Properties

Label 2940.2.f.b.1469.29
Level $2940$
Weight $2$
Character 2940.1469
Analytic conductor $23.476$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(1469,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.1469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1469.29
Character \(\chi\) \(=\) 2940.1469
Dual form 2940.2.f.b.1469.31

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.726948 - 1.57212i) q^{3} +(-2.19795 + 0.411111i) q^{5} +(-1.94309 - 2.28569i) q^{9} +1.72528i q^{11} -1.24079 q^{13} +(-0.951482 + 3.75429i) q^{15} -4.75664i q^{17} +4.23622i q^{19} -2.60815 q^{23} +(4.66198 - 1.80720i) q^{25} +(-5.00590 + 1.39319i) q^{27} +2.97676i q^{29} +0.179474i q^{31} +(2.71235 + 1.25419i) q^{33} +5.41835i q^{37} +(-0.901986 + 1.95066i) q^{39} -1.41531 q^{41} +8.03664i q^{43} +(5.21050 + 4.22501i) q^{45} -7.87495i q^{47} +(-7.47799 - 3.45783i) q^{51} +6.64074 q^{53} +(-0.709284 - 3.79209i) q^{55} +(6.65983 + 3.07951i) q^{57} -2.07100 q^{59} +9.34523i q^{61} +(2.72718 - 0.510101i) q^{65} +9.46664i q^{67} +(-1.89599 + 4.10031i) q^{69} +8.56168i q^{71} +15.6657 q^{73} +(0.547880 - 8.64291i) q^{75} +0.643921 q^{79} +(-1.44878 + 8.88263i) q^{81} +4.73726i q^{83} +(1.95551 + 10.4549i) q^{85} +(4.67981 + 2.16395i) q^{87} -8.25733 q^{89} +(0.282154 + 0.130468i) q^{93} +(-1.74156 - 9.31101i) q^{95} -16.8182 q^{97} +(3.94347 - 3.35239i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{9} - 16 q^{15} + 16 q^{25} + 56 q^{39} + 8 q^{51} + 48 q^{79} - 24 q^{81} + 32 q^{85} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.726948 1.57212i 0.419704 0.907661i
\(4\) 0 0
\(5\) −2.19795 + 0.411111i −0.982953 + 0.183854i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.94309 2.28569i −0.647698 0.761897i
\(10\) 0 0
\(11\) 1.72528i 0.520193i 0.965583 + 0.260096i \(0.0837543\pi\)
−0.965583 + 0.260096i \(0.916246\pi\)
\(12\) 0 0
\(13\) −1.24079 −0.344132 −0.172066 0.985085i \(-0.555044\pi\)
−0.172066 + 0.985085i \(0.555044\pi\)
\(14\) 0 0
\(15\) −0.951482 + 3.75429i −0.245672 + 0.969353i
\(16\) 0 0
\(17\) 4.75664i 1.15365i −0.816866 0.576827i \(-0.804291\pi\)
0.816866 0.576827i \(-0.195709\pi\)
\(18\) 0 0
\(19\) 4.23622i 0.971857i 0.873999 + 0.485928i \(0.161518\pi\)
−0.873999 + 0.485928i \(0.838482\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.60815 −0.543836 −0.271918 0.962320i \(-0.587658\pi\)
−0.271918 + 0.962320i \(0.587658\pi\)
\(24\) 0 0
\(25\) 4.66198 1.80720i 0.932395 0.361441i
\(26\) 0 0
\(27\) −5.00590 + 1.39319i −0.963386 + 0.268119i
\(28\) 0 0
\(29\) 2.97676i 0.552770i 0.961047 + 0.276385i \(0.0891365\pi\)
−0.961047 + 0.276385i \(0.910864\pi\)
\(30\) 0 0
\(31\) 0.179474i 0.0322345i 0.999870 + 0.0161172i \(0.00513050\pi\)
−0.999870 + 0.0161172i \(0.994870\pi\)
\(32\) 0 0
\(33\) 2.71235 + 1.25419i 0.472159 + 0.218327i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.41835i 0.890771i 0.895339 + 0.445385i \(0.146933\pi\)
−0.895339 + 0.445385i \(0.853067\pi\)
\(38\) 0 0
\(39\) −0.901986 + 1.95066i −0.144433 + 0.312355i
\(40\) 0 0
\(41\) −1.41531 −0.221034 −0.110517 0.993874i \(-0.535251\pi\)
−0.110517 + 0.993874i \(0.535251\pi\)
\(42\) 0 0
\(43\) 8.03664i 1.22558i 0.790247 + 0.612788i \(0.209952\pi\)
−0.790247 + 0.612788i \(0.790048\pi\)
\(44\) 0 0
\(45\) 5.21050 + 4.22501i 0.776735 + 0.629827i
\(46\) 0 0
\(47\) 7.87495i 1.14868i −0.818617 0.574340i \(-0.805259\pi\)
0.818617 0.574340i \(-0.194741\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −7.47799 3.45783i −1.04713 0.484193i
\(52\) 0 0
\(53\) 6.64074 0.912175 0.456088 0.889935i \(-0.349250\pi\)
0.456088 + 0.889935i \(0.349250\pi\)
\(54\) 0 0
\(55\) −0.709284 3.79209i −0.0956398 0.511325i
\(56\) 0 0
\(57\) 6.65983 + 3.07951i 0.882117 + 0.407892i
\(58\) 0 0
\(59\) −2.07100 −0.269621 −0.134810 0.990871i \(-0.543043\pi\)
−0.134810 + 0.990871i \(0.543043\pi\)
\(60\) 0 0
\(61\) 9.34523i 1.19653i 0.801297 + 0.598267i \(0.204144\pi\)
−0.801297 + 0.598267i \(0.795856\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.72718 0.510101i 0.338266 0.0632702i
\(66\) 0 0
\(67\) 9.46664i 1.15653i 0.815848 + 0.578267i \(0.196271\pi\)
−0.815848 + 0.578267i \(0.803729\pi\)
\(68\) 0 0
\(69\) −1.89599 + 4.10031i −0.228250 + 0.493619i
\(70\) 0 0
\(71\) 8.56168i 1.01608i 0.861332 + 0.508042i \(0.169631\pi\)
−0.861332 + 0.508042i \(0.830369\pi\)
\(72\) 0 0
\(73\) 15.6657 1.83353 0.916764 0.399430i \(-0.130792\pi\)
0.916764 + 0.399430i \(0.130792\pi\)
\(74\) 0 0
\(75\) 0.547880 8.64291i 0.0632637 0.997997i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.643921 0.0724467 0.0362234 0.999344i \(-0.488467\pi\)
0.0362234 + 0.999344i \(0.488467\pi\)
\(80\) 0 0
\(81\) −1.44878 + 8.88263i −0.160975 + 0.986958i
