Properties

Label 2940.1.dd.a.1319.2
Level $2940$
Weight $1$
Character 2940.1319
Analytic conductor $1.467$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -20
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2940,1,Mod(59,2940)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2940, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 21, 21, 13])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2940.59"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2940 = 2^{2} \cdot 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2940.dd (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.46725113714\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 1319.2
Root \(-0.680173 - 0.733052i\) of defining polynomial
Character \(\chi\) \(=\) 2940.1319
Dual form 2940.1.dd.a.1139.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.563320 - 0.826239i) q^{2} +(-0.433884 + 0.900969i) q^{3} +(-0.365341 - 0.930874i) q^{4} +(-0.955573 + 0.294755i) q^{5} +(0.500000 + 0.866025i) q^{6} +(0.930874 - 0.365341i) q^{7} +(-0.974928 - 0.222521i) q^{8} +(-0.623490 - 0.781831i) q^{9} +(-0.294755 + 0.955573i) q^{10} +(0.997204 + 0.0747301i) q^{12} +(0.222521 - 0.974928i) q^{14} +(0.149042 - 0.988831i) q^{15} +(-0.733052 + 0.680173i) q^{16} +(-0.997204 + 0.0747301i) q^{18} +(0.623490 + 0.781831i) q^{20} +(-0.0747301 + 0.997204i) q^{21} +(0.218511 - 1.44973i) q^{23} +(0.623490 - 0.781831i) q^{24} +(0.826239 - 0.563320i) q^{25} +(0.974928 - 0.222521i) q^{27} +(-0.680173 - 0.733052i) q^{28} +(0.233052 - 0.185853i) q^{29} +(-0.733052 - 0.680173i) q^{30} +(0.149042 + 0.988831i) q^{32} +(-0.781831 + 0.623490i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(0.997204 - 0.0747301i) q^{40} +(-0.0332580 + 0.145713i) q^{41} +(0.781831 + 0.623490i) q^{42} +(-0.443797 - 1.94440i) q^{43} +(0.826239 + 0.563320i) q^{45} +(-1.07473 - 0.997204i) q^{46} +(-1.61105 - 1.09839i) q^{47} +(-0.294755 - 0.955573i) q^{48} +(0.733052 - 0.680173i) q^{49} -1.00000i q^{50} +(0.365341 - 0.930874i) q^{54} +(-0.988831 + 0.149042i) q^{56} +(-0.0222759 - 0.297251i) q^{58} +(-0.974928 + 0.222521i) q^{60} +(1.26631 + 0.496990i) q^{61} +(-0.866025 - 0.500000i) q^{63} +(0.900969 + 0.433884i) q^{64} +(0.866025 - 1.50000i) q^{67} +(1.21135 + 0.825886i) q^{69} +(0.0747301 + 0.997204i) q^{70} +(0.433884 + 0.900969i) q^{72} +(0.149042 + 0.988831i) q^{75} +(0.500000 - 0.866025i) q^{80} +(-0.222521 + 0.974928i) q^{81} +(0.101659 + 0.109562i) q^{82} +(1.67738 + 0.807782i) q^{83} +(0.955573 - 0.294755i) q^{84} +(-1.85654 - 0.728639i) q^{86} +(0.0663300 + 0.290611i) q^{87} +(-0.147791 - 1.97213i) q^{89} +(0.930874 - 0.365341i) q^{90} +(-1.42935 + 0.326239i) q^{92} +(-1.81507 + 0.712362i) q^{94} +(-0.955573 - 0.294755i) q^{96} +(-0.149042 - 0.988831i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{4} - 2 q^{5} + 12 q^{6} + 4 q^{9} + 4 q^{14} + 2 q^{16} - 4 q^{20} - 2 q^{21} - 4 q^{24} + 2 q^{25} - 14 q^{29} + 2 q^{30} - 12 q^{36} + 4 q^{41} + 2 q^{45} - 26 q^{46} - 2 q^{49} + 2 q^{54}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2940\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(1177\) \(1471\) \(1961\)
\(\chi(n)\) \(e\left(\frac{31}{42}\right)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.563320 0.826239i 0.563320 0.826239i
\(3\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(4\) −0.365341 0.930874i −0.365341 0.930874i
\(5\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(6\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(7\) 0.930874 0.365341i 0.930874 0.365341i
\(8\) −0.974928 0.222521i −0.974928 0.222521i
\(9\) −0.623490 0.781831i −0.623490 0.781831i
\(10\) −0.294755 + 0.955573i −0.294755 + 0.955573i
\(11\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(12\) 0.997204 + 0.0747301i 0.997204 + 0.0747301i
\(13\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(14\) 0.222521 0.974928i 0.222521 0.974928i
\(15\) 0.149042 0.988831i 0.149042 0.988831i
\(16\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(17\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(18\) −0.997204 + 0.0747301i −0.997204 + 0.0747301i
