Properties

Label 2940.1.o.d.2939.2
Level $2940$
Weight $1$
Character 2940.2939
Analytic conductor $1.467$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,1,Mod(2939,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.2939"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2940.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46725113714\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.2134623456000.5

Embedding invariants

Embedding label 2939.2
Root \(0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 2940.2939
Dual form 2940.1.o.d.2939.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.923880 + 0.382683i) q^{2} +1.00000 q^{3} +(0.707107 - 0.707107i) q^{4} -1.00000i q^{5} +(-0.923880 + 0.382683i) q^{6} +(-0.382683 + 0.923880i) q^{8} +1.00000 q^{9} +(0.382683 + 0.923880i) q^{10} +(0.707107 - 0.707107i) q^{12} -1.00000i q^{15} -1.00000i q^{16} +1.41421i q^{17} +(-0.923880 + 0.382683i) q^{18} +0.765367 q^{19} +(-0.707107 - 0.707107i) q^{20} -1.84776i q^{23} +(-0.382683 + 0.923880i) q^{24} -1.00000 q^{25} +1.00000 q^{27} +(0.382683 + 0.923880i) q^{30} +1.84776 q^{31} +(0.382683 + 0.923880i) q^{32} +(-0.541196 - 1.30656i) q^{34} +(0.707107 - 0.707107i) q^{36} +(-0.707107 + 0.292893i) q^{38} +(0.923880 + 0.382683i) q^{40} -1.00000i q^{45} +(0.707107 + 1.70711i) q^{46} -1.41421 q^{47} -1.00000i q^{48} +(0.923880 - 0.382683i) q^{50} +1.41421i q^{51} -0.765367 q^{53} +(-0.923880 + 0.382683i) q^{54} +0.765367 q^{57} +(-0.707107 - 0.707107i) q^{60} +0.765367i q^{61} +(-1.70711 + 0.707107i) q^{62} +(-0.707107 - 0.707107i) q^{64} +(1.00000 + 1.00000i) q^{68} -1.84776i q^{69} +(-0.382683 + 0.923880i) q^{72} -1.00000 q^{75} +(0.541196 - 0.541196i) q^{76} -1.41421i q^{79} -1.00000 q^{80} +1.00000 q^{81} +1.41421 q^{83} +1.41421 q^{85} +(0.382683 + 0.923880i) q^{90} +(-1.30656 - 1.30656i) q^{92} +1.84776 q^{93} +(1.30656 - 0.541196i) q^{94} -0.765367i q^{95} +(0.382683 + 0.923880i) q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 8 q^{9} - 8 q^{25} + 8 q^{27} - 8 q^{62} + 8 q^{68} - 8 q^{75} - 8 q^{80} + 8 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(3\) 1.00000 1.00000
\(4\) 0.707107 0.707107i 0.707107 0.707107i
\(5\) 1.00000i 1.00000i
\(6\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(7\) 0 0
\(8\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(9\) 1.00000 1.00000
\(10\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0.707107 0.707107i 0.707107 0.707107i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 1.00000i 1.00000i
\(16\) 1.00000i 1.00000i
\(17\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(19\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(20\) −0.707107 0.707107i −0.707107 0.707107i
\(21\) 0 0
\(22\) 0 0
\(23\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(24\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(25\) −1.00000 −1.00000
\(26\) 0 0
\(27\) 1.00000 1.00000
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(31\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(32\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(33\) 0 0
\(34\) −0.541196 1.30656i −0.541196 1.30656i
\(35\) 0 0
\(36\) 0.707107 0.707107i 0.707107 0.707107i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(39\) 0 0
\(40\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.00000i 1.00000i
\(46\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(47\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 1.00000i 1.00000i
\(49\) 0 0
\(50\) 0.923880 0.382683i 0.923880 0.382683i
\(51\) 1.41421i 1.41421i
\(52\) 0 0
\(53\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(54\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(55\) 0 0
\(56\) 0 0
\(57\) 0.765367 0.765367
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −0.707107 0.707107i −0.707107 0.707107i
\(61\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(62\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(63\) 0 0
\(64\) −0.707107 0.707107i −0.707107 0.707107i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(69\) 1.84776i 1.84776i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) 0.541196 0.541196i 0.541196 0.541196i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(80\) −1.00000 −1.00000
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 1.41421 1.41421