\(82\) 0 0
\(83\) 4.73726i 0.519982i 0.965611 + 0.259991i \(0.0837196\pi\)
−0.965611 + 0.259991i \(0.916280\pi\)
\(84\) 0 0
\(85\) 1.95551 + 10.4549i 0.212105 + 1.13399i
\(86\) 0 0
\(87\) 4.67981 + 2.16395i 0.501728 + 0.232000i
\(88\) 0 0
\(89\) −8.25733 −0.875275 −0.437637 0.899152i \(-0.644185\pi\)
−0.437637 + 0.899152i \(0.644185\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.282154 + 0.130468i 0.0292580 + 0.0135289i
\(94\) 0 0
\(95\) −1.74156 9.31101i −0.178680 0.955290i
\(96\) 0 0
\(97\) −16.8182 −1.70763 −0.853813 0.520579i \(-0.825716\pi\)
−0.853813 + 0.520579i \(0.825716\pi\)
\(98\) 0 0
\(99\) 3.94347 3.35239i 0.396333 0.336928i
\(100\) 0 0
\(101\) −15.7374 −1.56593 −0.782967 0.622063i \(-0.786295\pi\)
−0.782967 + 0.622063i \(0.786295\pi\)
\(102\) 0 0
\(103\) 14.8011 1.45840 0.729200 0.684301i \(-0.239893\pi\)
0.729200 + 0.684301i \(0.239893\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.61940 0.833269 0.416634 0.909074i \(-0.363210\pi\)
0.416634 + 0.909074i \(0.363210\pi\)
\(108\) 0 0
\(109\) 6.54267 0.626674 0.313337 0.949642i \(-0.398553\pi\)
0.313337 + 0.949642i \(0.398553\pi\)
\(110\) 0 0
\(111\) 8.51827 + 3.93886i 0.808518 + 0.373860i
\(112\) 0 0
\(113\) 19.3171 1.81720 0.908598 0.417671i \(-0.137154\pi\)
0.908598 + 0.417671i \(0.137154\pi\)
\(114\) 0 0
\(115\) 5.73257 1.07224i 0.534565 0.0999867i
\(116\) 0 0
\(117\) 2.41096 + 2.83605i 0.222893 + 0.262193i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.02339 0.729400
\(122\) 0 0
\(123\) −1.02885 + 2.22502i −0.0927686 + 0.200624i
\(124\) 0 0
\(125\) −9.50383 + 5.88874i −0.850048 + 0.526705i
\(126\) 0 0
\(127\) 15.8653i 1.40782i 0.710289 + 0.703910i \(0.248564\pi\)
−0.710289 + 0.703910i \(0.751436\pi\)
\(128\) 0 0
\(129\) 12.6345 + 5.84222i 1.11241 + 0.514379i
\(130\) 0 0
\(131\) 14.5600 1.27211 0.636056 0.771643i \(-0.280565\pi\)
0.636056 + 0.771643i \(0.280565\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 10.4300 5.12014i 0.897668 0.440671i
\(136\) 0 0
\(137\) −10.7801 −0.921002 −0.460501 0.887659i \(-0.652330\pi\)
−0.460501 + 0.887659i \(0.652330\pi\)
\(138\) 0 0
\(139\) 17.5395i 1.48768i −0.668358 0.743840i \(-0.733002\pi\)
0.668358 0.743840i \(-0.266998\pi\)
\(140\) 0 0
\(141\) −12.3803 5.72468i −1.04261 0.482105i
\(142\) 0 0
\(143\) 2.14071i 0.179015i
\(144\) 0 0
\(145\) −1.22378 6.54277i −0.101629 0.543347i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.8727i 1.46419i 0.681204 + 0.732094i \(0.261457\pi\)
−0.681204 + 0.732094i \(0.738543\pi\)
\(150\) 0 0
\(151\) −20.7055 −1.68499 −0.842495 0.538704i \(-0.818914\pi\)
−0.842495 + 0.538704i \(0.818914\pi\)
\(152\) 0 0
\(153\) −10.8722 + 9.24260i −0.878967 + 0.747220i
\(154\) 0 0
\(155\) −0.0737838 0.394475i −0.00592645 0.0316850i
\(156\) 0 0
\(157\) 17.1190 1.36625 0.683123 0.730303i \(-0.260621\pi\)
0.683123 + 0.730303i \(0.260621\pi\)
\(158\) 0 0
\(159\) 4.82747 10.4400i 0.382843 0.827946i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.1625i 0.952640i 0.879272 + 0.476320i \(0.158030\pi\)
−0.879272 + 0.476320i \(0.841970\pi\)
\(164\) 0 0
\(165\) −6.47721 1.64158i −0.504250 0.127797i
\(166\) 0 0
\(167\) 2.24481i 0.173709i 0.996221 + 0.0868543i \(0.0276815\pi\)
−0.996221 + 0.0868543i \(0.972319\pi\)
\(168\) 0 0
\(169\) −11.4605 −0.881573
\(170\) 0 0
\(171\) 9.68271 8.23138i 0.740455 0.629469i
\(172\) 0 0
\(173\) 19.2816i 1.46595i 0.680253 + 0.732977i \(0.261870\pi\)
−0.680253 + 0.732977i \(0.738130\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.50551 + 3.25585i −0.113161 + 0.244725i
\(178\) 0 0
\(179\) 22.3831i 1.67299i −0.547972 0.836497i \(-0.684600\pi\)
0.547972 0.836497i \(-0.315400\pi\)
\(180\) 0 0
\(181\) 8.41345i 0.625367i 0.949857 + 0.312683i \(0.101228\pi\)
−0.949857 + 0.312683i \(0.898772\pi\)
\(182\) 0 0
\(183\) 14.6918 + 6.79350i 1.08605 + 0.502190i
\(184\) 0 0
\(185\) −2.22754 11.9093i −0.163772 0.875586i
\(186\) 0 0
\(187\) 8.20656 0.600123
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.4075i 1.54899i 0.632580 + 0.774495i \(0.281996\pi\)
−0.632580 + 0.774495i \(0.718004\pi\)
\(192\) 0 0
\(193\) 8.89422i 0.640220i −0.947380 0.320110i \(-0.896280\pi\)
0.947380 0.320110i \(-0.103720\pi\)
\(194\) 0 0
\(195\) 1.18058 4.65827i 0.0845434 0.333585i
\(196\) 0 0
\(197\) −8.70586 −0.620267 −0.310133 0.950693i \(-0.600374\pi\)
−0.310133 + 0.950693i \(0.600374\pi\)
\(198\) 0 0
\(199\) 12.4368i 0.881624i 0.897599 + 0.440812i \(0.145309\pi\)
−0.897599 + 0.440812i \(0.854691\pi\)
\(200\) 0 0
\(201\) 14.8826 + 6.88175i 1.04974 + 0.485401i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.11077 0.581848i 0.217266 0.0406380i
\(206\) 0 0
\(207\) 5.06787 + 5.96142i 0.352241 + 0.414347i
