Properties

Label 2940.2.bb.b
Level $2940$
Weight $2$
Character orbit 2940.bb
Analytic conductor $23.476$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,2,Mod(949,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.949"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2940.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-4,0,0,0,2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.4760181943\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{3} + ( - \zeta_{12}^{3} - 2 \zeta_{12}^{2} + \zeta_{12}) q^{5} + \zeta_{12}^{2} q^{9} - 2 \zeta_{12}^{3} q^{13} + (2 \zeta_{12}^{3} - 1) q^{15} - 2 \zeta_{12} q^{17} - 4 \zeta_{12}^{2} q^{19} + \cdots + 10 \zeta_{12}^{3} q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{5} + 2 q^{9} - 4 q^{15} - 8 q^{19} - 6 q^{25} + 8 q^{29} - 8 q^{31} - 4 q^{39} + 16 q^{41} + 4 q^{45} + 4 q^{51} - 16 q^{61} - 4 q^{65} + 16 q^{69} + 48 q^{71} + 8 q^{75} + 8 q^{79} - 2 q^{81}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-\zeta_{12}^{2}\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
949.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.866025 0.500000i 0 −0.133975 2.23205i 0 0 0 0.500000 + 0.866025i 0
949.2 0 0.866025 + 0.500000i 0 −1.86603 1.23205i 0 0 0 0.500000 + 0.866025i 0
1549.1 0 −0.866025 + 0.500000i 0 −0.133975 + 2.23205i 0 0 0 0.500000 0.866025i 0
1549.2 0 0.866025 0.500000i 0 −1.86603 + 1.23205i 0 0 0 0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2940.2.bb.b 4
5.b even 2 1 inner 2940.2.bb.b 4
7.b odd 2 1 2940.2.bb.g 4
7.c even 3 1 2940.2.k.e yes 2
7.c even 3 1 inner 2940.2.bb.b 4
7.d odd 6 1 2940.2.k.a 2
7.d odd 6 1 2940.2.bb.g 4
35.c odd 2 1 2940.2.bb.g 4
35.i odd 6 1 2940.2.k.a 2
35.i odd 6 1 2940.2.bb.g 4
35.j even 6 1 2940.2.k.e yes 2
35.j even 6 1 inner 2940.2.bb.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2940.2.k.a 2 7.d odd 6 1
2940.2.k.a 2 35.i odd 6 1
2940.2.k.e yes 2 7.c even 3 1
2940.2.k.e yes 2 35.j even 6 1
2940.2.bb.b 4 1.a even 1 1 trivial
2940.2.bb.b 4 5.b even 2 1 inner
2940.2.bb.b 4 7.c even 3 1 inner
2940.2.bb.b 4 35.j even 6 1 inner
2940.2.bb.g 4 7.b odd 2 1
2940.2.bb.g 4 7.d odd 6 1
2940.2.bb.g 4 35.c odd 2 1
2940.2.bb.g 4 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2940, [\chi])\):

\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display
\( T_{19}^{2} + 4T_{19} + 16 \) Copy content Toggle raw display
\( T_{31}^{2} + 4T_{31} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 16T^{2} + 256 \) Copy content Toggle raw display
$29$ \( (T - 2)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T - 4)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - 144 T^{2} + 20736 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$71$ \( (T - 12)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
show more
show less