Properties

Label 2940.2.f.b.1469.13
Level $2940$
Weight $2$
Character 2940.1469
Analytic conductor $23.476$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(1469,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.1469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1469.13
Character \(\chi\) \(=\) 2940.1469
Dual form 2940.2.f.b.1469.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03814 - 1.38645i) q^{3} +(-1.36379 - 1.77203i) q^{5} +(-0.844511 + 2.87868i) q^{9} -4.03724i q^{11} -4.67109 q^{13} +(-1.04103 + 3.73045i) q^{15} +6.20571i q^{17} -7.23153i q^{19} -2.35095 q^{23} +(-1.28017 + 4.83334i) q^{25} +(4.86788 - 1.81761i) q^{27} +5.15540i q^{29} -9.60664i q^{31} +(-5.59745 + 4.19124i) q^{33} -5.26896i q^{37} +(4.84927 + 6.47625i) q^{39} -9.85171 q^{41} +12.7596i q^{43} +(6.25284 - 2.42941i) q^{45} +7.80263i q^{47} +(8.60393 - 6.44243i) q^{51} +2.63982 q^{53} +(-7.15411 + 5.50593i) q^{55} +(-10.0262 + 7.50737i) q^{57} -4.28148 q^{59} -1.43225i q^{61} +(6.37037 + 8.27731i) q^{65} -3.05372i q^{67} +(2.44063 + 3.25949i) q^{69} +6.25374i q^{71} -2.25510 q^{73} +(8.03021 - 3.24280i) q^{75} +7.22379 q^{79} +(-7.57360 - 4.86216i) q^{81} -4.50946i q^{83} +(10.9967 - 8.46326i) q^{85} +(7.14772 - 5.35205i) q^{87} +11.8046 q^{89} +(-13.3192 + 9.97308i) q^{93} +(-12.8145 + 9.86226i) q^{95} -5.21085 q^{97} +(11.6219 + 3.40949i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 8 q^{9} - 16 q^{15} + 16 q^{25} + 56 q^{39} + 8 q^{51} + 48 q^{79} - 24 q^{81} + 32 q^{85} + 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.03814 1.38645i −0.599373 0.800470i
\(4\) 0 0
\(5\) −1.36379 1.77203i −0.609904 0.792475i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.844511 + 2.87868i −0.281504 + 0.959560i
\(10\) 0 0
\(11\) 4.03724i 1.21727i −0.793449 0.608637i \(-0.791717\pi\)
0.793449 0.608637i \(-0.208283\pi\)
\(12\) 0 0
\(13\) −4.67109 −1.29553 −0.647764 0.761841i \(-0.724296\pi\)
−0.647764 + 0.761841i \(0.724296\pi\)
\(14\) 0 0
\(15\) −1.04103 + 3.73045i −0.268793 + 0.963198i
\(16\) 0 0
\(17\) 6.20571i 1.50511i 0.658532 + 0.752553i \(0.271178\pi\)
−0.658532 + 0.752553i \(0.728822\pi\)
\(18\) 0 0
\(19\) 7.23153i 1.65903i −0.558487 0.829513i \(-0.688618\pi\)
0.558487 0.829513i \(-0.311382\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.35095 −0.490207 −0.245104 0.969497i \(-0.578822\pi\)
−0.245104 + 0.969497i \(0.578822\pi\)
\(24\) 0 0
\(25\) −1.28017 + 4.83334i −0.256035 + 0.966668i
\(26\) 0 0
\(27\) 4.86788 1.81761i 0.936825 0.349799i
\(28\) 0 0
\(29\) 5.15540i 0.957333i 0.877997 + 0.478667i \(0.158880\pi\)
−0.877997 + 0.478667i \(0.841120\pi\)
\(30\) 0 0
\(31\) 9.60664i 1.72540i −0.505713 0.862702i \(-0.668770\pi\)
0.505713 0.862702i \(-0.331230\pi\)
\(32\) 0 0
\(33\) −5.59745 + 4.19124i −0.974391 + 0.729601i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.26896i 0.866212i −0.901343 0.433106i \(-0.857418\pi\)
0.901343 0.433106i \(-0.142582\pi\)
\(38\) 0 0
\(39\) 4.84927 + 6.47625i 0.776504 + 1.03703i
\(40\) 0 0
\(41\) −9.85171 −1.53858 −0.769289 0.638900i \(-0.779390\pi\)
−0.769289 + 0.638900i \(0.779390\pi\)
\(42\) 0 0
\(43\) 12.7596i 1.94583i 0.231167 + 0.972914i \(0.425746\pi\)
−0.231167 + 0.972914i \(0.574254\pi\)
\(44\) 0 0
\(45\) 6.25284 2.42941i 0.932118 0.362155i
\(46\) 0 0
\(47\) 7.80263i 1.13813i 0.822292 + 0.569065i \(0.192695\pi\)
−0.822292 + 0.569065i \(0.807305\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 8.60393 6.44243i 1.20479 0.902120i
\(52\) 0 0
\(53\) 2.63982 0.362607 0.181304 0.983427i \(-0.441968\pi\)
0.181304 + 0.983427i \(0.441968\pi\)
\(54\) 0 0
\(55\) −7.15411 + 5.50593i −0.964659 + 0.742420i
\(56\) 0 0
\(57\) −10.0262 + 7.50737i −1.32800 + 0.994376i
\(58\) 0 0
\(59\) −4.28148 −0.557401 −0.278700 0.960378i \(-0.589904\pi\)
−0.278700 + 0.960378i \(0.589904\pi\)
\(60\) 0 0
\(61\) 1.43225i 0.183381i −0.995788 0.0916904i \(-0.970773\pi\)
0.995788 0.0916904i \(-0.0292270\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.37037 + 8.27731i 0.790147 + 1.02667i
\(66\) 0 0
\(67\) 3.05372i 0.373071i −0.982448 0.186535i \(-0.940274\pi\)
0.982448 0.186535i \(-0.0597259\pi\)
\(68\) 0 0
\(69\) 2.44063 + 3.25949i 0.293817 + 0.392396i
\(70\) 0 0
\(71\) 6.25374i 0.742182i 0.928596 + 0.371091i \(0.121016\pi\)
−0.928596 + 0.371091i \(0.878984\pi\)
\(72\) 0 0
\(73\) −2.25510 −0.263939 −0.131970 0.991254i \(-0.542130\pi\)
−0.131970 + 0.991254i \(0.542130\pi\)
\(74\) 0 0
\(75\) 8.03021 3.24280i 0.927248 0.374447i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.22379 0.812740 0.406370 0.913709i \(-0.366794\pi\)
0.406370 + 0.913709i \(0.366794\pi\)
\(80\) 0 0
\(81\) −7.57360 4.86216i −0.841511 0.540239i