\(208\) 0 0
\(209\) −7.30869 −0.505553
\(210\) 0 0
\(211\) −7.93329 −0.546150 −0.273075 0.961993i \(-0.588041\pi\)
−0.273075 + 0.961993i \(0.588041\pi\)
\(212\) 0 0
\(213\) 13.4599 + 6.22390i 0.922261 + 0.426454i
\(214\) 0 0
\(215\) −3.30395 17.6641i −0.225328 1.20468i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 11.3881 24.6282i 0.769538 1.66422i
\(220\) 0 0
\(221\) 5.90197i 0.397009i
\(222\) 0 0
\(223\) −2.75970 −0.184803 −0.0924014 0.995722i \(-0.529454\pi\)
−0.0924014 + 0.995722i \(0.529454\pi\)
\(224\) 0 0
\(225\) −13.1894 7.14427i −0.879291 0.476285i
\(226\) 0 0
\(227\) 6.93266i 0.460137i −0.973174 0.230068i \(-0.926105\pi\)
0.973174 0.230068i \(-0.0738950\pi\)
\(228\) 0 0
\(229\) 17.0420i 1.12617i −0.826400 0.563084i \(-0.809615\pi\)
0.826400 0.563084i \(-0.190385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.3673 −1.39982 −0.699911 0.714230i \(-0.746777\pi\)
−0.699911 + 0.714230i \(0.746777\pi\)
\(234\) 0 0
\(235\) 3.23748 + 17.3087i 0.211190 + 1.12910i
\(236\) 0 0
\(237\) 0.468097 1.01232i 0.0304062 0.0657571i
\(238\) 0 0
\(239\) 1.52427i 0.0985968i 0.998784 + 0.0492984i \(0.0156985\pi\)
−0.998784 + 0.0492984i \(0.984301\pi\)
\(240\) 0 0
\(241\) 17.2920i 1.11388i −0.830554 0.556939i \(-0.811976\pi\)
0.830554 0.556939i \(-0.188024\pi\)
\(242\) 0 0
\(243\) 12.9113 + 8.73485i 0.828262 + 0.560341i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.25624i 0.334447i
\(248\) 0 0
\(249\) 7.44752 + 3.44374i 0.471967 + 0.218238i
\(250\) 0 0
\(251\) 12.1085 0.764281 0.382140 0.924104i \(-0.375187\pi\)
0.382140 + 0.924104i \(0.375187\pi\)
\(252\) 0 0
\(253\) 4.49979i 0.282899i
\(254\) 0 0
\(255\) 17.8578 + 4.52586i 1.11830 + 0.283420i
\(256\) 0 0
\(257\) 16.5309i 1.03117i −0.856839 0.515583i \(-0.827575\pi\)
0.856839 0.515583i \(-0.172425\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.80395 5.78412i 0.421154 0.358028i
\(262\) 0 0
\(263\) 24.3013 1.49848 0.749241 0.662297i \(-0.230418\pi\)
0.749241 + 0.662297i \(0.230418\pi\)
\(264\) 0 0
\(265\) −14.5960 + 2.73008i −0.896626 + 0.167708i
\(266\) 0 0
\(267\) −6.00265 + 12.9815i −0.367356 + 0.794453i
\(268\) 0 0
\(269\) −5.91108 −0.360405 −0.180202 0.983630i \(-0.557675\pi\)
−0.180202 + 0.983630i \(0.557675\pi\)
\(270\) 0 0
\(271\) 0.135959i 0.00825892i −0.999991 0.00412946i \(-0.998686\pi\)
0.999991 0.00412946i \(-0.00131445\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.11794 + 8.04323i 0.188019 + 0.485025i
\(276\) 0 0
\(277\) 17.5681i 1.05557i −0.849379 0.527784i \(-0.823023\pi\)
0.849379 0.527784i \(-0.176977\pi\)
\(278\) 0 0
\(279\) 0.410222 0.348735i 0.0245594 0.0208782i
\(280\) 0 0
\(281\) 8.12449i 0.484667i 0.970193 + 0.242333i \(0.0779128\pi\)
−0.970193 + 0.242333i \(0.922087\pi\)
\(282\) 0 0
\(283\) −16.6384 −0.989051 −0.494526 0.869163i \(-0.664658\pi\)
−0.494526 + 0.869163i \(0.664658\pi\)
\(284\) 0 0
\(285\) −15.9040 4.03069i −0.942072 0.238757i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.62563 −0.330919
\(290\) 0 0
\(291\) −12.2259 + 26.4401i −0.716697 + 1.54995i
\(292\) 0 0
\(293\) 4.87957i 0.285067i 0.989790 + 0.142534i \(0.0455249\pi\)
−0.989790 + 0.142534i \(0.954475\pi\)
\(294\) 0 0
\(295\) 4.55195 0.851410i 0.265025 0.0495710i
\(296\) 0 0
\(297\) −2.40364 8.63660i −0.139474 0.501146i
\(298\) 0 0
\(299\) 3.23615 0.187151
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −11.4403 + 24.7411i −0.657228 + 1.42134i
\(304\) 0 0
\(305\) −3.84193 20.5404i −0.219988 1.17614i
\(306\) 0 0
\(307\) 18.5719 1.05995 0.529977 0.848012i \(-0.322200\pi\)
0.529977 + 0.848012i \(0.322200\pi\)
\(308\) 0 0
\(309\) 10.7597 23.2691i 0.612095 1.32373i
\(310\) 0 0
\(311\) −28.8269 −1.63462 −0.817312 0.576195i \(-0.804537\pi\)
−0.817312 + 0.576195i \(0.804537\pi\)
\(312\) 0 0
\(313\) 5.31901 0.300648 0.150324 0.988637i \(-0.451968\pi\)
0.150324 + 0.988637i \(0.451968\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.959456 0.0538884 0.0269442 0.999637i \(-0.491422\pi\)
0.0269442 + 0.999637i \(0.491422\pi\)
\(318\) 0 0
\(319\) −5.13575 −0.287547
\(320\) 0 0
\(321\) 6.26585 13.5507i 0.349726 0.756326i
\(322\) 0 0
\(323\) 20.1502 1.12119
\(324\) 0 0
\(325\) −5.78451 + 2.24235i −0.320867 + 0.124383i
\(326\) 0 0
\(327\) 4.75618 10.2858i 0.263017 0.568807i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −17.8535 −0.981319 −0.490659 0.871351i \(-0.663244\pi\)
−0.490659 + 0.871351i \(0.663244\pi\)
\(332\) 0 0
\(333\) 12.3847 10.5284i 0.678676 0.576950i
\(334\) 0 0
\(335\) −3.89184 20.8072i −0.212634 1.13682i
\(336\) 0 0
\(337\) 1.47586i 0.0803951i 0.999192 + 0.0401975i \(0.0127987\pi\)
−0.999192 + 0.0401975i \(0.987201\pi\)
\(338\) 0 0
\(339\) 14.0425 30.3687i 0.762684 1.64940i