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(91\) 0 0
\(92\) −1.30656 1.30656i −1.30656 1.30656i
\(93\) 1.84776 1.84776
\(94\) 1.30656 0.541196i 1.30656 0.541196i
\(95\) 0.765367i 0.765367i
\(96\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) −0.541196 1.30656i −0.541196 1.30656i
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.707107 0.292893i 0.707107 0.292893i
\(107\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(108\) 0.707107 0.707107i 0.707107 0.707107i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(114\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(115\) −1.84776 −1.84776
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(121\) −1.00000 −1.00000
\(122\) −0.292893 0.707107i −0.292893 0.707107i
\(123\) 0 0
\(124\) 1.30656 1.30656i 1.30656 1.30656i
\(125\) 1.00000i 1.00000i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.00000i 1.00000i
\(136\) −1.30656 0.541196i −1.30656 0.541196i
\(137\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(138\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(139\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(140\) 0 0
\(141\) −1.41421 −1.41421
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000i 1.00000i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0.923880 0.382683i 0.923880 0.382683i
\(151\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(152\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(153\) 1.41421i 1.41421i
\(154\) 0 0
\(155\) 1.84776i 1.84776i
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(159\) −0.765367 −0.765367
\(160\) 0.923880 0.382683i 0.923880 0.382683i
\(161\) 0 0
\(162\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(171\) 0.765367 0.765367
\(172\) 0 0
\(173\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −0.707107 0.707107i −0.707107 0.707107i
\(181\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(182\) 0 0
\(183\) 0.765367i 0.765367i
\(184\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(185\) 0 0
\(186\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(187\) 0 0
\(188\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(189\) 0 0
\(190\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −0.707107 0.707107i −0.707107 0.707107i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(198\) 0 0
\(199\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(200\) 0.382683 0.923880i 0.382683 0.923880i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(205\) 0 0
\(206\) 0 0
\(207\) 1.84776i 1.84776i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(213\) 0 0
\(214\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(215\) 0 0
\(216\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) −1.00000 −1.00000
\(226\) 1.70711 0.707107i 1.70711 0.707107i
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0.541196 0.541196i 0.541196 0.541196i
\(229\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(230\) 1.70711 0.707107i 1.70711 0.707107i
\(231\) 0 0
\(232\) 0 0
\(233\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(234\) 0 0
\(235\) 1.41421i 1.41421i
\(236\) 0 0
\(237\) 1.41421i 1.41421i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −1.00000 −1.00000
\(241\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(242\) 0.923880 0.382683i 0.923880 0.382683i
\(243\) 1.00000 1.00000
\(244\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(249\) 1.41421 1.41421
\(250\) −0.382683 0.923880i −0.382683 0.923880i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 1.41421 1.41421
\(256\) −1.00000 −1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(264\) 0 0
\(265\) 0.765367i 0.765367i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(271\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(272\) 1.41421 1.41421
\(273\) 0 0
\(274\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(275\) 0 0
\(276\) −1.30656 1.30656i −1.30656 1.30656i
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 1.70711 0.707107i 1.70711 0.707107i
\(279\) 1.84776 1.84776
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 1.30656 0.541196i 1.30656 0.541196i
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0.765367i 0.765367i
\(286\) 0 0
\(287\) 0 0