\(82\) 0 0
\(83\) 4.50946i 0.494977i −0.968891 0.247489i \(-0.920395\pi\)
0.968891 0.247489i \(-0.0796053\pi\)
\(84\) 0 0
\(85\) 10.9967 8.46326i 1.19276 0.917970i
\(86\) 0 0
\(87\) 7.14772 5.35205i 0.766316 0.573800i
\(88\) 0 0
\(89\) 11.8046 1.25129 0.625644 0.780109i \(-0.284836\pi\)
0.625644 + 0.780109i \(0.284836\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −13.3192 + 9.97308i −1.38113 + 1.03416i
\(94\) 0 0
\(95\) −12.8145 + 9.86226i −1.31474 + 1.01185i
\(96\) 0 0
\(97\) −5.21085 −0.529082 −0.264541 0.964374i \(-0.585220\pi\)
−0.264541 + 0.964374i \(0.585220\pi\)
\(98\) 0 0
\(99\) 11.6219 + 3.40949i 1.16805 + 0.342667i
\(100\) 0 0
\(101\) 14.8957 1.48218 0.741090 0.671406i \(-0.234309\pi\)
0.741090 + 0.671406i \(0.234309\pi\)
\(102\) 0 0
\(103\) 2.75023 0.270988 0.135494 0.990778i \(-0.456738\pi\)
0.135494 + 0.990778i \(0.456738\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.85787 0.276280 0.138140 0.990413i \(-0.455888\pi\)
0.138140 + 0.990413i \(0.455888\pi\)
\(108\) 0 0
\(109\) −4.43154 −0.424464 −0.212232 0.977219i \(-0.568073\pi\)
−0.212232 + 0.977219i \(0.568073\pi\)
\(110\) 0 0
\(111\) −7.30517 + 5.46994i −0.693376 + 0.519184i
\(112\) 0 0
\(113\) 2.38808 0.224651 0.112326 0.993671i \(-0.464170\pi\)
0.112326 + 0.993671i \(0.464170\pi\)
\(114\) 0 0
\(115\) 3.20620 + 4.16595i 0.298979 + 0.388477i
\(116\) 0 0
\(117\) 3.94479 13.4466i 0.364696 1.24314i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.29931 −0.481755
\(122\) 0 0
\(123\) 10.2275 + 13.6589i 0.922183 + 1.23159i
\(124\) 0 0
\(125\) 10.3107 4.32314i 0.922217 0.386673i
\(126\) 0 0
\(127\) 8.55351i 0.759002i 0.925191 + 0.379501i \(0.123904\pi\)
−0.925191 + 0.379501i \(0.876096\pi\)
\(128\) 0 0
\(129\) 17.6907 13.2464i 1.55758 1.16628i
\(130\) 0 0
\(131\) −10.1699 −0.888549 −0.444274 0.895891i \(-0.646538\pi\)
−0.444274 + 0.895891i \(0.646538\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −9.85961 6.14720i −0.848580 0.529067i
\(136\) 0 0
\(137\) −4.80546 −0.410558 −0.205279 0.978703i \(-0.565810\pi\)
−0.205279 + 0.978703i \(0.565810\pi\)
\(138\) 0 0
\(139\) 7.48829i 0.635148i 0.948233 + 0.317574i \(0.102868\pi\)
−0.948233 + 0.317574i \(0.897132\pi\)
\(140\) 0 0
\(141\) 10.8180 8.10026i 0.911039 0.682165i
\(142\) 0 0
\(143\) 18.8583i 1.57701i
\(144\) 0 0
\(145\) 9.13551 7.03086i 0.758663 0.583881i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.60852i 0.295622i −0.989016 0.147811i \(-0.952777\pi\)
0.989016 0.147811i \(-0.0472227\pi\)
\(150\) 0 0
\(151\) 8.89582 0.723932 0.361966 0.932191i \(-0.382106\pi\)
0.361966 + 0.932191i \(0.382106\pi\)
\(152\) 0 0
\(153\) −17.8643 5.24079i −1.44424 0.423693i
\(154\) 0 0
\(155\) −17.0232 + 13.1014i −1.36734 + 1.05233i
\(156\) 0 0
\(157\) 13.8931 1.10879 0.554393 0.832255i \(-0.312950\pi\)
0.554393 + 0.832255i \(0.312950\pi\)
\(158\) 0 0
\(159\) −2.74052 3.65999i −0.217337 0.290256i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 16.9428i 1.32706i −0.748149 0.663531i \(-0.769057\pi\)
0.748149 0.663531i \(-0.230943\pi\)
\(164\) 0 0
\(165\) 15.0607 + 4.20289i 1.17248 + 0.327194i
\(166\) 0 0
\(167\) 5.46140i 0.422616i 0.977420 + 0.211308i \(0.0677723\pi\)
−0.977420 + 0.211308i \(0.932228\pi\)
\(168\) 0 0
\(169\) 8.81910 0.678392
\(170\) 0 0
\(171\) 20.8173 + 6.10711i 1.59194 + 0.467022i
\(172\) 0 0
\(173\) 21.2576i 1.61619i 0.589056 + 0.808093i \(0.299500\pi\)
−0.589056 + 0.808093i \(0.700500\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.44479 + 5.93607i 0.334091 + 0.446183i
\(178\) 0 0
\(179\) 0.542133i 0.0405210i −0.999795 0.0202605i \(-0.993550\pi\)
0.999795 0.0202605i \(-0.00644955\pi\)
\(180\) 0 0
\(181\) 19.8749i 1.47729i 0.674094 + 0.738645i \(0.264534\pi\)
−0.674094 + 0.738645i \(0.735466\pi\)
\(182\) 0 0
\(183\) −1.98575 + 1.48688i −0.146791 + 0.109914i
\(184\) 0 0
\(185\) −9.33675 + 7.18573i −0.686451 + 0.528306i
\(186\) 0 0
\(187\) 25.0539 1.83213
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.0353i 1.30499i 0.757794 + 0.652494i \(0.226277\pi\)
−0.757794 + 0.652494i \(0.773723\pi\)
\(192\) 0 0
\(193\) 8.04340i 0.578977i −0.957182 0.289488i \(-0.906515\pi\)
0.957182 0.289488i \(-0.0934851\pi\)
\(194\) 0 0
\(195\) 4.86274 17.4253i 0.348228 1.24785i
\(196\) 0 0
\(197\) 4.70893 0.335497 0.167749 0.985830i \(-0.446350\pi\)
0.167749 + 0.985830i \(0.446350\pi\)
\(198\) 0 0
\(199\) 0.712554i 0.0505116i −0.999681 0.0252558i \(-0.991960\pi\)
0.999681 0.0252558i \(-0.00804003\pi\)
\(200\) 0 0
\(201\) −4.23384 + 3.17020i −0.298632 + 0.223609i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 13.4356 + 17.4575i 0.938385 + 1.21929i
\(206\) 0 0
\(207\) 1.98540 6.76764i 0.137995 0.470383i
\(208\) 0 0