\(340\) 0 0
\(341\) −0.309644 −0.0167681
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.48160 9.79173i 0.133605 0.527169i
\(346\) 0 0
\(347\) 20.7568 1.11428 0.557141 0.830418i \(-0.311898\pi\)
0.557141 + 0.830418i \(0.311898\pi\)
\(348\) 0 0
\(349\) 12.0460i 0.644806i 0.946603 + 0.322403i \(0.104491\pi\)
−0.946603 + 0.322403i \(0.895509\pi\)
\(350\) 0 0
\(351\) 6.21125 1.72865i 0.331532 0.0922683i
\(352\) 0 0
\(353\) 5.44001i 0.289542i 0.989465 + 0.144771i \(0.0462446\pi\)
−0.989465 + 0.144771i \(0.953755\pi\)
\(354\) 0 0
\(355\) −3.51980 18.8182i −0.186812 0.998764i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.90499i 0.469987i 0.971997 + 0.234994i \(0.0755069\pi\)
−0.971997 + 0.234994i \(0.924493\pi\)
\(360\) 0 0
\(361\) 1.05440 0.0554947
\(362\) 0 0
\(363\) 5.83259 12.6137i 0.306132 0.662048i
\(364\) 0 0
\(365\) −34.4324 + 6.44033i −1.80227 + 0.337102i
\(366\) 0 0
\(367\) −16.7979 −0.876843 −0.438422 0.898769i \(-0.644462\pi\)
−0.438422 + 0.898769i \(0.644462\pi\)
\(368\) 0 0
\(369\) 2.75007 + 3.23495i 0.143163 + 0.168405i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.38678i 0.227139i 0.993530 + 0.113569i \(0.0362285\pi\)
−0.993530 + 0.113569i \(0.963772\pi\)
\(374\) 0 0
\(375\) 2.34898 + 19.2219i 0.121301 + 0.992616i
\(376\) 0 0
\(377\) 3.69352i 0.190226i
\(378\) 0 0
\(379\) −12.8658 −0.660873 −0.330436 0.943828i \(-0.607196\pi\)
−0.330436 + 0.943828i \(0.607196\pi\)
\(380\) 0 0
\(381\) 24.9421 + 11.5333i 1.27782 + 0.590867i
\(382\) 0 0
\(383\) 33.0774i 1.69018i 0.534628 + 0.845088i \(0.320452\pi\)
−0.534628 + 0.845088i \(0.679548\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18.3693 15.6160i 0.933764 0.793803i
\(388\) 0 0
\(389\) 0.922630i 0.0467792i −0.999726 0.0233896i \(-0.992554\pi\)
0.999726 0.0233896i \(-0.00744582\pi\)
\(390\) 0 0
\(391\) 12.4060i 0.627399i
\(392\) 0 0
\(393\) 10.5844 22.8900i 0.533910 1.15465i
\(394\) 0 0
\(395\) −1.41531 + 0.264723i −0.0712118 + 0.0133197i
\(396\) 0 0
\(397\) −22.2990 −1.11916 −0.559578 0.828778i \(-0.689037\pi\)
−0.559578 + 0.828778i \(0.689037\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.60434i 0.179992i 0.995942 + 0.0899961i \(0.0286855\pi\)
−0.995942 + 0.0899961i \(0.971315\pi\)
\(402\) 0 0
\(403\) 0.222689i 0.0110929i
\(404\) 0 0
\(405\) −0.467408 20.1192i −0.0232257 0.999730i
\(406\) 0 0
\(407\) −9.34819 −0.463372
\(408\) 0 0
\(409\) 25.9838i 1.28481i 0.766363 + 0.642407i \(0.222064\pi\)
−0.766363 + 0.642407i \(0.777936\pi\)
\(410\) 0 0
\(411\) −7.83654 + 16.9475i −0.386548 + 0.835958i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.94754 10.4123i −0.0956010 0.511118i
\(416\) 0 0
\(417\) −27.5741 12.7503i −1.35031 0.624385i
\(418\) 0 0
\(419\) −11.7471 −0.573882 −0.286941 0.957948i \(-0.592638\pi\)
−0.286941 + 0.957948i \(0.592638\pi\)
\(420\) 0 0
\(421\) 10.1171 0.493077 0.246538 0.969133i \(-0.420707\pi\)
0.246538 + 0.969133i \(0.420707\pi\)
\(422\) 0 0
\(423\) −17.9997 + 15.3018i −0.875176 + 0.743997i
\(424\) 0 0
\(425\) −8.59622 22.1753i −0.416978 1.07566i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.36544 1.55618i −0.162485 0.0751332i
\(430\) 0 0
\(431\) 13.8264i 0.665994i −0.942928 0.332997i \(-0.891940\pi\)
0.942928 0.332997i \(-0.108060\pi\)
\(432\) 0 0
\(433\) −4.69553 −0.225653 −0.112826 0.993615i \(-0.535990\pi\)
−0.112826 + 0.993615i \(0.535990\pi\)
\(434\) 0 0
\(435\) −11.1756 2.83233i −0.535829 0.135800i
\(436\) 0 0
\(437\) 11.0487i 0.528530i
\(438\) 0 0
\(439\) 39.2207i 1.87190i 0.352133 + 0.935950i \(0.385457\pi\)
−0.352133 + 0.935950i \(0.614543\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.7445 −1.50823 −0.754114 0.656743i \(-0.771934\pi\)
−0.754114 + 0.656743i \(0.771934\pi\)
\(444\) 0 0
\(445\) 18.1492 3.39468i 0.860354 0.160923i
\(446\) 0 0
\(447\) 28.0979 + 12.9925i 1.32899 + 0.614525i
\(448\) 0 0
\(449\) 31.3461i 1.47931i 0.672985 + 0.739656i \(0.265012\pi\)
−0.672985 + 0.739656i \(0.734988\pi\)
\(450\) 0 0
\(451\) 2.44180i 0.114980i
\(452\) 0 0
\(453\) −15.0518 + 32.5514i −0.707196 + 1.52940i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.5180i 1.24046i −0.784420 0.620229i \(-0.787039\pi\)
0.784420 0.620229i \(-0.212961\pi\)
\(458\) 0 0
\(459\) 6.62689 + 23.8113i 0.309317 + 1.11141i
\(460\) 0 0
\(461\) −15.1409 −0.705184 −0.352592 0.935777i \(-0.614700\pi\)
−0.352592 + 0.935777i \(0.614700\pi\)
\(462\) 0 0
\(463\) 36.2691i 1.68557i −0.538252 0.842784i \(-0.680915\pi\)
0.538252 0.842784i \(-0.319085\pi\)
\(464\) 0 0
\(465\) −0.673797 0.170766i −0.0312466 0.00791909i
\(466\) 0 0
\(467\) 7.78888i 0.360426i 0.983628 + 0.180213i \(0.0576788\pi\)
−0.983628 + 0.180213i \(0.942321\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 12.4446 26.9131i 0.573418 1.24009i