\(19\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(20\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(21\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(22\) 0 0
\(23\) 0.218511 1.44973i 0.218511 1.44973i −0.563320 0.826239i \(-0.690476\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(24\) 0.623490 0.781831i 0.623490 0.781831i
\(25\) 0.826239 0.563320i 0.826239 0.563320i
\(26\) 0 0
\(27\) 0.974928 0.222521i 0.974928 0.222521i
\(28\) −0.680173 0.733052i −0.680173 0.733052i
\(29\) 0.233052 0.185853i 0.233052 0.185853i −0.500000 0.866025i \(-0.666667\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(30\) −0.733052 0.680173i −0.733052 0.680173i
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0.149042 + 0.988831i 0.149042 + 0.988831i
\(33\) 0 0
\(34\) 0 0
\(35\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(36\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(37\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.997204 0.0747301i 0.997204 0.0747301i
\(41\) −0.0332580 + 0.145713i −0.0332580 + 0.145713i −0.988831 0.149042i \(-0.952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(42\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(43\) −0.443797 1.94440i −0.443797 1.94440i −0.294755 0.955573i \(-0.595238\pi\)
−0.149042 0.988831i \(-0.547619\pi\)
\(44\) 0 0
\(45\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(46\) −1.07473 0.997204i −1.07473 0.997204i
\(47\) −1.61105 1.09839i −1.61105 1.09839i −0.930874 0.365341i \(-0.880952\pi\)
−0.680173 0.733052i \(-0.738095\pi\)
\(48\) −0.294755 0.955573i −0.294755 0.955573i
\(49\) 0.733052 0.680173i 0.733052 0.680173i
\(50\) 1.00000i 1.00000i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(54\) 0.365341 0.930874i 0.365341 0.930874i
\(55\) 0 0
\(56\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(57\) 0 0
\(58\) −0.0222759 0.297251i −0.0222759 0.297251i
\(59\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(60\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(61\) 1.26631 + 0.496990i 1.26631 + 0.496990i 0.900969 0.433884i \(-0.142857\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(62\) 0 0
\(63\) −0.866025 0.500000i −0.866025 0.500000i
\(64\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(68\) 0 0
\(69\) 1.21135 + 0.825886i 1.21135 + 0.825886i
\(70\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(71\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(72\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(73\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(74\) 0 0
\(75\) 0.149042 + 0.988831i 0.149042 + 0.988831i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0.500000 0.866025i 0.500000 0.866025i
\(81\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(82\) 0.101659 + 0.109562i 0.101659 + 0.109562i
\(83\) 1.67738 + 0.807782i 1.67738 + 0.807782i 0.997204 + 0.0747301i \(0.0238095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(84\) 0.955573 0.294755i 0.955573 0.294755i
\(85\) 0 0
\(86\) −1.85654 0.728639i −1.85654 0.728639i
\(87\) 0.0663300 + 0.290611i 0.0663300 + 0.290611i
\(88\) 0 0
\(89\) −0.147791 1.97213i −0.147791 1.97213i −0.222521 0.974928i \(-0.571429\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(90\) 0.930874 0.365341i 0.930874 0.365341i
\(91\) 0 0
\(92\) −1.42935 + 0.326239i −1.42935 + 0.326239i
\(93\) 0 0
\(94\) −1.81507 + 0.712362i −1.81507 + 0.712362i
\(95\) 0 0
\(96\) −0.955573 0.294755i −0.955573 0.294755i
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −0.149042 0.988831i −0.149042 0.988831i
\(99\) 0 0
\(100\) −0.826239 0.563320i −0.826239 0.563320i
\(101\) 0.535628 + 0.496990i 0.535628 + 0.496990i 0.900969 0.433884i \(-0.142857\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(102\) 0 0
\(103\) −0.294755 0.955573i −0.294755 0.955573i −0.974928 0.222521i \(-0.928571\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(104\) 0 0
\(105\) −0.222521 0.974928i −0.222521 0.974928i