\(209\) −29.1954 −2.01949
\(210\) 0 0
\(211\) 13.6381 0.938888 0.469444 0.882962i \(-0.344454\pi\)
0.469444 + 0.882962i \(0.344454\pi\)
\(212\) 0 0
\(213\) 8.67052 6.49228i 0.594094 0.444844i
\(214\) 0 0
\(215\) 22.6105 17.4014i 1.54202 1.18677i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.34112 + 3.12659i 0.158198 + 0.211275i
\(220\) 0 0
\(221\) 28.9874i 1.94991i
\(222\) 0 0
\(223\) 17.9291 1.20062 0.600310 0.799767i \(-0.295044\pi\)
0.600310 + 0.799767i \(0.295044\pi\)
\(224\) 0 0
\(225\) −12.8325 7.76702i −0.855501 0.517801i
\(226\) 0 0
\(227\) 8.40694i 0.557988i 0.960293 + 0.278994i \(0.0900010\pi\)
−0.960293 + 0.278994i \(0.909999\pi\)
\(228\) 0 0
\(229\) 21.1352i 1.39665i 0.715781 + 0.698325i \(0.246071\pi\)
−0.715781 + 0.698325i \(0.753929\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.66241 0.239933 0.119966 0.992778i \(-0.461721\pi\)
0.119966 + 0.992778i \(0.461721\pi\)
\(234\) 0 0
\(235\) 13.8265 10.6411i 0.901941 0.694150i
\(236\) 0 0
\(237\) −7.49934 10.0155i −0.487135 0.650574i
\(238\) 0 0
\(239\) 7.74023i 0.500674i 0.968159 + 0.250337i \(0.0805414\pi\)
−0.968159 + 0.250337i \(0.919459\pi\)
\(240\) 0 0
\(241\) 18.6726i 1.20281i −0.798946 0.601403i \(-0.794609\pi\)
0.798946 0.601403i \(-0.205391\pi\)
\(242\) 0 0
\(243\) 1.12134 + 15.5481i 0.0719339 + 0.997409i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 33.7791i 2.14931i
\(248\) 0 0
\(249\) −6.25216 + 4.68147i −0.396214 + 0.296676i
\(250\) 0 0
\(251\) −0.739961 −0.0467059 −0.0233530 0.999727i \(-0.507434\pi\)
−0.0233530 + 0.999727i \(0.507434\pi\)
\(252\) 0 0
\(253\) 9.49135i 0.596716i
\(254\) 0 0
\(255\) −23.1501 6.46033i −1.44972 0.404561i
\(256\) 0 0
\(257\) 10.4422i 0.651369i −0.945478 0.325685i \(-0.894405\pi\)
0.945478 0.325685i \(-0.105595\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −14.8407 4.35379i −0.918619 0.269493i
\(262\) 0 0
\(263\) −17.0253 −1.04982 −0.524912 0.851157i \(-0.675902\pi\)
−0.524912 + 0.851157i \(0.675902\pi\)
\(264\) 0 0
\(265\) −3.60015 4.67784i −0.221156 0.287357i
\(266\) 0 0
\(267\) −12.2549 16.3666i −0.749989 1.00162i
\(268\) 0 0
\(269\) −22.8718 −1.39452 −0.697260 0.716819i \(-0.745598\pi\)
−0.697260 + 0.716819i \(0.745598\pi\)
\(270\) 0 0
\(271\) 8.24933i 0.501111i −0.968102 0.250556i \(-0.919387\pi\)
0.968102 0.250556i \(-0.0806133\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 19.5133 + 5.16837i 1.17670 + 0.311664i
\(276\) 0 0
\(277\) 6.62029i 0.397775i 0.980022 + 0.198887i \(0.0637328\pi\)
−0.980022 + 0.198887i \(0.936267\pi\)
\(278\) 0 0
\(279\) 27.6545 + 8.11292i 1.65563 + 0.485708i
\(280\) 0 0
\(281\) 4.02611i 0.240178i 0.992763 + 0.120089i \(0.0383179\pi\)
−0.992763 + 0.120089i \(0.961682\pi\)
\(282\) 0 0
\(283\) 18.4115 1.09445 0.547224 0.836986i \(-0.315685\pi\)
0.547224 + 0.836986i \(0.315685\pi\)
\(284\) 0 0
\(285\) 26.9769 + 7.52823i 1.59797 + 0.445934i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −21.5108 −1.26534
\(290\) 0 0
\(291\) 5.40962 + 7.22460i 0.317117 + 0.423514i
\(292\) 0 0
\(293\) 20.7576i 1.21267i 0.795210 + 0.606335i \(0.207361\pi\)
−0.795210 + 0.606335i \(0.792639\pi\)
\(294\) 0 0
\(295\) 5.83902 + 7.58690i 0.339961 + 0.441727i
\(296\) 0 0
\(297\) −7.33813 19.6528i −0.425802 1.14037i
\(298\) 0 0
\(299\) 10.9815 0.635077
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −15.4639 20.6522i −0.888379 1.18644i
\(304\) 0 0
\(305\) −2.53799 + 1.95328i −0.145325 + 0.111845i
\(306\) 0 0
\(307\) −10.9589 −0.625456 −0.312728 0.949843i \(-0.601243\pi\)
−0.312728 + 0.949843i \(0.601243\pi\)
\(308\) 0 0
\(309\) −2.85514 3.81307i −0.162423 0.216918i
\(310\) 0 0
\(311\) −6.93549 −0.393276 −0.196638 0.980476i \(-0.563002\pi\)
−0.196638 + 0.980476i \(0.563002\pi\)
\(312\) 0 0
\(313\) −28.8147 −1.62871 −0.814353 0.580370i \(-0.802908\pi\)
−0.814353 + 0.580370i \(0.802908\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.3468 0.749629 0.374815 0.927100i \(-0.377706\pi\)
0.374815 + 0.927100i \(0.377706\pi\)
\(318\) 0 0
\(319\) 20.8136 1.16534
\(320\) 0 0
\(321\) −2.96688 3.96230i −0.165595 0.221154i
\(322\) 0 0
\(323\) 44.8768 2.49701
\(324\) 0 0
\(325\) 5.97981 22.5770i 0.331700 1.25234i
\(326\) 0 0
\(327\) 4.60058 + 6.14412i 0.254412 + 0.339771i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.06067 0.113264 0.0566322 0.998395i \(-0.481964\pi\)
0.0566322 + 0.998395i \(0.481964\pi\)
\(332\) 0 0
\(333\) 15.1676 + 4.44969i 0.831182 + 0.243842i
\(334\) 0 0
\(335\) −5.41128 + 4.16462i −0.295650 + 0.227537i
\(336\) 0 0
\(337\) 27.3577i 1.49027i −0.666913 0.745136i \(-0.732385\pi\)
0.666913 0.745136i \(-0.267615\pi\)
\(338\) 0 0
\(339\) −2.47917 3.31096i −0.134650 0.179827i
\(340\) 0 0