\(472\) 0 0
\(473\) −13.8655 −0.637536
\(474\) 0 0
\(475\) 7.65572 + 19.7492i 0.351269 + 0.906154i
\(476\) 0 0
\(477\) −12.9036 15.1787i −0.590814 0.694984i
\(478\) 0 0
\(479\) −33.7914 −1.54397 −0.771984 0.635642i \(-0.780735\pi\)
−0.771984 + 0.635642i \(0.780735\pi\)
\(480\) 0 0
\(481\) 6.72300i 0.306543i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 36.9655 6.91414i 1.67852 0.313955i
\(486\) 0 0
\(487\) 10.8580i 0.492022i 0.969267 + 0.246011i \(0.0791199\pi\)
−0.969267 + 0.246011i \(0.920880\pi\)
\(488\) 0 0
\(489\) 19.1208 + 8.84150i 0.864674 + 0.399826i
\(490\) 0 0
\(491\) 8.39794i 0.378994i 0.981881 + 0.189497i \(0.0606857\pi\)
−0.981881 + 0.189497i \(0.939314\pi\)
\(492\) 0 0
\(493\) 14.1594 0.637706
\(494\) 0 0
\(495\) −7.28934 + 8.98959i −0.327632 + 0.404052i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.3785 −0.643668 −0.321834 0.946796i \(-0.604299\pi\)
−0.321834 + 0.946796i \(0.604299\pi\)
\(500\) 0 0
\(501\) 3.52910 + 1.63186i 0.157669 + 0.0729061i
\(502\) 0 0
\(503\) 2.96439i 0.132175i −0.997814 0.0660877i \(-0.978948\pi\)
0.997814 0.0660877i \(-0.0210517\pi\)
\(504\) 0 0
\(505\) 34.5901 6.46984i 1.53924 0.287904i
\(506\) 0 0
\(507\) −8.33115 + 18.0172i −0.369999 + 0.800170i
\(508\) 0 0
\(509\) −30.5783 −1.35536 −0.677680 0.735357i \(-0.737015\pi\)
−0.677680 + 0.735357i \(0.737015\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.90186 21.2061i −0.260573 0.936273i
\(514\) 0 0
\(515\) −32.5322 + 6.08491i −1.43354 + 0.268133i
\(516\) 0 0
\(517\) 13.5865 0.597535
\(518\) 0 0
\(519\) 30.3129 + 14.0167i 1.33059 + 0.615266i
\(520\) 0 0
\(521\) −26.6701 −1.16844 −0.584220 0.811596i \(-0.698599\pi\)
−0.584220 + 0.811596i \(0.698599\pi\)
\(522\) 0 0
\(523\) 20.2062 0.883556 0.441778 0.897124i \(-0.354348\pi\)
0.441778 + 0.897124i \(0.354348\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.853693 0.0371875
\(528\) 0 0
\(529\) −16.1976 −0.704243
\(530\) 0 0
\(531\) 4.02414 + 4.73366i 0.174633 + 0.205424i
\(532\) 0 0
\(533\) 1.75609 0.0760647
\(534\) 0 0
\(535\) −18.9450 + 3.54353i −0.819064 + 0.153200i
\(536\) 0 0
\(537\) −35.1889 16.2714i −1.51851 0.702161i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −15.2721 −0.656597 −0.328298 0.944574i \(-0.606475\pi\)
−0.328298 + 0.944574i \(0.606475\pi\)
\(542\) 0 0
\(543\) 13.2269 + 6.11614i 0.567621 + 0.262469i
\(544\) 0 0
\(545\) −14.3805 + 2.68976i −0.615991 + 0.115217i
\(546\) 0 0
\(547\) 15.1601i 0.648199i −0.946023 0.324099i \(-0.894939\pi\)
0.946023 0.324099i \(-0.105061\pi\)
\(548\) 0 0
\(549\) 21.3603 18.1587i 0.911637 0.774993i
\(550\) 0 0
\(551\) −12.6102 −0.537213
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −20.3420 5.15546i −0.863471 0.218837i
\(556\) 0 0
\(557\) −22.1748 −0.939574 −0.469787 0.882780i \(-0.655669\pi\)
−0.469787 + 0.882780i \(0.655669\pi\)
\(558\) 0 0
\(559\) 9.97175i 0.421760i
\(560\) 0 0
\(561\) 5.96574 12.9017i 0.251874 0.544708i
\(562\) 0 0
\(563\) 36.1336i 1.52285i 0.648252 + 0.761425i \(0.275500\pi\)
−0.648252 + 0.761425i \(0.724500\pi\)
\(564\) 0 0
\(565\) −42.4580 + 7.94146i −1.78622 + 0.334100i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.23544i 0.387170i 0.981084 + 0.193585i \(0.0620115\pi\)
−0.981084 + 0.193585i \(0.937989\pi\)
\(570\) 0 0
\(571\) 35.7525 1.49620 0.748098 0.663589i \(-0.230967\pi\)
0.748098 + 0.663589i \(0.230967\pi\)
\(572\) 0 0
\(573\) 33.6550 + 15.5621i 1.40596 + 0.650117i
\(574\) 0 0
\(575\) −12.1591 + 4.71345i −0.507070 + 0.196564i
\(576\) 0 0
\(577\) −27.1169 −1.12889 −0.564447 0.825470i \(-0.690910\pi\)
−0.564447 + 0.825470i \(0.690910\pi\)
\(578\) 0 0
\(579\) −13.9827 6.46563i −0.581103 0.268702i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 11.4572i 0.474507i
\(584\) 0 0
\(585\) −6.46511 5.24233i −0.267299 0.216744i
\(586\) 0 0
\(587\) 7.14942i 0.295088i −0.989055 0.147544i \(-0.952863\pi\)
0.989055 0.147544i \(-0.0471368\pi\)
\(588\) 0 0
\(589\) −0.760292 −0.0313273
\(590\) 0 0
\(591\) −6.32870 + 13.6866i −0.260328 + 0.562992i
\(592\) 0 0
\(593\) 41.2878i 1.69549i 0.530406 + 0.847744i \(0.322040\pi\)
−0.530406 + 0.847744i \(0.677960\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.5521 + 9.04093i 0.800216 + 0.370021i
\(598\) 0 0
\(599\) 11.4425i 0.467527i −0.972293 0.233763i \(-0.924896\pi\)
0.972293 0.233763i \(-0.0751041\pi\)
\(600\) 0 0
\(601\) 12.5356i 0.511340i 0.966764 + 0.255670i \(0.0822960\pi\)
−0.966764 + 0.255670i \(0.917704\pi\)
\(602\) 0 0
\(603\) 21.6378 18.3946i 0.881160 0.749084i
\(604\) 0 0
\(605\) −17.6350 + 3.29851i −0.716966 + 0.134103i
\(606\) 0 0
\(607\) −2.89316 −0.117430 −0.0587148 0.998275i \(-0.518700\pi\)