\(106\) 0 0
\(107\) −0.728639 + 0.0546039i −0.728639 + 0.0546039i −0.433884 0.900969i \(-0.642857\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(108\) −0.563320 0.826239i −0.563320 0.826239i
\(109\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i 0.826239 + 0.563320i \(0.190476\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(113\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(114\) 0 0
\(115\) 0.218511 + 1.44973i 0.218511 + 1.44973i
\(116\) −0.258149 0.149042i −0.258149 0.149042i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(121\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(122\) 1.12397 0.766310i 1.12397 0.766310i
\(123\) −0.116853 0.0931869i −0.116853 0.0931869i
\(124\) 0 0
\(125\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(126\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(127\) −0.541044 0.678448i −0.541044 0.678448i 0.433884 0.900969i \(-0.357143\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(128\) 0.866025 0.500000i 0.866025 0.500000i
\(129\) 1.94440 + 0.443797i 1.94440 + 0.443797i
\(130\) 0 0
\(131\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.751509 1.56052i −0.751509 1.56052i
\(135\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(136\) 0 0
\(137\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(138\) 1.36476 0.535628i 1.36476 0.535628i
\(139\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(140\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(141\) 1.68862 0.974928i 1.68862 0.974928i
\(142\) 0 0
\(143\) 0 0
\(144\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(145\) −0.167917 + 0.246289i −0.167917 + 0.246289i
\(146\) 0 0
\(147\) 0.294755 + 0.955573i 0.294755 + 0.955573i
\(148\) 0 0
\(149\) −1.04876 + 1.53825i −1.04876 + 1.53825i −0.222521 + 0.974928i \(0.571429\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(150\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(151\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.433884 0.900969i −0.433884 0.900969i
\(161\) −0.326239 1.42935i −0.326239 1.42935i
\(162\) 0.680173 + 0.733052i 0.680173 + 0.733052i
\(163\) −1.14625 + 1.06356i −1.14625 + 1.06356i −0.149042 + 0.988831i \(0.547619\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(164\) 0.147791 0.0222759i 0.147791 0.0222759i
\(165\) 0 0
\(166\) 1.61232 0.930874i 1.61232 0.930874i
\(167\) −0.702449 0.880843i −0.702449 0.880843i 0.294755 0.955573i \(-0.404762\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(168\) 0.294755 0.955573i 0.294755 0.955573i
\(169\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(170\) 0 0
\(171\) 0 0
\(172\) −1.64786 + 1.12349i −1.64786 + 1.12349i
\(173\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(174\) 0.277479 + 0.108903i 0.277479 + 0.108903i
\(175\) 0.563320 0.826239i 0.563320 0.826239i
\(176\) 0 0
\(177\) 0 0
\(178\) −1.71271 0.988831i −1.71271 0.988831i
\(179\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(180\) 0.222521 0.974928i 0.222521 0.974928i
\(181\) −0.751509 + 1.56052i −0.751509 + 1.56052i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(182\) 0 0
\(183\) −0.997204 + 0.925270i −0.997204 + 0.925270i
\(184\) −0.535628 + 1.36476i −0.535628 + 1.36476i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.433884 + 1.90097i −0.433884 + 1.90097i
\(189\) 0.826239 0.563320i 0.826239 0.563320i
\(190\) 0 0
\(191\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(192\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(193\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.900969 0.433884i −0.900969 0.433884i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(200\) −0.930874 + 0.365341i −0.930874 + 0.365341i
\(201\) 0.975699 + 1.43109i 0.975699 + 1.43109i
\(202\) 0.712362 0.162592i 0.712362 0.162592i
\(203\) 0.149042 0.258149i 0.149042 0.258149i
\(204\) 0 0
\(205\) −0.0111692 0.149042i −0.0111692 0.149042i
\(206\) −0.955573 0.294755i −0.955573 0.294755i
\(207\) −1.26968 + 0.733052i −1.26968 + 0.733052i
\(208\) 0 0
\(209\) 0 0