\(341\) −38.7843 −2.10029
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.44741 8.77011i 0.131764 0.472167i
\(346\) 0 0
\(347\) −19.9356 −1.07020 −0.535100 0.844789i \(-0.679726\pi\)
−0.535100 + 0.844789i \(0.679726\pi\)
\(348\) 0 0
\(349\) 21.0952i 1.12920i −0.825365 0.564600i \(-0.809031\pi\)
0.825365 0.564600i \(-0.190969\pi\)
\(350\) 0 0
\(351\) −22.7383 + 8.49023i −1.21368 + 0.453175i
\(352\) 0 0
\(353\) 35.8277i 1.90692i 0.301526 + 0.953458i \(0.402504\pi\)
−0.301526 + 0.953458i \(0.597496\pi\)
\(354\) 0 0
\(355\) 11.0818 8.52876i 0.588161 0.452660i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.1649i 1.11704i 0.829490 + 0.558521i \(0.188631\pi\)
−0.829490 + 0.558521i \(0.811369\pi\)
\(360\) 0 0
\(361\) −33.2950 −1.75237
\(362\) 0 0
\(363\) 5.50145 + 7.34725i 0.288751 + 0.385630i
\(364\) 0 0
\(365\) 3.07547 + 3.99610i 0.160978 + 0.209165i
\(366\) 0 0
\(367\) −24.2427 −1.26546 −0.632728 0.774374i \(-0.718065\pi\)
−0.632728 + 0.774374i \(0.718065\pi\)
\(368\) 0 0
\(369\) 8.31988 28.3599i 0.433116 1.47636i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.75627i 0.505161i −0.967576 0.252580i \(-0.918721\pi\)
0.967576 0.252580i \(-0.0812792\pi\)
\(374\) 0 0
\(375\) −16.6978 9.80727i −0.862272 0.506445i
\(376\) 0 0
\(377\) 24.0813i 1.24025i
\(378\) 0 0
\(379\) −17.7885 −0.913731 −0.456866 0.889536i \(-0.651028\pi\)
−0.456866 + 0.889536i \(0.651028\pi\)
\(380\) 0 0
\(381\) 11.8591 8.87979i 0.607558 0.454925i
\(382\) 0 0
\(383\) 31.8208i 1.62597i 0.582287 + 0.812983i \(0.302158\pi\)
−0.582287 + 0.812983i \(0.697842\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −36.7310 10.7757i −1.86714 0.547758i
\(388\) 0 0
\(389\) 8.81090i 0.446730i −0.974735 0.223365i \(-0.928296\pi\)
0.974735 0.223365i \(-0.0717042\pi\)
\(390\) 0 0
\(391\) 14.5893i 0.737814i
\(392\) 0 0
\(393\) 10.5578 + 14.1001i 0.532572 + 0.711256i
\(394\) 0 0
\(395\) −9.85171 12.8008i −0.495693 0.644077i
\(396\) 0 0
\(397\) −36.8176 −1.84782 −0.923912 0.382606i \(-0.875027\pi\)
−0.923912 + 0.382606i \(0.875027\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.41074i 0.170324i 0.996367 + 0.0851622i \(0.0271408\pi\)
−0.996367 + 0.0851622i \(0.972859\pi\)
\(402\) 0 0
\(403\) 44.8735i 2.23531i
\(404\) 0 0
\(405\) 1.71289 + 20.0516i 0.0851144 + 0.996371i
\(406\) 0 0
\(407\) −21.2721 −1.05442
\(408\) 0 0
\(409\) 26.2634i 1.29864i 0.760515 + 0.649321i \(0.224947\pi\)
−0.760515 + 0.649321i \(0.775053\pi\)
\(410\) 0 0
\(411\) 4.98876 + 6.66255i 0.246077 + 0.328639i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −7.99089 + 6.14994i −0.392257 + 0.301888i
\(416\) 0 0
\(417\) 10.3822 7.77393i 0.508417 0.380691i
\(418\) 0 0
\(419\) 26.3452 1.28705 0.643524 0.765426i \(-0.277472\pi\)
0.643524 + 0.765426i \(0.277472\pi\)
\(420\) 0 0
\(421\) −15.3039 −0.745868 −0.372934 0.927858i \(-0.621648\pi\)
−0.372934 + 0.927858i \(0.621648\pi\)
\(422\) 0 0
\(423\) −22.4613 6.58941i −1.09211 0.320388i
\(424\) 0 0
\(425\) −29.9943 7.94439i −1.45494 0.385359i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 26.1462 19.5777i 1.26235 0.945218i
\(430\) 0 0
\(431\) 21.4128i 1.03142i −0.856764 0.515709i \(-0.827528\pi\)
0.856764 0.515709i \(-0.172472\pi\)
\(432\) 0 0
\(433\) −7.29090 −0.350378 −0.175189 0.984535i \(-0.556054\pi\)
−0.175189 + 0.984535i \(0.556054\pi\)
\(434\) 0 0
\(435\) −19.2319 5.36692i −0.922101 0.257324i
\(436\) 0 0
\(437\) 17.0010i 0.813267i
\(438\) 0 0
\(439\) 5.38824i 0.257167i −0.991699 0.128583i \(-0.958957\pi\)
0.991699 0.128583i \(-0.0410430\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.3836 −0.588362 −0.294181 0.955750i \(-0.595047\pi\)
−0.294181 + 0.955750i \(0.595047\pi\)
\(444\) 0 0
\(445\) −16.0990 20.9181i −0.763165 0.991615i
\(446\) 0 0
\(447\) −5.00305 + 3.74617i −0.236636 + 0.177188i
\(448\) 0 0
\(449\) 6.42837i 0.303374i 0.988429 + 0.151687i \(0.0484705\pi\)
−0.988429 + 0.151687i \(0.951529\pi\)
\(450\) 0 0
\(451\) 39.7737i 1.87287i
\(452\) 0 0
\(453\) −9.23515 12.3337i −0.433905 0.579485i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.2063i 0.524206i −0.965040 0.262103i \(-0.915584\pi\)
0.965040 0.262103i \(-0.0844161\pi\)
\(458\) 0 0
\(459\) 11.2796 + 30.2087i 0.526485 + 1.41002i
\(460\) 0 0
\(461\) −6.62043 −0.308344 −0.154172 0.988044i \(-0.549271\pi\)
−0.154172 + 0.988044i \(0.549271\pi\)
\(462\) 0 0
\(463\) 24.0672i 1.11850i 0.829000 + 0.559248i \(0.188910\pi\)
−0.829000 + 0.559248i \(0.811090\pi\)
\(464\) 0 0
\(465\) 35.8371 + 10.0008i 1.66191 + 0.463776i
\(466\) 0 0
\(467\) 23.3414i 1.08011i −0.841629 0.540055i \(-0.818403\pi\)
0.841629 0.540055i \(-0.181597\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −14.4230 19.2621i −0.664577 0.887550i