\(288\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(301\) 0 0
\(302\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(303\) 0 0
\(304\) 0.765367i 0.765367i
\(305\) 0.765367 0.765367
\(306\) −0.541196 1.30656i −0.541196 1.30656i
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −1.00000 1.00000i −1.00000 1.00000i
\(317\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(318\) 0.707107 0.292893i 0.707107 0.292893i
\(319\) 0 0
\(320\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(321\) 0.765367i 0.765367i
\(322\) 0 0
\(323\) 1.08239i 1.08239i
\(324\) 0.707107 0.707107i 0.707107 0.707107i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 1.00000 1.00000i 1.00000 1.00000i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0.923880 0.382683i 0.923880 0.382683i
\(339\) −1.84776 −1.84776
\(340\) 1.00000 1.00000i 1.00000 1.00000i
\(341\) 0 0
\(342\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(343\) 0 0
\(344\) 0 0
\(345\) −1.84776 −1.84776
\(346\) −0.541196 1.30656i −0.541196 1.30656i
\(347\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(348\) 0 0
\(349\) 1.84776i 1.84776i 0.382683 + 0.923880i \(0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(361\) −0.414214 −0.414214
\(362\) −0.707107 1.70711i −0.707107 1.70711i
\(363\) −1.00000 −1.00000
\(364\) 0 0
\(365\) 0 0
\(366\) −0.292893 0.707107i −0.292893 0.707107i
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −1.84776 −1.84776
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 1.30656 1.30656i 1.30656 1.30656i
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 1.00000i 1.00000i
\(376\) 0.541196 1.30656i 0.541196 1.30656i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(380\) −0.541196 0.541196i −0.541196 0.541196i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0.923880 + 0.382683i 0.923880 + 0.382683i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 2.61313 2.61313
\(392\) 0 0
\(393\) 0 0
\(394\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(395\) −1.41421 −1.41421
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0.707107 0.292893i 0.707107 0.292893i
\(399\) 0 0
\(400\) 1.00000i 1.00000i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000i 1.00000i
\(406\) 0 0
\(407\) 0 0
\(408\) −1.30656 0.541196i −1.30656 0.541196i
\(409\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(410\) 0 0
\(411\) 1.84776 1.84776
\(412\) 0 0
\(413\) 0 0
\(414\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(415\) 1.41421i 1.41421i
\(416\) 0 0
\(417\) −1.84776 −1.84776
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) −0.765367 1.84776i −0.765367 1.84776i
\(423\) −1.41421 −1.41421
\(424\) 0.292893 0.707107i 0.292893 0.707107i
\(425\) 1.41421i 1.41421i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.541196 0.541196i −0.541196 0.541196i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000i 1.00000i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.41421i 1.41421i
\(438\) 0 0
\(439\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.923880 0.382683i 0.923880 0.382683i
\(451\) 0 0
\(452\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(453\) 1.41421i 1.41421i
\(454\) 0 0
\(455\) 0 0
\(456\) −0.292893 + 0.707107i −0.292893 + 0.707107i
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(459\) 1.41421i 1.41421i
\(460\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 1.84776i 1.84776i
\(466\) 0.707107 0.292893i 0.707107 0.292893i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.541196 1.30656i −0.541196 1.30656i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(475\) −0.765367 −0.765367
\(476\) 0 0
\(477\) −0.765367 −0.765367
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0.923880 0.382683i 0.923880 0.382683i
\(481\) 0 0
\(482\) −0.707107 1.70711i −0.707107 1.70711i
\(483\) 0 0
\(484\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(485\) 0 0
\(486\) −0.923880 + 0.382683i −0.923880 + 0.382683i
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) −0.707107 0.292893i −0.707107 0.292893i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 1.84776i 1.84776i
\(497\) 0 0
\(498\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(499\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(501\) 0 0
\(502\) 0 0
\(503\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −1.00000