\(210\) −0.930874 0.365341i −0.930874 0.365341i
\(211\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −0.365341 + 0.632789i −0.365341 + 0.632789i
\(215\) 0.997204 + 1.72721i 0.997204 + 1.72721i
\(216\) −1.00000 −1.00000
\(217\) 0 0
\(218\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.40881 + 1.12349i 1.40881 + 1.12349i 0.974928 + 0.222521i \(0.0714286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(224\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(225\) −0.955573 0.294755i −0.955573 0.294755i
\(226\) 0 0
\(227\) −0.433884 + 0.751509i −0.433884 + 0.751509i −0.997204 0.0747301i \(-0.976190\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(228\) 0 0
\(229\) −1.06356 1.14625i −1.06356 1.14625i −0.988831 0.149042i \(-0.952381\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(230\) 1.32091 + 0.636119i 1.32091 + 0.636119i
\(231\) 0 0
\(232\) −0.268565 + 0.129334i −0.268565 + 0.129334i
\(233\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(234\) 0 0
\(235\) 1.86323 + 0.574730i 1.86323 + 0.574730i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(240\) 0.563320 + 0.826239i 0.563320 + 0.826239i
\(241\) −0.807782 + 0.317031i −0.807782 + 0.317031i −0.733052 0.680173i \(-0.761905\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(242\) 0.680173 0.733052i 0.680173 0.733052i
\(243\) −0.781831 0.623490i −0.781831 0.623490i
\(244\) 1.36035i 1.36035i
\(245\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(246\) −0.142820 + 0.0440542i −0.142820 + 0.0440542i
\(247\) 0 0
\(248\) 0 0
\(249\) −1.45557 + 1.16078i −1.45557 + 1.16078i
\(250\) 0.294755 + 0.955573i 0.294755 + 0.955573i
\(251\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(252\) −0.149042 + 0.988831i −0.149042 + 0.988831i
\(253\) 0 0
\(254\) −0.865341 + 0.0648483i −0.865341 + 0.0648483i
\(255\) 0 0
\(256\) 0.0747301 0.997204i 0.0747301 0.997204i
\(257\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(258\) 1.46200 1.35654i 1.46200 1.35654i
\(259\) 0 0
\(260\) 0 0
\(261\) −0.290611 0.0663300i −0.290611 0.0663300i
\(262\) 0 0
\(263\) 1.71271 + 0.988831i 1.71271 + 0.988831i 0.930874 + 0.365341i \(0.119048\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.84095 + 0.722521i 1.84095 + 0.722521i
\(268\) −1.71271 0.258149i −1.71271 0.258149i
\(269\) 1.36534 0.930874i 1.36534 0.930874i 0.365341 0.930874i \(-0.380952\pi\)
1.00000 \(0\)
\(270\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(271\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0.326239 1.42935i 0.326239 1.42935i
\(277\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0.900969 0.433884i 0.900969 0.433884i
\(281\) 0.846011 + 1.75676i 0.846011 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(282\) 0.145713 1.94440i 0.145713 1.94440i
\(283\) 0.443797 + 0.0332580i 0.443797 + 0.0332580i 0.294755 0.955573i \(-0.404762\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.0222759 + 0.147791i 0.0222759 + 0.147791i
\(288\) 0.680173 0.733052i 0.680173 0.733052i
\(289\) 0.955573 0.294755i 0.955573 0.294755i
\(290\) 0.108903 + 0.277479i 0.108903 + 0.277479i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0.680173 + 1.73305i 0.680173 + 1.73305i
\(299\) 0 0
\(300\) 0.866025 0.500000i 0.866025 0.500000i
\(301\) −1.12349 1.64786i −1.12349 1.64786i
\(302\) 0 0
\(303\) −0.680173 + 0.266948i −0.680173 + 0.266948i
\(304\) 0 0
\(305\) −1.35654 0.101659i −1.35654 0.101659i
\(306\) 0 0
\(307\) 0.716983 + 1.48883i 0.716983 + 1.48883i 0.866025 + 0.500000i \(0.166667\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(308\) 0 0
\(309\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(310\) 0 0
\(311\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(312\) 0 0
\(313\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(314\) 0 0
\(315\) 0.974928 + 0.222521i 0.974928 + 0.222521i
\(316\) 0 0
\(317\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.988831 0.149042i −0.988831 0.149042i
\(321\) 0.266948 0.680173i 0.266948 0.680173i
\(322\) −1.36476 0.535628i −1.36476 0.535628i
\(323\) 0 0
