580i \(0.432470\pi\)
\(600\) 0 0
\(601\) 35.9600i 1.46684i 0.679776 + 0.733420i \(0.262077\pi\)
−0.679776 + 0.733420i \(0.737923\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.5918 0.999799
\(606\) 0 0
\(607\) 33.4276 1.35678 0.678392 0.734700i \(-0.262677\pi\)
0.678392 + 0.734700i \(0.262677\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −29.3793 −1.18856
\(612\) 0 0
\(613\) 32.3478 1.30652 0.653258 0.757136i \(-0.273402\pi\)
0.653258 + 0.757136i \(0.273402\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.8310 −0.919142 −0.459571 0.888141i \(-0.651997\pi\)
−0.459571 + 0.888141i \(0.651997\pi\)
\(618\) 0 0
\(619\) 0.596580 0.0239786 0.0119893 0.999928i \(-0.496184\pi\)
0.0119893 + 0.999928i \(0.496184\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 57.4878 2.30320
\(624\) 0 0
\(625\) −1.13275 −0.0453101
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.3866i 0.812867i
\(630\) 0 0
\(631\) 2.85517 0.113662 0.0568312 0.998384i \(-0.481900\pi\)
0.0568312 + 0.998384i \(0.481900\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 59.6378 2.36666
\(636\) 0 0
\(637\) 73.6707i 2.91894i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.498629i 0.0196947i 0.999952 + 0.00984733i \(0.00313455\pi\)
−0.999952 + 0.00984733i \(0.996865\pi\)
\(642\) 0 0
\(643\) 35.0368i 1.38172i −0.722989 0.690859i \(-0.757232\pi\)
0.722989 0.690859i \(-0.242768\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −35.9517 −1.41341 −0.706703 0.707510i \(-0.749818\pi\)
−0.706703 + 0.707510i \(0.749818\pi\)
\(648\) 0 0
\(649\) 11.0918i 0.435391i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.8661i 1.71661i −0.513136 0.858307i \(-0.671516\pi\)
0.513136 0.858307i \(-0.328484\pi\)
\(654\) 0 0
\(655\) 43.2465 1.68978
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.8426i 0.850866i 0.904990 + 0.425433i \(0.139878\pi\)
−0.904990 + 0.425433i \(0.860122\pi\)
\(660\) 0 0
\(661\) 16.3478 0.635856 0.317928 0.948115i \(-0.397013\pi\)
0.317928 + 0.948115i \(0.397013\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.1957 0.472928
\(666\) 0 0
\(667\) 3.48438i 0.134916i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 23.3534i 0.901547i
\(672\) 0 0
\(673\) 33.8728i 1.30570i 0.757487 + 0.652850i \(0.226427\pi\)
−0.757487 + 0.652850i \(0.773573\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.0435405 0.00167340 0.000836699 1.00000i \(-0.499734\pi\)
0.000836699 1.00000i \(0.499734\pi\)
\(678\) 0 0
\(679\) 41.2707 1.58382
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.46059i 0.323736i −0.986812 0.161868i \(-0.948248\pi\)
0.986812 0.161868i \(-0.0517518\pi\)
\(684\) 0 0
\(685\) 9.07289i 0.346657i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.5603 −0.440414
\(690\) 0 0
\(691\) 8.11553i 0.308729i 0.988014 + 0.154365i \(0.0493331\pi\)
−0.988014 + 0.154365i \(0.950667\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 68.3430 2.59240
\(696\) 0 0
\(697\) −35.9517 + 4.41329i −1.36177 + 0.167165i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27.2030 −1.02744 −0.513721 0.857957i \(-0.671733\pi\)
−0.513721 + 0.857957i \(0.671733\pi\)
\(702\) 0 0
\(703\) 2.82843i 0.106676i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.5724 −0.848923
\(708\) 0 0
\(709\) 3.99145i 0.149902i 0.997187 + 0.0749510i \(0.0238800\pi\)
−0.997187 + 0.0749510i \(0.976120\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24.8793 0.931738
\(714\) 0 0
\(715\) −46.8068 −1.75048
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 34.4083i 1.28321i 0.767034 + 0.641606i \(0.221732\pi\)
−0.767034 + 0.641606i \(0.778268\pi\)
\(720\) 0 0
\(721\) 27.6625i 1.03020i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.58007i 0.207239i
\(726\) 0 0
\(727\) 38.7174i 1.43595i 0.696069 + 0.717974i \(0.254931\pi\)
−0.696069 + 0.717974i \(0.745069\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 50.8433i 1.88051i
\(732\) 0 0
\(733\) −49.4034 −1.82476 −0.912378 0.409348i \(-0.865756\pi\)
−0.912378 + 0.409348i \(0.865756\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.7995 −0.802997
\(738\) 0 0
\(739\) 13.9758 0.514109 0.257055 0.966397i \(-0.417248\pi\)