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(511\) 0 0
\(512\) 0.923880 0.382683i 0.923880 0.382683i
\(513\) 0.765367 0.765367
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 1.41421i 1.41421i
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.292893 0.707107i −0.292893 0.707107i
\(527\) 2.61313i 2.61313i
\(528\) 0 0
\(529\) −2.41421 −2.41421
\(530\) −0.292893 0.707107i −0.292893 0.707107i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.765367 −0.765367
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −0.707107 0.707107i −0.707107 0.707107i
\(541\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0.707107 0.292893i 0.707107 0.292893i
\(543\) 1.84776i 1.84776i
\(544\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 1.30656 1.30656i 1.30656 1.30656i
\(549\) 0.765367i 0.765367i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.70711 + 0.707107i 1.70711 + 0.707107i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.30656 + 1.30656i −1.30656 + 1.30656i
\(557\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(558\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(565\) 1.84776i 1.84776i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(571\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.84776i 1.84776i
\(576\) −0.707107 0.707107i −0.707107 0.707107i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0.923880 0.382683i 0.923880 0.382683i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 1.41421 1.41421
\(590\) 0 0
\(591\) 1.84776 1.84776
\(592\) 0 0
\(593\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −0.765367 −0.765367
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0.382683 0.923880i 0.382683 0.923880i
\(601\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.00000 1.00000i −1.00000 1.00000i
\(605\) 1.00000i 1.00000i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(609\) 0 0
\(610\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(611\) 0 0
\(612\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.765367 −0.765367 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(618\) 0 0
\(619\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(620\) −1.30656 1.30656i −1.30656 1.30656i
\(621\) 1.84776i 1.84776i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(632\) 1.30656 + 0.541196i 1.30656 + 0.541196i
\(633\) 2.00000i 2.00000i
\(634\) −0.707107 + 0.292893i −0.707107 + 0.292893i
\(635\) 0 0
\(636\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.382683 0.923880i 0.382683 0.923880i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0.292893 + 0.707107i 0.292893 + 0.707107i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.414214 1.00000i −0.414214 1.00000i
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −0.382683 + 0.923880i −0.382683 + 0.923880i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(662\) −0.765367 1.84776i −0.765367 1.84776i
\(663\) 0 0
\(664\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −1.00000 −1.00000
\(676\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 1.70711 0.707107i 1.70711 0.707107i
\(679\) 0 0
\(680\) −0.541196 + 1.30656i −0.541196 + 1.30656i
\(681\) 0 0
\(682\) 0 0
\(683\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(684\) 0.541196 0.541196i 0.541196 0.541196i
\(685\) 1.84776i 1.84776i
\(686\) 0 0
\(687\) 0.765367i 0.765367i
\(688\) 0 0
\(689\) 0 0
\(690\) 1.70711 0.707107i 1.70711 0.707107i
\(691\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(692\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(693\) 0 0
\(694\) −0.707107 1.70711i −0.707107 1.70711i
\(695\) 1.84776i 1.84776i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.707107 1.70711i −0.707107 1.70711i
\(699\) −0.765367 −0.765367
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.41421i 1.41421i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(710\) 0 0
\(711\) 1.41421i 1.41421i
\(712\) 0 0
\(713\) 3.41421i 3.41421i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −1.00000 −1.00000
\(721\) 0 0
\(722\) 0.382683 0.158513i 0.382683 0.158513i
\(723\) 1.84776i 1.84776i
\(724\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(725\) 0 0
\(726\) 0.923880 0.382683i 0.923880 0.382683i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0.541196 + 0.541196i 0.541196 + 0.541196i