\(324\) 0.988831 0.149042i 0.988831 0.149042i
\(325\) 0 0
\(326\) 0.233052 + 1.54620i 0.233052 + 1.54620i
\(327\) −0.866025 0.500000i −0.866025 0.500000i
\(328\) 0.0648483 0.134659i 0.0648483 0.134659i
\(329\) −1.90097 0.433884i −1.90097 0.433884i
\(330\) 0 0
\(331\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(332\) 0.139129 1.85654i 0.139129 1.85654i
\(333\) 0 0
\(334\) −1.12349 + 0.0841939i −1.12349 + 0.0841939i
\(335\) −0.385418 + 1.68862i −0.385418 + 1.68862i
\(336\) −0.623490 0.781831i −0.623490 0.781831i
\(337\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(338\) 0.294755 + 0.955573i 0.294755 + 0.955573i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.433884 0.900969i 0.433884 0.900969i
\(344\) 1.99441i 1.99441i
\(345\) −1.40097 0.432142i −1.40097 0.432142i
\(346\) 0 0
\(347\) 0.139129 0.0546039i 0.139129 0.0546039i −0.294755 0.955573i \(-0.595238\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(348\) 0.246289 0.167917i 0.246289 0.167917i
\(349\) −1.94440 + 0.443797i −1.94440 + 0.443797i −0.955573 + 0.294755i \(0.904762\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(350\) −0.365341 0.930874i −0.365341 0.930874i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.78181 + 0.858075i −1.78181 + 0.858075i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(360\) −0.680173 0.733052i −0.680173 0.733052i
\(361\) 0.500000 0.866025i 0.500000 0.866025i
\(362\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(363\) −0.563320 + 0.826239i −0.563320 + 0.826239i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.202749 + 1.34515i 0.202749 + 1.34515i
\(367\) 0.930874 + 1.36534i 0.930874 + 1.36534i 0.930874 + 0.365341i \(0.119048\pi\)
1.00000i \(0.5\pi\)
\(368\) 0.825886 + 1.21135i 0.825886 + 1.21135i
\(369\) 0.134659 0.0648483i 0.134659 0.0648483i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −0.433884 0.900969i −0.433884 0.900969i
\(376\) 1.32624 + 1.42935i 1.32624 + 1.42935i
\(377\) 0 0
\(378\) 1.00000i 1.00000i
\(379\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(380\) 0 0
\(381\) 0.846011 0.193096i 0.846011 0.193096i
\(382\) 0 0
\(383\) −0.0222759 0.297251i −0.0222759 0.297251i −0.997204 0.0747301i \(-0.976190\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(384\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(385\) 0 0
\(386\) 0 0
\(387\) −1.24349 + 1.55929i −1.24349 + 1.55929i
\(388\) 0 0
\(389\) −1.06356 + 1.14625i −1.06356 + 1.14625i −0.0747301 + 0.997204i \(0.523810\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(401\) 0.587862 0.0440542i 0.587862 0.0440542i 0.222521 0.974928i \(-0.428571\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(402\) 1.73205 1.73205
\(403\) 0 0
\(404\) 0.266948 0.680173i 0.266948 0.680173i
\(405\) −0.0747301 0.997204i −0.0747301 0.997204i
\(406\) −0.129334 0.268565i −0.129334 0.268565i
\(407\) 0 0
\(408\) 0 0
\(409\) 0.167917 + 1.11406i 0.167917 + 1.11406i 0.900969 + 0.433884i \(0.142857\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(410\) −0.129436 0.0747301i −0.129436 0.0747301i
\(411\) 0 0
\(412\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(413\) 0 0
\(414\) −0.109562 + 1.46200i −0.109562 + 1.46200i
\(415\) −1.84095 0.277479i −1.84095 0.277479i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(420\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(421\) −1.19158 1.49419i −1.19158 1.49419i −0.826239 0.563320i \(-0.809524\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(422\) 0 0
\(423\) 0.145713 + 1.94440i 0.145713 + 1.94440i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.36035 1.36035
\(428\) 0.317031 + 0.658322i 0.317031 + 0.658322i
\(429\) 0 0
\(430\) 1.98883 + 0.149042i 1.98883 + 0.149042i
\(431\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(432\) −0.563320 + 0.826239i −0.563320 + 0.826239i
\(433\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(434\) 0 0
\(435\) −0.149042 0.258149i −0.149042 0.258149i
\(436\) 0.955573 0.294755i 0.955573 0.294755i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(440\) 0 0