−0.0587148 + 0.998275i \(0.518700\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.77112i 0.395297i
\(612\) 0 0
\(613\) 24.5127i 0.990058i −0.868877 0.495029i \(-0.835158\pi\)
0.868877 0.495029i \(-0.164842\pi\)
\(614\) 0 0
\(615\) 1.34664 5.31347i 0.0543017 0.214260i
\(616\) 0 0
\(617\) −14.0471 −0.565514 −0.282757 0.959192i \(-0.591249\pi\)
−0.282757 + 0.959192i \(0.591249\pi\)
\(618\) 0 0
\(619\) 3.19919i 0.128586i −0.997931 0.0642932i \(-0.979521\pi\)
0.997931 0.0642932i \(-0.0204793\pi\)
\(620\) 0 0
\(621\) 13.0561 3.63364i 0.523924 0.145813i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 18.4680 16.8503i 0.738721 0.674011i
\(626\) 0 0
\(627\) −5.31304 + 11.4901i −0.212182 + 0.458871i
\(628\) 0 0
\(629\) 25.7731 1.02764
\(630\) 0 0
\(631\) 16.6389 0.662384 0.331192 0.943563i \(-0.392549\pi\)
0.331192 + 0.943563i \(0.392549\pi\)
\(632\) 0 0
\(633\) −5.76709 + 12.4720i −0.229221 + 0.495719i
\(634\) 0 0
\(635\) −6.52241 34.8712i −0.258834 1.38382i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 19.5694 16.6361i 0.774152 0.658116i
\(640\) 0 0
\(641\) 17.2353i 0.680755i −0.940289 0.340378i \(-0.889445\pi\)
0.940289 0.340378i \(-0.110555\pi\)
\(642\) 0 0
\(643\) 37.6573 1.48506 0.742530 0.669813i \(-0.233626\pi\)
0.742530 + 0.669813i \(0.233626\pi\)
\(644\) 0 0
\(645\) −30.1719 7.64672i −1.18802 0.301089i
\(646\) 0 0
\(647\) 33.4209i 1.31391i 0.753929 + 0.656956i \(0.228156\pi\)
−0.753929 + 0.656956i \(0.771844\pi\)
\(648\) 0 0
\(649\) 3.57306i 0.140255i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.8570 −0.503135 −0.251567 0.967840i \(-0.580946\pi\)
−0.251567 + 0.967840i \(0.580946\pi\)
\(654\) 0 0
\(655\) −32.0022 + 5.98578i −1.25043 + 0.233884i
\(656\) 0 0
\(657\) −30.4398 35.8069i −1.18757 1.39696i
\(658\) 0 0
\(659\) 22.3060i 0.868919i −0.900691 0.434460i \(-0.856939\pi\)
0.900691 0.434460i \(-0.143061\pi\)
\(660\) 0 0
\(661\) 12.5102i 0.486589i −0.969953 0.243294i \(-0.921772\pi\)
0.969953 0.243294i \(-0.0782281\pi\)
\(662\) 0 0
\(663\) 9.27858 + 4.29042i 0.360350 + 0.166626i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.76382i 0.300616i
\(668\) 0 0
\(669\) −2.00615 + 4.33856i −0.0775624 + 0.167738i
\(670\) 0 0
\(671\) −16.1232 −0.622429
\(672\) 0 0
\(673\) 49.4108i 1.90464i −0.305094 0.952322i \(-0.598688\pi\)
0.305094 0.952322i \(-0.401312\pi\)
\(674\) 0 0
\(675\) −20.8196 + 15.5417i −0.801347 + 0.598200i
\(676\) 0 0
\(677\) 3.44410i 0.132367i 0.997807 + 0.0661837i \(0.0210824\pi\)
−0.997807 + 0.0661837i \(0.978918\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −10.8989 5.03968i −0.417648 0.193121i
\(682\) 0 0
\(683\) 46.5764 1.78220 0.891098 0.453811i \(-0.149936\pi\)
0.891098 + 0.453811i \(0.149936\pi\)
\(684\) 0 0
\(685\) 23.6940 4.43180i 0.905303 0.169330i
\(686\) 0 0
\(687\) −26.7920 12.3887i −1.02218 0.472657i
\(688\) 0 0
\(689\) −8.23973 −0.313909
\(690\) 0 0
\(691\) 10.6259i 0.404226i −0.979362 0.202113i \(-0.935219\pi\)
0.979362 0.202113i \(-0.0647809\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.21068 + 38.5509i 0.273517 + 1.46232i
\(696\) 0 0
\(697\) 6.73210i 0.254997i
\(698\) 0 0
\(699\) −15.5330 + 33.5919i −0.587510 + 1.27056i
\(700\) 0 0
\(701\) 23.3919i 0.883500i 0.897138 + 0.441750i \(0.145642\pi\)
−0.897138 + 0.441750i \(0.854358\pi\)
\(702\) 0 0
\(703\) −22.9533 −0.865701
\(704\) 0 0
\(705\) 29.5648 + 7.49287i 1.11348 + 0.282198i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.50206 −0.319302 −0.159651 0.987174i \(-0.551037\pi\)
−0.159651 + 0.987174i \(0.551037\pi\)
\(710\) 0 0
\(711\) −1.25120 1.47180i −0.0469236 0.0551970i
\(712\) 0 0
\(713\) 0.468094i 0.0175303i
\(714\) 0 0
\(715\) 0.880068 + 4.70517i 0.0329127 + 0.175963i
\(716\) 0 0
\(717\) 2.39633 + 1.10806i 0.0894925 + 0.0413814i
\(718\) 0 0
\(719\) 40.5970 1.51401 0.757006 0.653408i \(-0.226661\pi\)
0.757006 + 0.653408i \(0.226661\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −27.1851 12.5704i −1.01102 0.467498i
\(724\) 0 0
\(725\) 5.37961 + 13.8776i 0.199794 + 0.515400i
\(726\) 0 0
\(727\) 15.8178 0.586651 0.293325 0.956013i \(-0.405238\pi\)
0.293325 + 0.956013i \(0.405238\pi\)
\(728\) 0 0
\(729\) 23.1181 13.9483i 0.856224 0.516604i
\(730\) 0 0
\(731\) 38.2274 1.41389
\(732\) 0 0
\(733\) −20.1829 −0.745473 −0.372736 0.927937i \(-0.621580\pi\)
−0.372736 + 0.927937i \(0.621580\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −16.3326 −0.601620
\(738\) 0 0
\(739\) 20.6458 0.759469 0.379734 0.925096i \(-0.376015\pi\)
0.379734 + 0.925096i \(0.376015\pi\)
\(740\) 0 0
\(741\) −8.26342 3.82102i −0.303564 0.140369i
\(742\) 0 0
\(743\) 31.8671 1.16909 0.584545 0.811361i \(-0.301273\pi\)
0.584545 + 0.811361i \(0.301273\pi\)
\(744\) 0 0