\(472\) 0 0
\(473\) 51.5138 2.36861
\(474\) 0 0
\(475\) 34.9524 + 9.25761i 1.60373 + 0.424768i
\(476\) 0 0
\(477\) −2.22936 + 7.59920i −0.102075 + 0.347944i
\(478\) 0 0
\(479\) −10.2157 −0.466765 −0.233383 0.972385i \(-0.574979\pi\)
−0.233383 + 0.972385i \(0.574979\pi\)
\(480\) 0 0
\(481\) 24.6118i 1.12220i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.10649 + 9.23378i 0.322689 + 0.419284i
\(486\) 0 0
\(487\) 12.8158i 0.580738i 0.956915 + 0.290369i \(0.0937780\pi\)
−0.956915 + 0.290369i \(0.906222\pi\)
\(488\) 0 0
\(489\) −23.4904 + 17.5891i −1.06227 + 0.795405i
\(490\) 0 0
\(491\) 32.8628i 1.48308i −0.670910 0.741539i \(-0.734096\pi\)
0.670910 0.741539i \(-0.265904\pi\)
\(492\) 0 0
\(493\) −31.9929 −1.44089
\(494\) 0 0
\(495\) −9.80810 25.2442i −0.440841 1.13464i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 10.0650 0.450570 0.225285 0.974293i \(-0.427669\pi\)
0.225285 + 0.974293i \(0.427669\pi\)
\(500\) 0 0
\(501\) 7.57199 5.66973i 0.338291 0.253305i
\(502\) 0 0
\(503\) 9.82025i 0.437863i 0.975740 + 0.218932i \(0.0702572\pi\)
−0.975740 + 0.218932i \(0.929743\pi\)
\(504\) 0 0
\(505\) −20.3146 26.3957i −0.903987 1.17459i
\(506\) 0 0
\(507\) −9.15550 12.2273i −0.406610 0.543032i
\(508\) 0 0
\(509\) −17.7162 −0.785258 −0.392629 0.919697i \(-0.628434\pi\)
−0.392629 + 0.919697i \(0.628434\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −13.1441 35.2022i −0.580326 1.55422i
\(514\) 0 0
\(515\) −3.75073 4.87349i −0.165277 0.214752i
\(516\) 0 0
\(517\) 31.5011 1.38542
\(518\) 0 0
\(519\) 29.4727 22.0685i 1.29371 0.968698i
\(520\) 0 0
\(521\) −13.0312 −0.570906 −0.285453 0.958393i \(-0.592144\pi\)
−0.285453 + 0.958393i \(0.592144\pi\)
\(522\) 0 0
\(523\) −35.2957 −1.54338 −0.771688 0.636002i \(-0.780587\pi\)
−0.771688 + 0.636002i \(0.780587\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 59.6160 2.59692
\(528\) 0 0
\(529\) −17.4730 −0.759697
\(530\) 0 0
\(531\) 3.61576 12.3250i 0.156910 0.534860i
\(532\) 0 0
\(533\) 46.0182 1.99327
\(534\) 0 0
\(535\) −3.89752 5.06422i −0.168504 0.218945i
\(536\) 0 0
\(537\) −0.751643 + 0.562813i −0.0324358 + 0.0242872i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 42.9924 1.84839 0.924195 0.381921i \(-0.124737\pi\)
0.924195 + 0.381921i \(0.124737\pi\)
\(542\) 0 0
\(543\) 27.5557 20.6330i 1.18253 0.885448i
\(544\) 0 0
\(545\) 6.04367 + 7.85281i 0.258882 + 0.336377i
\(546\) 0 0
\(547\) 20.4524i 0.874482i −0.899344 0.437241i \(-0.855956\pi\)
0.899344 0.437241i \(-0.144044\pi\)
\(548\) 0 0
\(549\) 4.12299 + 1.20955i 0.175965 + 0.0516224i
\(550\) 0 0
\(551\) 37.2814 1.58824
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 19.6556 + 5.48514i 0.834333 + 0.232831i
\(556\) 0 0
\(557\) −40.5528 −1.71828 −0.859140 0.511741i \(-0.829001\pi\)
−0.859140 + 0.511741i \(0.829001\pi\)
\(558\) 0 0
\(559\) 59.6015i 2.52087i
\(560\) 0 0
\(561\) −26.0096 34.7361i −1.09813 1.46656i
\(562\) 0 0
\(563\) 24.7264i 1.04210i −0.853528 0.521048i \(-0.825541\pi\)
0.853528 0.521048i \(-0.174459\pi\)
\(564\) 0 0
\(565\) −3.25683 4.23174i −0.137016 0.178031i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 25.1381i 1.05384i −0.849914 0.526922i \(-0.823346\pi\)
0.849914 0.526922i \(-0.176654\pi\)
\(570\) 0 0
\(571\) 3.42569 0.143361 0.0716804 0.997428i \(-0.477164\pi\)
0.0716804 + 0.997428i \(0.477164\pi\)
\(572\) 0 0
\(573\) 25.0051 18.7232i 1.04460 0.782174i
\(574\) 0 0
\(575\) 3.00963 11.3629i 0.125510 0.473867i
\(576\) 0 0
\(577\) 14.8293 0.617351 0.308676 0.951167i \(-0.400114\pi\)
0.308676 + 0.951167i \(0.400114\pi\)
\(578\) 0 0
\(579\) −11.1518 + 8.35021i −0.463453 + 0.347023i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 10.6576i 0.441392i
\(584\) 0 0
\(585\) −29.2076 + 11.3480i −1.20758 + 0.469181i
\(586\) 0 0
\(587\) 41.4516i 1.71089i 0.517895 + 0.855444i \(0.326716\pi\)
−0.517895 + 0.855444i \(0.673284\pi\)
\(588\) 0 0
\(589\) −69.4707 −2.86249
\(590\) 0 0
\(591\) −4.88855 6.52871i −0.201088 0.268555i
\(592\) 0 0
\(593\) 45.6599i 1.87503i 0.347946 + 0.937514i \(0.386879\pi\)
−0.347946 + 0.937514i \(0.613121\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.987923 + 0.739734i −0.0404330 + 0.0302753i
\(598\) 0 0
\(599\) 9.91010i 0.404916i 0.979291 + 0.202458i \(0.0648929\pi\)
−0.979291 + 0.202458i \(0.935107\pi\)
\(600\) 0 0
\(601\) 3.39000i 0.138281i −0.997607 0.0691404i \(-0.977974\pi\)
0.997607 0.0691404i \(-0.0220257\pi\)
\(602\) 0 0
\(603\) 8.79068 + 2.57890i 0.357984 + 0.105021i
\(604\) 0 0
\(605\) 7.22712 + 9.39052i 0.293824 + 0.381779i
\(606\) 0 0
\(607\) −2.63410 −0.106915 −0.0534575 0.998570i \(-0.517024\pi\)
−0.0534575 + 0.998570i \(0.517024\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.4468i 1.47448i