\(441\) −0.988831 0.149042i −0.988831 0.149042i
\(442\) 0 0
\(443\) 1.11406 1.63402i 1.11406 1.63402i 0.433884 0.900969i \(-0.357143\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(444\) 0 0
\(445\) 0.722521 + 1.84095i 0.722521 + 1.84095i
\(446\) 1.72188 0.531130i 1.72188 0.531130i
\(447\) −0.930874 1.61232i −0.930874 1.61232i
\(448\) 0.997204 + 0.0747301i 0.997204 + 0.0747301i
\(449\) 1.32624 + 0.302705i 1.32624 + 0.302705i 0.826239 0.563320i \(-0.190476\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.376510 + 0.781831i 0.376510 + 0.781831i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(458\) −1.54620 + 0.233052i −1.54620 + 0.233052i
\(459\) 0 0
\(460\) 1.26968 0.733052i 1.26968 0.733052i
\(461\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(462\) 0 0
\(463\) 1.16078 1.45557i 1.16078 1.45557i 0.294755 0.955573i \(-0.404762\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(464\) −0.0444272 + 0.294755i −0.0444272 + 0.294755i
\(465\) 0 0
\(466\) 0 0
\(467\) 1.71271 + 0.258149i 1.71271 + 0.258149i 0.930874 0.365341i \(-0.119048\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(468\) 0 0
\(469\) 0.258149 1.71271i 0.258149 1.71271i
\(470\) 1.52446 1.21572i 1.52446 1.21572i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(480\) 1.00000 1.00000
\(481\) 0 0
\(482\) −0.193096 + 0.846011i −0.193096 + 0.846011i
\(483\) 1.42935 + 0.326239i 1.42935 + 0.326239i
\(484\) −0.222521 0.974928i −0.222521 0.974928i
\(485\) 0 0
\(486\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(487\) −1.42935 1.32624i −1.42935 1.32624i −0.866025 0.500000i \(-0.833333\pi\)
−0.563320 0.826239i \(-0.690476\pi\)
\(488\) −1.12397 0.766310i −1.12397 0.766310i
\(489\) −0.460898 1.49419i −0.460898 1.49419i
\(490\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) −0.0440542 + 0.142820i −0.0440542 + 0.142820i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0.139129 + 1.85654i 0.139129 + 1.85654i
\(499\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(500\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(501\) 1.09839 0.250701i 1.09839 0.250701i
\(502\) 0 0
\(503\) −1.79690 + 0.865341i −1.79690 + 0.865341i −0.866025 + 0.500000i \(0.833333\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(504\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(505\) −0.658322 0.317031i −0.658322 0.317031i
\(506\) 0 0
\(507\) −0.433884 0.900969i −0.433884 0.900969i
\(508\) −0.433884 + 0.751509i −0.433884 + 0.751509i
\(509\) −0.733052 1.26968i −0.733052 1.26968i −0.955573 0.294755i \(-0.904762\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.781831 0.623490i −0.781831 0.623490i
\(513\) 0 0
\(514\) 0 0
\(515\) 0.563320 + 0.826239i 0.563320 + 0.826239i
\(516\) −0.297251 1.97213i −0.297251 1.97213i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.623490 1.07992i 0.623490 1.07992i −0.365341 0.930874i \(-0.619048\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(522\) −0.218511 + 0.202749i −0.218511 + 0.202749i
\(523\) −0.848162 0.914101i −0.848162 0.914101i 0.149042 0.988831i \(-0.452381\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(524\) 0 0
\(525\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(526\) 1.78181 0.858075i 1.78181 0.858075i
\(527\) 0 0
\(528\) 0 0
\(529\) −1.09839 0.338809i −1.09839 0.338809i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 1.63402 1.11406i 1.63402 1.11406i
\(535\) 0.680173 0.266948i 0.680173 0.266948i
\(536\) −1.17809 + 1.26968i −1.17809 + 1.26968i
\(537\) 0 0
\(538\) 1.65248i 1.65248i
\(539\) 0 0
\(540\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(541\) 1.57906 + 1.07659i 1.57906 + 1.07659i 0.955573 + 0.294755i \(0.0952381\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(542\) 0 0
\(543\) −1.07992 1.35417i −1.07992 1.35417i
\(544\) 0 0
\(545\) −0.222521 0.974928i −0.222521 0.974928i
\(546\) 0 0
\(547\) −0.302705 + 1.32624i −0.302705 + 1.32624i 0.563320 + 0.826239i \(0.309524\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(548\) 0 0