\(745\) −7.34766 39.2833i −0.269198 1.43923i
\(746\) 0 0
\(747\) 10.8279 9.20494i 0.396173 0.336791i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 35.0974 1.28072 0.640360 0.768075i \(-0.278785\pi\)
0.640360 + 0.768075i \(0.278785\pi\)
\(752\) 0 0
\(753\) 8.80224 19.0359i 0.320771 0.693708i
\(754\) 0 0
\(755\) 45.5097 8.51226i 1.65627 0.309793i
\(756\) 0 0
\(757\) 37.1926i 1.35179i −0.736999 0.675894i \(-0.763758\pi\)
0.736999 0.675894i \(-0.236242\pi\)
\(758\) 0 0
\(759\) −7.07419 3.27111i −0.256777 0.118734i
\(760\) 0 0
\(761\) −26.4360 −0.958305 −0.479152 0.877732i \(-0.659056\pi\)
−0.479152 + 0.877732i \(0.659056\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 20.0969 24.7845i 0.726604 0.896084i
\(766\) 0 0
\(767\) 2.56966 0.0927852
\(768\) 0 0
\(769\) 47.0058i 1.69507i −0.530738 0.847536i \(-0.678085\pi\)
0.530738 0.847536i \(-0.321915\pi\)
\(770\) 0 0
\(771\) −25.9884 12.0171i −0.935950 0.432784i
\(772\) 0 0
\(773\) 20.9970i 0.755210i −0.925967 0.377605i \(-0.876748\pi\)
0.925967 0.377605i \(-0.123252\pi\)
\(774\) 0 0
\(775\) 0.324346 + 0.836703i 0.0116509 + 0.0300553i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.99555i 0.214813i
\(780\) 0 0
\(781\) −14.7713 −0.528560
\(782\) 0 0
\(783\) −4.14718 14.9013i −0.148208 0.532531i
\(784\) 0 0
\(785\) −37.6267 + 7.03782i −1.34296 + 0.251190i
\(786\) 0 0
\(787\) −34.2223 −1.21989 −0.609946 0.792443i \(-0.708809\pi\)
−0.609946 + 0.792443i \(0.708809\pi\)
\(788\) 0 0
\(789\) 17.6658 38.2045i 0.628919 1.36011i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 11.5954i 0.411766i
\(794\) 0 0
\(795\) −6.31854 + 24.9312i −0.224096 + 0.884220i
\(796\) 0 0
\(797\) 32.2568i 1.14259i −0.820744 0.571296i \(-0.806441\pi\)
0.820744 0.571296i \(-0.193559\pi\)
\(798\) 0 0
\(799\) −37.4583 −1.32518
\(800\) 0 0
\(801\) 16.0448 + 18.8737i 0.566914 + 0.666870i
\(802\) 0 0
\(803\) 27.0277i 0.953787i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −4.29704 + 9.29289i −0.151263 + 0.327125i
\(808\) 0 0
\(809\) 9.29300i 0.326725i −0.986566 0.163362i \(-0.947766\pi\)
0.986566 0.163362i \(-0.0522339\pi\)
\(810\) 0 0
\(811\) 20.6750i 0.725996i −0.931790 0.362998i \(-0.881753\pi\)
0.931790 0.362998i \(-0.118247\pi\)
\(812\) 0 0
\(813\) −0.213743 0.0988351i −0.00749630 0.00346630i
\(814\) 0 0
\(815\) −5.00014 26.7326i −0.175147 0.936401i
\(816\) 0 0
\(817\) −34.0450 −1.19108
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.54303i 0.263253i −0.991299 0.131627i \(-0.957980\pi\)
0.991299 0.131627i \(-0.0420200\pi\)
\(822\) 0 0
\(823\) 17.4639i 0.608755i 0.952551 + 0.304377i \(0.0984484\pi\)
−0.952551 + 0.304377i \(0.901552\pi\)
\(824\) 0 0
\(825\) 14.9115 + 0.945248i 0.519151 + 0.0329093i
\(826\) 0 0
\(827\) −38.3714 −1.33430 −0.667152 0.744921i \(-0.732487\pi\)
−0.667152 + 0.744921i \(0.732487\pi\)
\(828\) 0 0
\(829\) 24.0625i 0.835725i 0.908510 + 0.417863i \(0.137221\pi\)
−0.908510 + 0.417863i \(0.862779\pi\)
\(830\) 0 0
\(831\) −27.6191 12.7711i −0.958098 0.443025i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.922866 4.93398i −0.0319371 0.170747i
\(836\) 0 0
\(837\) −0.250041 0.898429i −0.00864268 0.0310542i
\(838\) 0 0
\(839\) −44.6178 −1.54038 −0.770188 0.637817i \(-0.779838\pi\)
−0.770188 + 0.637817i \(0.779838\pi\)
\(840\) 0 0
\(841\) 20.1389 0.694445
\(842\) 0 0
\(843\) 12.7726 + 5.90608i 0.439913 + 0.203416i
\(844\) 0 0
\(845\) 25.1895 4.71152i 0.866545 0.162081i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −12.0953 + 26.1575i −0.415108 + 0.897724i
\(850\) 0 0
\(851\) 14.1318i 0.484433i
\(852\) 0 0
\(853\) 18.8961 0.646991 0.323495 0.946230i \(-0.395142\pi\)
0.323495 + 0.946230i \(0.395142\pi\)
\(854\) 0 0
\(855\) −17.8981 + 22.0728i −0.612102 + 0.754875i
\(856\) 0 0
\(857\) 5.73649i 0.195955i −0.995189 0.0979775i \(-0.968763\pi\)
0.995189 0.0979775i \(-0.0312373\pi\)
\(858\) 0 0
\(859\) 7.17954i 0.244963i 0.992471 + 0.122481i \(0.0390852\pi\)
−0.992471 + 0.122481i \(0.960915\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −37.5538 −1.27835 −0.639173 0.769063i \(-0.720723\pi\)
−0.639173 + 0.769063i \(0.720723\pi\)
\(864\) 0 0
\(865\) −7.92689 42.3800i −0.269522 1.44096i
\(866\) 0 0
\(867\) −4.08954 + 8.84414i −0.138888 + 0.300363i
\(868\) 0 0
\(869\) 1.11095i 0.0376863i
\(870\) 0 0
\(871\) 11.7461i 0.398000i
\(872\) 0 0
\(873\) 32.6793 + 38.4412i 1.10603 + 1.30104i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 40.3087i 1.36113i 0.732689 + 0.680564i \(0.238265\pi\)
−0.732689 + 0.680564i \(0.761735\pi\)
\(878\) 0 0
\(879\) 7.67124 + 3.54719i 0.258745 + 0.119644i
\(880\) 0 0
\(881\) 20.5873 0.693603 0.346802 0.937938i \(-0.387268\pi\)
0.346802 + 0.937938i \(0.387268\pi\)
\(882\) 0 0