\(612\) 0 0
\(613\) 0.134037i 0.00541370i 0.999996 + 0.00270685i \(0.000861618\pi\)
−0.999996 + 0.00270685i \(0.999138\pi\)
\(614\) 0 0
\(615\) 10.2559 36.7513i 0.413559 1.48196i
\(616\) 0 0
\(617\) 30.8209 1.24080 0.620401 0.784285i \(-0.286970\pi\)
0.620401 + 0.784285i \(0.286970\pi\)
\(618\) 0 0
\(619\) 33.3026i 1.33855i 0.743017 + 0.669273i \(0.233394\pi\)
−0.743017 + 0.669273i \(0.766606\pi\)
\(620\) 0 0
\(621\) −11.4442 + 4.27311i −0.459238 + 0.171474i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −21.7223 12.3750i −0.868892 0.495001i
\(626\) 0 0
\(627\) 30.3091 + 40.4781i 1.21043 + 1.61654i
\(628\) 0 0
\(629\) 32.6976 1.30374
\(630\) 0 0
\(631\) 14.4369 0.574725 0.287362 0.957822i \(-0.407222\pi\)
0.287362 + 0.957822i \(0.407222\pi\)
\(632\) 0 0
\(633\) −14.1584 18.9087i −0.562745 0.751552i
\(634\) 0 0
\(635\) 15.1571 11.6652i 0.601490 0.462918i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −18.0025 5.28135i −0.712168 0.208927i
\(640\) 0 0
\(641\) 37.1952i 1.46912i 0.678544 + 0.734560i \(0.262611\pi\)
−0.678544 + 0.734560i \(0.737389\pi\)
\(642\) 0 0
\(643\) −29.4169 −1.16009 −0.580045 0.814585i \(-0.696965\pi\)
−0.580045 + 0.814585i \(0.696965\pi\)
\(644\) 0 0
\(645\) −47.5992 13.2832i −1.87422 0.523024i
\(646\) 0 0
\(647\) 23.2454i 0.913871i −0.889500 0.456936i \(-0.848947\pi\)
0.889500 0.456936i \(-0.151053\pi\)
\(648\) 0 0
\(649\) 17.2854i 0.678509i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −45.1744 −1.76781 −0.883906 0.467664i \(-0.845096\pi\)
−0.883906 + 0.467664i \(0.845096\pi\)
\(654\) 0 0
\(655\) 13.8696 + 18.0214i 0.541929 + 0.704153i
\(656\) 0 0
\(657\) 1.90446 6.49171i 0.0742999 0.253266i
\(658\) 0 0
\(659\) 12.0020i 0.467533i −0.972293 0.233766i \(-0.924895\pi\)
0.972293 0.233766i \(-0.0751051\pi\)
\(660\) 0 0
\(661\) 7.06979i 0.274983i −0.990503 0.137491i \(-0.956096\pi\)
0.990503 0.137491i \(-0.0439040\pi\)
\(662\) 0 0
\(663\) −40.1898 + 30.0932i −1.56084 + 1.16872i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12.1201i 0.469292i
\(668\) 0 0
\(669\) −18.6130 24.8579i −0.719619 0.961060i
\(670\) 0 0
\(671\) −5.78234 −0.223225
\(672\) 0 0
\(673\) 6.51616i 0.251179i 0.992082 + 0.125590i \(0.0400823\pi\)
−0.992082 + 0.125590i \(0.959918\pi\)
\(674\) 0 0
\(675\) 2.55339 + 25.8550i 0.0982801 + 0.995159i
\(676\) 0 0
\(677\) 37.1401i 1.42741i −0.700446 0.713705i \(-0.747016\pi\)
0.700446 0.713705i \(-0.252984\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 11.6558 8.72762i 0.446653 0.334443i
\(682\) 0 0
\(683\) −33.4835 −1.28121 −0.640606 0.767870i \(-0.721317\pi\)
−0.640606 + 0.767870i \(0.721317\pi\)
\(684\) 0 0
\(685\) 6.55362 + 8.51541i 0.250401 + 0.325357i
\(686\) 0 0
\(687\) 29.3029 21.9414i 1.11798 0.837115i
\(688\) 0 0
\(689\) −12.3308 −0.469768
\(690\) 0 0
\(691\) 14.3909i 0.547454i −0.961807 0.273727i \(-0.911743\pi\)
0.961807 0.273727i \(-0.0882566\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.2695 10.2124i 0.503339 0.387379i
\(696\) 0 0
\(697\) 61.1369i 2.31572i
\(698\) 0 0
\(699\) −3.80212 5.07777i −0.143809 0.192059i
\(700\) 0 0
\(701\) 38.0575i 1.43741i 0.695314 + 0.718707i \(0.255266\pi\)
−0.695314 + 0.718707i \(0.744734\pi\)
\(702\) 0 0
\(703\) −38.1026 −1.43707
\(704\) 0 0
\(705\) −29.1073 8.12277i −1.09625 0.305921i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −26.2027 −0.984061 −0.492031 0.870578i \(-0.663745\pi\)
−0.492031 + 0.870578i \(0.663745\pi\)
\(710\) 0 0
\(711\) −6.10057 + 20.7950i −0.228789 + 0.779873i
\(712\) 0 0
\(713\) 22.5847i 0.845805i
\(714\) 0 0
\(715\) 33.4175 25.7187i 1.24974 0.961825i
\(716\) 0 0
\(717\) 10.7315 8.03548i 0.400774 0.300090i
\(718\) 0 0
\(719\) −28.5912 −1.06627 −0.533137 0.846029i \(-0.678987\pi\)
−0.533137 + 0.846029i \(0.678987\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −25.8887 + 19.3848i −0.962810 + 0.720929i
\(724\) 0 0
\(725\) −24.9178 6.59980i −0.925423 0.245110i
\(726\) 0 0
\(727\) 11.8333 0.438874 0.219437 0.975627i \(-0.429578\pi\)
0.219437 + 0.975627i \(0.429578\pi\)
\(728\) 0 0
\(729\) 20.3926 17.6958i 0.755281 0.655401i
\(730\) 0 0
\(731\) −79.1827 −2.92868
\(732\) 0 0
\(733\) −45.1892 −1.66910 −0.834551 0.550930i \(-0.814273\pi\)
−0.834551 + 0.550930i \(0.814273\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.3286 −0.454129
\(738\) 0 0
\(739\) −32.4888 −1.19512 −0.597560 0.801824i \(-0.703863\pi\)
−0.597560 + 0.801824i \(0.703863\pi\)
\(740\) 0 0
\(741\) 46.8332 35.0676i 1.72046 1.28824i
\(742\) 0 0
\(743\) 3.76749 0.138216 0.0691079 0.997609i \(-0.477985\pi\)
0.0691079 + 0.997609i \(0.477985\pi\)
\(744\) 0 0
\(745\) −6.39440 + 4.92125i −0.234273 + 0.180301i