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 1.70711 0.707107i 1.70711 0.707107i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.84776i 1.84776i −0.382683 0.923880i \(-0.625000\pi\)
0.382683 0.923880i \(-0.375000\pi\)
\(744\) −0.707107 + 1.70711i −0.707107 + 1.70711i
\(745\) 0 0
\(746\) 0 0
\(747\) 1.41421 1.41421
\(748\) 0 0
\(749\) 0 0
\(750\) −0.382683 0.923880i −0.382683 0.923880i
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.41421i 1.41421i
\(753\) 0 0
\(754\) 0 0
\(755\) −1.41421 −1.41421
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(759\) 0 0
\(760\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.41421 1.41421
\(766\) −1.30656 + 0.541196i −1.30656 + 0.541196i
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(774\) 0 0
\(775\) −1.84776 −1.84776
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −2.41421 + 1.00000i −2.41421 + 1.00000i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 1.30656 1.30656i 1.30656 1.30656i
\(789\) 0.765367i 0.765367i
\(790\) 1.30656 0.541196i 1.30656 0.541196i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.765367i 0.765367i
\(796\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(797\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 2.00000i 2.00000i
\(800\) −0.382683 0.923880i −0.382683 0.923880i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(811\) −1.84776 −1.84776 −0.923880 0.382683i \(-0.875000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(812\) 0 0
\(813\) −0.765367 −0.765367
\(814\) 0 0
\(815\) 0 0
\(816\) 1.41421 1.41421
\(817\) 0 0
\(818\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −1.70711 + 0.707107i −1.70711 + 0.707107i
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(828\) −1.30656 1.30656i −1.30656 1.30656i
\(829\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(830\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 1.70711 0.707107i 1.70711 0.707107i
\(835\) 0 0
\(836\) 0 0
\(837\) 1.84776 1.84776
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 1.30656 0.541196i 1.30656 0.541196i
\(843\) 0 0
\(844\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(845\) 1.00000i 1.00000i
\(846\) 1.30656 0.541196i 1.30656 0.541196i
\(847\) 0 0
\(848\) 0.765367i 0.765367i
\(849\) 0 0
\(850\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0.765367i 0.765367i
\(856\) 0.707107 + 0.292893i 0.707107 + 0.292893i
\(857\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(858\) 0 0
\(859\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.765367i 0.765367i −0.923880 0.382683i \(-0.875000\pi\)
0.923880 0.382683i \(-0.125000\pi\)
\(864\) 0.382683 + 0.923880i 0.382683 + 0.923880i
\(865\) 1.41421 1.41421
\(866\) 0 0
\(867\) −1.00000 −1.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 1.70711 0.707107i 1.70711 0.707107i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.292893 0.707107i −0.292893 0.707107i
\(887\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.08239 −1.08239
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(901\) 1.08239i 1.08239i
\(902\) 0 0
\(903\) 0 0
\(904\) 0.707107 1.70711i 0.707107 1.70711i
\(905\) 1.84776 1.84776
\(906\) 0.541196 + 1.30656i 0.541196 + 1.30656i
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0.765367i 0.765367i
\(913\) 0 0
\(914\) 0 0
\(915\) 0.765367 0.765367
\(916\) −0.541196 0.541196i −0.541196 0.541196i
\(917\) 0 0
\(918\) −0.541196 1.30656i −0.541196 1.30656i
\(919\) 2.00000i 2.00000i 1.00000i \(-0.5\pi\)
1.00000i \(-0.5\pi\)
\(920\) 0.707107 1.70711i 0.707107 1.70711i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(931\) 0 0
\(932\) −0.541196 + 0.541196i −0.541196 + 0.541196i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.765367i 0.765367i 0.923880 + 0.382683i \(0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(948\) −1.00000 1.00000i −1.00000 1.00000i
\(949\) 0 0
\(950\) 0.707107 0.292893i 0.707107 0.292893i
\(951\) 0.765367 0.765367
\(952\) 0 0
\(953\) 1.84776 1.84776 0.923880 0.382683i \(-0.125000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(954\) 0.707107 0.292893i 0.707107 0.292893i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(961\) 2.41421 2.41421
\(962\) 0 0
\(963\) 0.765367i 0.765367i
