Properties

Label 2952.2.a.k
Level $2952$
Weight $2$
Character orbit 2952.a
Self dual yes
Analytic conductor $23.572$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2952,2,Mod(1,2952)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2952, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2952.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2952 = 2^{3} \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2952.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,-3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.5718386767\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1436.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 11x - 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 984)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{5} + ( - \beta_{2} - \beta_1 - 1) q^{7} + (\beta_1 + 2) q^{11} + ( - \beta_1 + 1) q^{13} + (\beta_{2} - \beta_1 - 4) q^{17} + (2 \beta_{2} + \beta_1 + 1) q^{19} + (\beta_{2} - \beta_1 - 3) q^{23}+ \cdots + (\beta_{2} + 3 \beta_1 - 3) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} - 4 q^{7} + 6 q^{11} + 3 q^{13} - 11 q^{17} + 5 q^{19} - 8 q^{23} + 10 q^{25} - 8 q^{29} - 3 q^{31} - 10 q^{35} - 4 q^{37} + 3 q^{41} - 2 q^{43} + 15 q^{49} - 22 q^{53} + 16 q^{55} + 3 q^{59}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 11x - 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.48361
−1.28282
3.76644
0 0 0 −3.48361 0 −2.65194 0 0 0
1.2 0 0 0 −2.28282 0 3.07154 0 0 0
1.3 0 0 0 2.76644 0 −4.41960 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(41\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2952.2.a.k 3
3.b odd 2 1 984.2.a.g 3
4.b odd 2 1 5904.2.a.bg 3
12.b even 2 1 1968.2.a.v 3
24.f even 2 1 7872.2.a.bt 3
24.h odd 2 1 7872.2.a.by 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
984.2.a.g 3 3.b odd 2 1
1968.2.a.v 3 12.b even 2 1
2952.2.a.k 3 1.a even 1 1 trivial
5904.2.a.bg 3 4.b odd 2 1
7872.2.a.bt 3 24.f even 2 1
7872.2.a.by 3 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2952))\):

\( T_{5}^{3} + 3T_{5}^{2} - 8T_{5} - 22 \) Copy content Toggle raw display
\( T_{7}^{3} + 4T_{7}^{2} - 10T_{7} - 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 22 \) Copy content Toggle raw display
$7$ \( T^{3} + 4 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$11$ \( T^{3} - 6T^{2} + T + 2 \) Copy content Toggle raw display
$13$ \( T^{3} - 3 T^{2} + \cdots + 22 \) Copy content Toggle raw display
$17$ \( T^{3} + 11 T^{2} + \cdots - 117 \) Copy content Toggle raw display
$19$ \( T^{3} - 5 T^{2} + \cdots + 162 \) Copy content Toggle raw display
$23$ \( T^{3} + 8 T^{2} + \cdots - 116 \) Copy content Toggle raw display
$29$ \( T^{3} + 8 T^{2} + \cdots - 192 \) Copy content Toggle raw display
$31$ \( (T + 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} + 4 T^{2} + \cdots - 6 \) Copy content Toggle raw display
$41$ \( (T - 1)^{3} \) Copy content Toggle raw display
$43$ \( T^{3} + 2 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$47$ \( T^{3} - 99T - 324 \) Copy content Toggle raw display
$53$ \( T^{3} + 22 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$59$ \( T^{3} - 3 T^{2} + \cdots + 328 \) Copy content Toggle raw display
$61$ \( T^{3} - 107T - 422 \) Copy content Toggle raw display
$67$ \( T^{3} - T^{2} - 12T - 4 \) Copy content Toggle raw display
$71$ \( T^{3} + 19 T^{2} + \cdots + 107 \) Copy content Toggle raw display
$73$ \( (T - 1)^{3} \) Copy content Toggle raw display
$79$ \( T^{3} - 4 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$83$ \( T^{3} + 7 T^{2} + \cdots - 422 \) Copy content Toggle raw display
$89$ \( T^{3} + 31 T^{2} + \cdots + 732 \) Copy content Toggle raw display
$97$ \( T^{3} + 8 T^{2} + \cdots - 484 \) Copy content Toggle raw display
show more
show less