\(746\) 0 0
\(747\) 12.9813 + 3.80829i 0.474960 + 0.139338i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −14.6206 −0.533512 −0.266756 0.963764i \(-0.585952\pi\)
−0.266756 + 0.963764i \(0.585952\pi\)
\(752\) 0 0
\(753\) 0.768186 + 1.02592i 0.0279943 + 0.0373867i
\(754\) 0 0
\(755\) −12.1320 15.7637i −0.441529 0.573698i
\(756\) 0 0
\(757\) 27.8418i 1.01193i 0.862554 + 0.505964i \(0.168863\pi\)
−0.862554 + 0.505964i \(0.831137\pi\)
\(758\) 0 0
\(759\) 13.1593 9.85340i 0.477653 0.357656i
\(760\) 0 0
\(761\) 10.5334 0.381837 0.190918 0.981606i \(-0.438853\pi\)
0.190918 + 0.981606i \(0.438853\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 15.0762 + 38.8033i 0.545081 + 1.40294i
\(766\) 0 0
\(767\) 19.9992 0.722128
\(768\) 0 0
\(769\) 44.4440i 1.60269i 0.598201 + 0.801346i \(0.295882\pi\)
−0.598201 + 0.801346i \(0.704118\pi\)
\(770\) 0 0
\(771\) −14.4777 + 10.8406i −0.521401 + 0.390413i
\(772\) 0 0
\(773\) 22.1487i 0.796633i 0.917248 + 0.398317i \(0.130405\pi\)
−0.917248 + 0.398317i \(0.869595\pi\)
\(774\) 0 0
\(775\) 46.4321 + 12.2982i 1.66789 + 0.441763i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 71.2429i 2.55254i
\(780\) 0 0
\(781\) 25.2478 0.903439
\(782\) 0 0
\(783\) 9.37050 + 25.0959i 0.334874 + 0.896853i
\(784\) 0 0
\(785\) −18.9472 24.6189i −0.676253 0.878686i
\(786\) 0 0
\(787\) 8.31246 0.296307 0.148154 0.988964i \(-0.452667\pi\)
0.148154 + 0.988964i \(0.452667\pi\)
\(788\) 0 0
\(789\) 17.6747 + 23.6048i 0.629236 + 0.840352i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.69017i 0.237575i
\(794\) 0 0
\(795\) −2.74813 + 9.84772i −0.0974662 + 0.349263i
\(796\) 0 0
\(797\) 7.75614i 0.274736i 0.990520 + 0.137368i \(0.0438644\pi\)
−0.990520 + 0.137368i \(0.956136\pi\)
\(798\) 0 0
\(799\) −48.4209 −1.71301
\(800\) 0 0
\(801\) −9.96914 + 33.9818i −0.352242 + 1.20069i
\(802\) 0 0
\(803\) 9.10437i 0.321286i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 23.7443 + 31.7107i 0.835837 + 1.11627i
\(808\) 0 0
\(809\) 47.6690i 1.67595i −0.545705 0.837977i \(-0.683738\pi\)
0.545705 0.837977i \(-0.316262\pi\)
\(810\) 0 0
\(811\) 10.0943i 0.354458i 0.984170 + 0.177229i \(0.0567133\pi\)
−0.984170 + 0.177229i \(0.943287\pi\)
\(812\) 0 0
\(813\) −11.4373 + 8.56400i −0.401124 + 0.300353i
\(814\) 0 0
\(815\) −30.0231 + 23.1063i −1.05166 + 0.809380i
\(816\) 0 0
\(817\) 92.2718 3.22818
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.3807i 1.33950i 0.742588 + 0.669749i \(0.233598\pi\)
−0.742588 + 0.669749i \(0.766402\pi\)
\(822\) 0 0
\(823\) 2.78821i 0.0971907i 0.998819 + 0.0485954i \(0.0154745\pi\)
−0.998819 + 0.0485954i \(0.984526\pi\)
\(824\) 0 0
\(825\) −13.0920 32.4199i −0.455804 1.12872i
\(826\) 0 0
\(827\) −36.9569 −1.28512 −0.642559 0.766236i \(-0.722127\pi\)
−0.642559 + 0.766236i \(0.722127\pi\)
\(828\) 0 0
\(829\) 2.22738i 0.0773601i −0.999252 0.0386801i \(-0.987685\pi\)
0.999252 0.0386801i \(-0.0123153\pi\)
\(830\) 0 0
\(831\) 9.17873 6.87282i 0.318407 0.238415i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 9.67777 7.44819i 0.334913 0.257755i
\(836\) 0 0
\(837\) −17.4611 46.7640i −0.603545 1.61640i
\(838\) 0 0
\(839\) −2.80173 −0.0967265 −0.0483633 0.998830i \(-0.515401\pi\)
−0.0483633 + 0.998830i \(0.515401\pi\)
\(840\) 0 0
\(841\) 2.42188 0.0835133
\(842\) 0 0
\(843\) 5.58202 4.17969i 0.192255 0.143956i
\(844\) 0 0
\(845\) −12.0274 15.6277i −0.413754 0.537609i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −19.1138 25.5266i −0.655982 0.876072i
\(850\) 0 0
\(851\) 12.3871i 0.424623i
\(852\) 0 0
\(853\) −12.2061 −0.417928 −0.208964 0.977923i \(-0.567009\pi\)
−0.208964 + 0.977923i \(0.567009\pi\)
\(854\) 0 0
\(855\) −17.5683 45.2176i −0.600824 1.54641i
\(856\) 0 0
\(857\) 21.7856i 0.744180i −0.928197 0.372090i \(-0.878641\pi\)
0.928197 0.372090i \(-0.121359\pi\)
\(858\) 0 0
\(859\) 31.5019i 1.07483i 0.843318 + 0.537415i \(0.180599\pi\)
−0.843318 + 0.537415i \(0.819401\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.80236 −0.129434 −0.0647169 0.997904i \(-0.520614\pi\)
−0.0647169 + 0.997904i \(0.520614\pi\)
\(864\) 0 0
\(865\) 37.6691 28.9908i 1.28079 0.985717i
\(866\) 0 0
\(867\) 22.3314 + 29.8238i 0.758413 + 1.01287i
\(868\) 0 0
\(869\) 29.1642i 0.989327i
\(870\) 0 0
\(871\) 14.2642i 0.483324i
\(872\) 0 0
\(873\) 4.40062 15.0004i 0.148938 0.507686i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.9116i 0.874974i −0.899225 0.437487i \(-0.855869\pi\)
0.899225 0.437487i \(-0.144131\pi\)
\(878\) 0 0
\(879\) 28.7794 21.5493i 0.970705 0.726842i
\(880\) 0 0
\(881\) 22.2682 0.750236 0.375118 0.926977i \(-0.377602\pi\)
0.375118 + 0.926977i \(0.377602\pi\)
\(882\) 0 0