0.257055 + 0.966397i \(0.417248\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.02416 0.221005 0.110503 0.993876i \(-0.464754\pi\)
0.110503 + 0.993876i \(0.464754\pi\)
\(744\) 0 0
\(745\) 13.8312i 0.506738i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 79.4043i 2.90137i
\(750\) 0 0
\(751\) 13.0396i 0.475824i −0.971287 0.237912i \(-0.923537\pi\)
0.971287 0.237912i \(-0.0764629\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 45.4974i 1.65582i
\(756\) 0 0
\(757\) 18.4445i 0.670376i −0.942151 0.335188i \(-0.891200\pi\)
0.942151 0.335188i \(-0.108800\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.1280 0.947138 0.473569 0.880757i \(-0.342965\pi\)
0.473569 + 0.880757i \(0.342965\pi\)
\(762\) 0 0
\(763\) −3.01208 −0.109045
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 34.4946i 1.24553i
\(768\) 0 0
\(769\) −17.9517 −0.647354 −0.323677 0.946168i \(-0.604919\pi\)
−0.323677 + 0.946168i \(0.604919\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 26.2434i 0.943909i −0.881623 0.471955i \(-0.843549\pi\)
0.881623 0.471955i \(-0.156451\pi\)
\(774\) 0 0
\(775\) 39.8431 1.43121
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.98792 + 0.612298i −0.178711 + 0.0219379i
\(780\) 0 0
\(781\) −26.1521 −0.935797
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.79617i 0.313949i
\(786\) 0 0
\(787\) −37.9758 −1.35369 −0.676846 0.736124i \(-0.736654\pi\)
−0.676846 + 0.736124i \(0.736654\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 50.8775i 1.80900i
\(792\) 0 0
\(793\) 72.6271i 2.57906i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.6931 0.414190 0.207095 0.978321i \(-0.433599\pi\)
0.207095 + 0.978321i \(0.433599\pi\)
\(798\) 0 0
\(799\) 26.1500 0.925120
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.34596i 0.188655i
\(804\) 0 0
\(805\) 77.5086i 2.73182i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.4965i 1.42378i 0.702291 + 0.711890i \(0.252161\pi\)
−0.702291 + 0.711890i \(0.747839\pi\)
\(810\) 0 0
\(811\) −24.4397 −0.858193 −0.429096 0.903259i \(-0.641168\pi\)
−0.429096 + 0.903259i \(0.641168\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −37.5362 −1.31483
\(816\) 0 0
\(817\) 7.05398i 0.246788i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −41.2271 −1.43884 −0.719418 0.694577i \(-0.755592\pi\)
−0.719418 + 0.694577i \(0.755592\pi\)
\(822\) 0 0
\(823\) 34.2358i 1.19338i 0.802470 + 0.596692i \(0.203519\pi\)
−0.802470 + 0.596692i \(0.796481\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.6710i 0.857895i −0.903329 0.428948i \(-0.858884\pi\)
0.903329 0.428948i \(-0.141116\pi\)
\(828\) 0 0
\(829\) 37.8840 1.31576 0.657882 0.753121i \(-0.271452\pi\)
0.657882 + 0.753121i \(0.271452\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 65.5731i 2.27197i
\(834\) 0 0
\(835\) 56.3125i 1.94877i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.31182i 0.148861i 0.997226 + 0.0744303i \(0.0237138\pi\)
−0.997226 + 0.0744303i \(0.976286\pi\)
\(840\) 0 0
\(841\) 28.5120 0.983173
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −98.7150 −3.39590
\(846\) 0 0
\(847\) 29.4226i 1.01097i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −17.9758 −0.616204
\(852\) 0 0
\(853\) 41.9517 1.43640 0.718199 0.695838i \(-0.244967\pi\)
0.718199 + 0.695838i \(0.244967\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.4470 0.800933 0.400466 0.916311i \(-0.368848\pi\)
0.400466 + 0.916311i \(0.368848\pi\)
\(858\) 0 0
\(859\) 20.3913 0.695743 0.347872 0.937542i \(-0.386904\pi\)
0.347872 + 0.937542i \(0.386904\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.59658 0.156469 0.0782347 0.996935i \(-0.475072\pi\)
0.0782347 + 0.996935i \(0.475072\pi\)
\(864\) 0 0
\(865\) 7.20775 0.245071
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.44696 0.320466
\(870\) 0 0
\(871\) −67.7948 −2.29714
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 46.4301i 1.56962i
\(876\) 0 0
\(877\) −40.5241 −1.36840 −0.684201 0.729294i \(-0.739849\pi\)
−0.684201 + 0.729294i \(0.739849\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 15.2707 0.514482 0.257241 0.966347i \(-0.417187\pi\)