\(964\) 1.30656 + 1.30656i 1.30656 + 1.30656i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0.382683 0.923880i 0.382683 0.923880i
\(969\) 1.08239i 1.08239i
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0.707107 0.707107i 0.707107 0.707107i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.765367 0.765367
\(977\) 0.765367 0.765367 0.382683 0.923880i \(-0.375000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 1.84776i 1.84776i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0.707107 + 1.70711i 0.707107 + 1.70711i
\(993\) 2.00000i 2.00000i
\(994\) 0 0
\(995\) 0.765367i 0.765367i
\(996\) 1.00000 1.00000i 1.00000 1.00000i
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −0.541196 1.30656i −0.541196 1.30656i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.1.o.d.2939.2 yes 8
3.2 odd 2 2940.1.o.c.2939.7 yes 8
4.3 odd 2 2940.1.o.c.2939.1 8
5.4 even 2 2940.1.o.c.2939.7 yes 8
7.2 even 3 2940.1.be.e.2579.7 16
7.3 odd 6 2940.1.be.f.1979.5 16
7.4 even 3 2940.1.be.e.1979.5 16
7.5 odd 6 2940.1.be.f.2579.7 16
7.6 odd 2 2940.1.o.c.2939.2 yes 8
12.11 even 2 inner 2940.1.o.d.2939.8 yes 8
15.14 odd 2 CM 2940.1.o.d.2939.2 yes 8
20.19 odd 2 inner 2940.1.o.d.2939.8 yes 8
21.2 odd 6 2940.1.be.f.2579.2 16
21.5 even 6 2940.1.be.e.2579.2 16
21.11 odd 6 2940.1.be.f.1979.4 16
21.17 even 6 2940.1.be.e.1979.4 16
21.20 even 2 inner 2940.1.o.d.2939.7 yes 8
28.3 even 6 2940.1.be.e.1979.7 16
28.11 odd 6 2940.1.be.f.1979.7 16
28.19 even 6 2940.1.be.e.2579.5 16
28.23 odd 6 2940.1.be.f.2579.5 16
28.27 even 2 inner 2940.1.o.d.2939.1 yes 8
35.4 even 6 2940.1.be.f.1979.4 16
35.9 even 6 2940.1.be.f.2579.2 16
35.19 odd 6 2940.1.be.e.2579.2 16
35.24 odd 6 2940.1.be.e.1979.4 16
35.34 odd 2 inner 2940.1.o.d.2939.7 yes 8
60.59 even 2 2940.1.o.c.2939.1 8
84.11 even 6 2940.1.be.e.1979.2 16
84.23 even 6 2940.1.be.e.2579.4 16
84.47 odd 6 2940.1.be.f.2579.4 16
84.59 odd 6 2940.1.be.f.1979.2 16
84.83 odd 2 2940.1.o.c.2939.8 yes 8
105.44 odd 6 2940.1.be.e.2579.7 16
105.59 even 6 2940.1.be.f.1979.5 16
105.74 odd 6 2940.1.be.e.1979.5 16
105.89 even 6 2940.1.be.f.2579.7 16
105.104 even 2 2940.1.o.c.2939.2 yes 8
140.19 even 6 2940.1.be.f.2579.4 16
140.39 odd 6 2940.1.be.e.1979.2 16
140.59 even 6 2940.1.be.f.1979.2 16
140.79 odd 6 2940.1.be.e.2579.4 16
140.139 even 2 2940.1.o.c.2939.8 yes 8
420.59 odd 6 2940.1.be.e.1979.7 16
420.179 even 6 2940.1.be.f.1979.7 16
420.299 odd 6 2940.1.be.e.2579.5 16
420.359 even 6 2940.1.be.f.2579.5 16
420.419 odd 2 inner 2940.1.o.d.2939.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2940.1.o.c.2939.1 8 4.3 odd 2
2940.1.o.c.2939.1 8 60.59 even 2
2940.1.o.c.2939.2 yes 8 7.6 odd 2
2940.1.o.c.2939.2 yes 8 105.104 even 2
2940.1.o.c.2939.7 yes 8 3.2 odd 2
2940.1.o.c.2939.7 yes 8 5.4 even 2
2940.1.o.c.2939.8 yes 8 84.83 odd 2
2940.1.o.c.2939.8 yes 8 140.139 even 2
2940.1.o.d.2939.1 yes 8 28.27 even 2 inner
2940.1.o.d.2939.1 yes 8 420.419 odd 2 inner
2940.1.o.d.2939.2 yes 8 1.1 even 1 trivial
2940.1.o.d.2939.2 yes 8 15.14 odd 2 CM
2940.1.o.d.2939.7 yes 8 21.20 even 2 inner
2940.1.o.d.2939.7 yes 8 35.34 odd 2 inner
2940.1.o.d.2939.8 yes 8 12.11 even 2 inner
2940.1.o.d.2939.8 yes 8 20.19 odd 2 inner
2940.1.be.e.1979.2 16 84.11 even 6
2940.1.be.e.1979.2 16 140.39 odd 6
2940.1.be.e.1979.4 16 21.17 even 6
2940.1.be.e.1979.4 16 35.24 odd 6
2940.1.be.e.1979.5 16 7.4 even 3
2940.1.be.e.1979.5 16 105.74 odd 6
2940.1.be.e.1979.7 16 28.3 even 6
2940.1.be.e.1979.7 16 420.59 odd 6
2940.1.be.e.2579.2 16 21.5 even 6
2940.1.be.e.2579.2 16 35.19 odd 6
2940.1.be.e.2579.4 16 84.23 even 6
2940.1.be.e.2579.4 16 140.79 odd 6
2940.1.be.e.2579.5 16 28.19 even 6
2940.1.be.e.2579.5 16 420.299 odd 6
2940.1.be.e.2579.7 16 7.2 even 3
2940.1.be.e.2579.7 16 105.44 odd 6
2940.1.be.f.1979.2 16 84.59 odd 6
2940.1.be.f.1979.2 16 140.59 even 6
2940.1.be.f.1979.4 16 21.11 odd 6
2940.1.be.f.1979.4 16 35.4 even 6
2940.1.be.f.1979.5 16 7.3 odd 6
2940.1.be.f.1979.5 16 105.59 even 6
2940.1.be.f.1979.7 16 28.11 odd 6
2940.1.be.f.1979.7 16 420.179 even 6
2940.1.be.f.2579.2 16 21.2 odd 6
2940.1.be.f.2579.2 16 35.9 even 6
2940.1.be.f.2579.4 16 84.47 odd 6
2940.1.be.f.2579.4 16 140.19 even 6
2940.1.be.f.2579.5 16 28.23 odd 6
2940.1.be.f.2579.5 16 420.359 even 6
2940.1.be.f.2579.7 16 7.5 odd 6
2940.1.be.f.2579.7 16 105.89 even 6