\(883\) 13.6651i 0.459868i −0.973206 0.229934i \(-0.926149\pi\)
0.973206 0.229934i \(-0.0738511\pi\)
\(884\) 0 0
\(885\) 1.97052 7.77512i 0.0662382 0.261358i
\(886\) 0 0
\(887\) 10.5807i 0.355266i −0.984097 0.177633i \(-0.943156\pi\)
0.984097 0.177633i \(-0.0568440\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −15.3251 2.49955i −0.513409 0.0837381i
\(892\) 0 0
\(893\) 33.3601 1.11635
\(894\) 0 0
\(895\) 9.20195 + 49.1970i 0.307587 + 1.64448i
\(896\) 0 0
\(897\) 2.35251 5.08760i 0.0785481 0.169870i
\(898\) 0 0
\(899\) −0.534251 −0.0178183
\(900\) 0 0
\(901\) 31.5876i 1.05234i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.45886 18.4923i −0.114976 0.614706i
\(906\) 0 0
\(907\) 4.44682i 0.147654i 0.997271 + 0.0738271i \(0.0235213\pi\)
−0.997271 + 0.0738271i \(0.976479\pi\)
\(908\) 0 0
\(909\) 30.5793 + 35.9709i 1.01425 + 1.19308i
\(910\) 0 0
\(911\) 56.2126i 1.86241i −0.364501 0.931203i \(-0.618760\pi\)
0.364501 0.931203i \(-0.381240\pi\)
\(912\) 0 0
\(913\) −8.17312 −0.270491
\(914\) 0 0
\(915\) −35.0847 8.89182i −1.15986 0.293954i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 43.3160 1.42886 0.714432 0.699705i \(-0.246685\pi\)
0.714432 + 0.699705i \(0.246685\pi\)
\(920\) 0 0
\(921\) 13.5008 29.1972i 0.444867 0.962079i
\(922\) 0 0
\(923\) 10.6232i 0.349667i
\(924\) 0 0
\(925\) 9.79206 + 25.2602i 0.321961 + 0.830550i
\(926\) 0 0
\(927\) −28.7600 33.8308i −0.944602 1.11115i
\(928\) 0 0
\(929\) −2.02666 −0.0664925 −0.0332462 0.999447i \(-0.510585\pi\)
−0.0332462 + 0.999447i \(0.510585\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −20.9557 + 45.3193i −0.686058 + 1.48369i
\(934\) 0 0
\(935\) −18.0376 + 3.37381i −0.589893 + 0.110335i
\(936\) 0 0
\(937\) −41.1052 −1.34285 −0.671424 0.741074i \(-0.734317\pi\)
−0.671424 + 0.741074i \(0.734317\pi\)
\(938\) 0 0
\(939\) 3.86664 8.36210i 0.126183 0.272887i
\(940\) 0 0
\(941\) 15.1589 0.494167 0.247083 0.968994i \(-0.420528\pi\)
0.247083 + 0.968994i \(0.420528\pi\)
\(942\) 0 0
\(943\) 3.69132 0.120206
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.2201 0.884535 0.442267 0.896883i \(-0.354174\pi\)
0.442267 + 0.896883i \(0.354174\pi\)
\(948\) 0 0
\(949\) −19.4377 −0.630975
\(950\) 0 0
\(951\) 0.697475 1.50838i 0.0226172 0.0489125i
\(952\) 0 0
\(953\) −0.378966 −0.0122759 −0.00613795 0.999981i \(-0.501954\pi\)
−0.00613795 + 0.999981i \(0.501954\pi\)
\(954\) 0 0
\(955\) −8.80085 47.0526i −0.284789 1.52259i
\(956\) 0 0
\(957\) −3.73342 + 8.07400i −0.120684 + 0.260995i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.9678 0.998961
\(962\) 0 0
\(963\) −16.7483 19.7013i −0.539706 0.634865i
\(964\) 0 0
\(965\) 3.65651 + 19.5490i 0.117707 + 0.629306i
\(966\) 0 0
\(967\) 15.2235i 0.489554i 0.969579 + 0.244777i \(0.0787147\pi\)
−0.969579 + 0.244777i \(0.921285\pi\)
\(968\) 0 0
\(969\) 14.6481 31.6784i 0.470566 1.01766i
\(970\) 0 0
\(971\) 28.0624 0.900566 0.450283 0.892886i \(-0.351323\pi\)
0.450283 + 0.892886i \(0.351323\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −0.679801 + 10.7240i −0.0217711 + 0.343443i
\(976\) 0 0
\(977\) −34.2912 −1.09707 −0.548536 0.836127i \(-0.684814\pi\)
−0.548536 + 0.836127i \(0.684814\pi\)
\(978\) 0 0
\(979\) 14.2462i 0.455312i
\(980\) 0 0
\(981\) −12.7130 14.9545i −0.405895 0.477461i
\(982\) 0 0
\(983\) 9.35033i 0.298229i 0.988820 + 0.149115i \(0.0476424\pi\)
−0.988820 + 0.149115i \(0.952358\pi\)
\(984\) 0 0
\(985\) 19.1350 3.57907i 0.609693 0.114039i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 20.9607i 0.666513i
\(990\) 0 0
\(991\) 21.5334 0.684032 0.342016 0.939694i \(-0.388890\pi\)
0.342016 + 0.939694i \(0.388890\pi\)
\(992\) 0 0
\(993\) −12.9786 + 28.0678i −0.411863 + 0.890705i
\(994\) 0 0
\(995\) −5.11292 27.3356i −0.162091 0.866595i
\(996\) 0 0
\(997\) 39.6965 1.25720 0.628600 0.777729i \(-0.283628\pi\)
0.628600 + 0.777729i \(0.283628\pi\)
\(998\) 0 0
\(999\) −7.54877 27.1237i −0.238833 0.858156i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.2.f.b.1469.29 yes 48
3.2 odd 2 inner 2940.2.f.b.1469.32 yes 48
5.4 even 2 inner 2940.2.f.b.1469.19 yes 48
7.6 odd 2 inner 2940.2.f.b.1469.20 yes 48
15.14 odd 2 inner 2940.2.f.b.1469.18 yes 48
21.20 even 2 inner 2940.2.f.b.1469.17 48
35.34 odd 2 inner 2940.2.f.b.1469.30 yes 48
105.104 even 2 inner 2940.2.f.b.1469.31 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2940.2.f.b.1469.17 48 21.20 even 2 inner
2940.2.f.b.1469.18 yes 48 15.14 odd 2 inner
2940.2.f.b.1469.19 yes 48 5.4 even 2 inner
2940.2.f.b.1469.20 yes 48 7.6 odd 2 inner
2940.2.f.b.1469.29 yes 48 1.1 even 1 trivial
2940.2.f.b.1469.30 yes 48 35.34 odd 2 inner
2940.2.f.b.1469.31 yes 48 105.104 even 2 inner
2940.2.f.b.1469.32 yes 48 3.2 odd 2 inner