0.257241 + 0.966347i \(0.417187\pi\)
\(882\) 0 0
\(883\) 15.5640i 0.523769i −0.965099 0.261884i \(-0.915656\pi\)
0.965099 0.261884i \(-0.0843439\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 45.5836i 1.53055i 0.643704 + 0.765275i \(0.277397\pi\)
−0.643704 + 0.765275i \(0.722603\pi\)
\(888\) 0 0
\(889\) 71.3531i 2.39311i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.62804 0.121408
\(894\) 0 0
\(895\) 38.4434i 1.28502i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.48438i 0.116211i
\(900\) 0 0
\(901\) 10.2897 0.342798
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.55535i 0.217907i
\(906\) 0 0
\(907\) −28.3913 −0.942719 −0.471359 0.881941i \(-0.656237\pi\)
−0.471359 + 0.881941i \(0.656237\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −30.2586 −1.00251 −0.501256 0.865299i \(-0.667128\pi\)
−0.501256 + 0.865299i \(0.667128\pi\)
\(912\) 0 0
\(913\) 0.898499i 0.0297360i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 51.7418i 1.70867i
\(918\) 0 0
\(919\) 35.7164i 1.17818i 0.808069 + 0.589088i \(0.200513\pi\)
−0.808069 + 0.589088i \(0.799487\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −81.3309 −2.67704
\(924\) 0 0
\(925\) −28.7875 −0.946526
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.90041i 0.226395i −0.993572 0.113198i \(-0.963891\pi\)
0.993572 0.113198i \(-0.0361093\pi\)
\(930\) 0 0
\(931\) 9.09758i 0.298161i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 41.6620 1.36249
\(936\) 0 0
\(937\) 35.8369i 1.17074i −0.810766 0.585370i \(-0.800949\pi\)
0.810766 0.585370i \(-0.199051\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.7103 0.772935 0.386467 0.922303i \(-0.373695\pi\)
0.386467 + 0.922303i \(0.373695\pi\)
\(942\) 0 0
\(943\) 3.89141 + 31.7003i 0.126722 + 1.03230i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.01208 −0.227862 −0.113931 0.993489i \(-0.536344\pi\)
−0.113931 + 0.993489i \(0.536344\pi\)
\(948\) 0 0
\(949\) 16.6255i 0.539687i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −17.8237 −0.577367 −0.288683 0.957425i \(-0.593217\pi\)
−0.288683 + 0.957425i \(0.593217\pi\)
\(954\) 0 0
\(955\) 64.7636i 2.09570i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.8552 0.350532
\(960\) 0 0
\(961\) −6.12067 −0.197441
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.3488i 0.526286i
\(966\) 0 0
\(967\) 2.01619i 0.0648364i −0.999474 0.0324182i \(-0.989679\pi\)
0.999474 0.0324182i \(-0.0103208\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 14.2216i 0.456394i 0.973615 + 0.228197i \(0.0732830\pi\)
−0.973615 + 0.228197i \(0.926717\pi\)
\(972\) 0 0
\(973\) 81.7683i 2.62137i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49.2243i 1.57483i −0.616426 0.787413i \(-0.711420\pi\)
0.616426 0.787413i \(-0.288580\pi\)
\(978\) 0 0
\(979\) 27.2465 0.870802
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −50.2103 −1.60146 −0.800729 0.599026i \(-0.795554\pi\)
−0.800729 + 0.599026i \(0.795554\pi\)
\(984\) 0 0
\(985\) 33.8888 1.07979
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −44.8310 −1.42554
\(990\) 0 0
\(991\) 54.7401i 1.73888i −0.494042 0.869438i \(-0.664481\pi\)
0.494042 0.869438i \(-0.335519\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 39.9637i 1.26693i
\(996\) 0 0
\(997\) 41.1950i 1.30466i −0.757935 0.652330i \(-0.773792\pi\)
0.757935 0.652330i \(-0.226208\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2952.2.j.c.2377.5 6
3.2 odd 2 328.2.d.b.81.4 yes 6
12.11 even 2 656.2.d.f.81.3 6
24.5 odd 2 2624.2.d.o.2049.3 6
24.11 even 2 2624.2.d.n.2049.4 6
41.40 even 2 inner 2952.2.j.c.2377.6 6
123.122 odd 2 328.2.d.b.81.3 6
492.491 even 2 656.2.d.f.81.4 6
984.245 odd 2 2624.2.d.o.2049.4 6
984.491 even 2 2624.2.d.n.2049.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
328.2.d.b.81.3 6 123.122 odd 2
328.2.d.b.81.4 yes 6 3.2 odd 2
656.2.d.f.81.3 6 12.11 even 2
656.2.d.f.81.4 6 492.491 even 2
2624.2.d.n.2049.3 6 984.491 even 2
2624.2.d.n.2049.4 6 24.11 even 2
2624.2.d.o.2049.3 6 24.5 odd 2
2624.2.d.o.2049.4 6 984.245 odd 2
2952.2.j.c.2377.5 6 1.1 even 1 trivial
2952.2.j.c.2377.6 6 41.40 even 2 inner