\(883\) 46.9783i 1.58095i −0.612497 0.790473i \(-0.709835\pi\)
0.612497 0.790473i \(-0.290165\pi\)
\(884\) 0 0
\(885\) 4.45714 15.9718i 0.149825 0.536887i
\(886\) 0 0
\(887\) 9.29229i 0.312005i −0.987757 0.156002i \(-0.950139\pi\)
0.987757 0.156002i \(-0.0498607\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −19.6297 + 30.5764i −0.657619 + 1.02435i
\(892\) 0 0
\(893\) 56.4250 1.88819
\(894\) 0 0
\(895\) −0.960676 + 0.739354i −0.0321119 + 0.0247139i
\(896\) 0 0
\(897\) −11.4004 15.2254i −0.380648 0.508360i
\(898\) 0 0
\(899\) 49.5260 1.65179
\(900\) 0 0
\(901\) 16.3820i 0.545763i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 35.2189 27.1051i 1.17072 0.901005i
\(906\) 0 0
\(907\) 12.4717i 0.414117i −0.978329 0.207059i \(-0.933611\pi\)
0.978329 0.207059i \(-0.0663891\pi\)
\(908\) 0 0
\(909\) −12.5796 + 42.8800i −0.417239 + 1.42224i
\(910\) 0 0
\(911\) 10.6293i 0.352164i −0.984376 0.176082i \(-0.943658\pi\)
0.984376 0.176082i \(-0.0563423\pi\)
\(912\) 0 0
\(913\) −18.2058 −0.602523
\(914\) 0 0
\(915\) 5.34294 + 1.49101i 0.176632 + 0.0492914i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −14.9765 −0.494030 −0.247015 0.969012i \(-0.579450\pi\)
−0.247015 + 0.969012i \(0.579450\pi\)
\(920\) 0 0
\(921\) 11.3769 + 15.1940i 0.374882 + 0.500659i
\(922\) 0 0
\(923\) 29.2118i 0.961517i
\(924\) 0 0
\(925\) 25.4667 + 6.74518i 0.837339 + 0.221780i
\(926\) 0 0
\(927\) −2.32260 + 7.91704i −0.0762843 + 0.260030i
\(928\) 0 0
\(929\) −46.5855 −1.52842 −0.764211 0.644967i \(-0.776871\pi\)
−0.764211 + 0.644967i \(0.776871\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 7.20004 + 9.61574i 0.235719 + 0.314805i
\(934\) 0 0
\(935\) −34.1682 44.3963i −1.11742 1.45191i
\(936\) 0 0
\(937\) 28.8205 0.941526 0.470763 0.882260i \(-0.343979\pi\)
0.470763 + 0.882260i \(0.343979\pi\)
\(938\) 0 0
\(939\) 29.9139 + 39.9503i 0.976203 + 1.30373i
\(940\) 0 0
\(941\) 29.8353 0.972602 0.486301 0.873791i \(-0.338346\pi\)
0.486301 + 0.873791i \(0.338346\pi\)
\(942\) 0 0
\(943\) 23.1609 0.754223
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.2420 1.14521 0.572606 0.819831i \(-0.305933\pi\)
0.572606 + 0.819831i \(0.305933\pi\)
\(948\) 0 0
\(949\) 10.5338 0.341941
\(950\) 0 0
\(951\) −13.8559 18.5047i −0.449308 0.600056i
\(952\) 0 0
\(953\) 54.3162 1.75947 0.879737 0.475461i \(-0.157719\pi\)
0.879737 + 0.475461i \(0.157719\pi\)
\(954\) 0 0
\(955\) 31.9590 24.5963i 1.03417 0.795917i
\(956\) 0 0
\(957\) −21.6075 28.8571i −0.698471 0.932817i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −61.2876 −1.97702
\(962\) 0 0
\(963\) −2.41350 + 8.22689i −0.0777740 + 0.265108i
\(964\) 0 0
\(965\) −14.2531 + 10.9695i −0.458825 + 0.353120i
\(966\) 0 0
\(967\) 20.2942i 0.652617i −0.945263 0.326309i \(-0.894195\pi\)
0.945263 0.326309i \(-0.105805\pi\)
\(968\) 0 0
\(969\) −46.5886 62.2196i −1.49664 1.99878i
\(970\) 0 0
\(971\) 32.0644 1.02900 0.514498 0.857492i \(-0.327978\pi\)
0.514498 + 0.857492i \(0.327978\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −37.5098 + 15.1474i −1.20128 + 0.485106i
\(976\) 0 0
\(977\) 7.91539 0.253236 0.126618 0.991952i \(-0.459588\pi\)
0.126618 + 0.991952i \(0.459588\pi\)
\(978\) 0 0
\(979\) 47.6581i 1.52316i
\(980\) 0 0
\(981\) 3.74248 12.7570i 0.119488 0.407299i
\(982\) 0 0
\(983\) 16.0920i 0.513254i 0.966511 + 0.256627i \(0.0826111\pi\)
−0.966511 + 0.256627i \(0.917389\pi\)
\(984\) 0 0
\(985\) −6.42197 8.34436i −0.204621 0.265873i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 29.9973i 0.953859i
\(990\) 0 0
\(991\) 37.7840 1.20025 0.600124 0.799907i \(-0.295118\pi\)
0.600124 + 0.799907i \(0.295118\pi\)
\(992\) 0 0
\(993\) −2.13927 2.85702i −0.0678877 0.0906648i
\(994\) 0 0
\(995\) −1.26267 + 0.971771i −0.0400292 + 0.0308072i
\(996\) 0 0
\(997\) −4.34448 −0.137591 −0.0687955 0.997631i \(-0.521916\pi\)
−0.0687955 + 0.997631i \(0.521916\pi\)
\(998\) 0 0
\(999\) −9.57692 25.6487i −0.303000 0.811488i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.2.f.b.1469.13 48
3.2 odd 2 inner 2940.2.f.b.1469.16 yes 48
5.4 even 2 inner 2940.2.f.b.1469.35 yes 48
7.6 odd 2 inner 2940.2.f.b.1469.36 yes 48
15.14 odd 2 inner 2940.2.f.b.1469.34 yes 48
21.20 even 2 inner 2940.2.f.b.1469.33 yes 48
35.34 odd 2 inner 2940.2.f.b.1469.14 yes 48
105.104 even 2 inner 2940.2.f.b.1469.15 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2940.2.f.b.1469.13 48 1.1 even 1 trivial
2940.2.f.b.1469.14 yes 48 35.34 odd 2 inner
2940.2.f.b.1469.15 yes 48 105.104 even 2 inner
2940.2.f.b.1469.16 yes 48 3.2 odd 2 inner
2940.2.f.b.1469.33 yes 48 21.20 even 2 inner
2940.2.f.b.1469.34 yes 48 15.14 odd 2 inner
2940.2.f.b.1469.35 yes 48 5.4 even 2 inner
2940.2.f.b.1469.36 yes 48 7.6 odd 2 inner