\(549\) −0.400969 1.29991i −0.400969 1.29991i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.997204 1.07473i −0.997204 1.07473i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.149042 0.988831i 0.149042 0.988831i
\(561\) 0 0
\(562\) 1.92808 + 0.290611i 1.92808 + 0.290611i
\(563\) 0.246289 0.167917i 0.246289 0.167917i −0.433884 0.900969i \(-0.642857\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(564\) −1.52446 1.21572i −1.52446 1.21572i
\(565\) 0 0
\(566\) 0.277479 0.347948i 0.277479 0.347948i
\(567\) 0.149042 + 0.988831i 0.149042 + 0.988831i
\(568\) 0 0
\(569\) 0.751509 0.433884i 0.751509 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(570\) 0 0
\(571\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0.134659 + 0.0648483i 0.134659 + 0.0648483i
\(575\) −0.636119 1.32091i −0.636119 1.32091i
\(576\) −0.222521 0.974928i −0.222521 0.974928i
\(577\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(578\) 0.294755 0.955573i 0.294755 0.955573i
\(579\) 0 0
\(580\) 0.290611 + 0.0663300i 0.290611 + 0.0663300i
\(581\) 1.85654 + 0.139129i 1.85654 + 0.139129i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.56366 −1.56366 −0.781831 0.623490i \(-0.785714\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(588\) 0.781831 0.623490i 0.781831 0.623490i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.81507 + 0.414278i 1.81507 + 0.414278i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(600\) 0.0747301 0.997204i 0.0747301 0.997204i
\(601\) 0.678448 + 1.40881i 0.678448 + 1.40881i 0.900969 + 0.433884i \(0.142857\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(602\) −1.99441 −1.99441
\(603\) −1.71271 + 0.258149i −1.71271 + 0.258149i
\(604\) 0 0
\(605\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(606\) −0.162592 + 0.712362i −0.162592 + 0.712362i
\(607\) −1.71271 + 0.988831i −1.71271 + 0.988831i −0.781831 + 0.623490i \(0.785714\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(608\) 0 0
\(609\) 0.167917 + 0.246289i 0.167917 + 0.246289i
\(610\) −0.848162 + 1.06356i −0.848162 + 1.06356i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(614\) 1.63402 + 0.246289i 1.63402 + 0.246289i
\(615\) 0.139129 + 0.0546039i 0.139129 + 0.0546039i
\(616\) 0 0
\(617\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(618\) 0.680173 0.733052i 0.680173 0.733052i
\(619\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(620\) 0 0
\(621\) −0.109562 1.46200i −0.109562 1.46200i
\(622\) 0 0
\(623\) −0.858075 1.78181i −0.858075 1.78181i
\(624\) 0 0
\(625\) 0.365341 0.930874i 0.365341 0.930874i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.733052 0.680173i 0.733052 0.680173i
\(631\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.716983 + 0.488831i 0.716983 + 0.488831i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.680173 + 0.733052i −0.680173 + 0.733052i
\(641\) 0.548760 0.215372i 0.548760 0.215372i −0.0747301 0.997204i \(-0.523810\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(642\) −0.411608 0.603718i −0.411608 0.603718i
\(643\) −1.75676 + 0.400969i −1.75676 + 0.400969i −0.974928 0.222521i \(-0.928571\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(644\) −1.21135 + 0.825886i −1.21135 + 0.825886i
\(645\) −1.98883 + 0.149042i −1.98883 + 0.149042i
\(646\) 0 0
\(647\) 1.07659 + 0.332083i 1.07659 + 0.332083i 0.781831 0.623490i \(-0.214286\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(648\) 0.433884 0.900969i 0.433884 0.900969i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.40881 + 0.678448i 1.40881 + 0.678448i
\(653\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(654\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(655\) 0 0
\(656\) −0.0747301 0.129436i −0.0747301 0.129436i
\(657\) 0 0
\(658\) −1.42935 + 1.32624i −1.42935 + 1.32624i
\(659\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(660\) 0 0
\(661\) −1.04876 1.53825i −1.04876 1.53825i −0.826239 0.563320i \(-0.809524\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −1.45557 1.16078i −1.45557 1.16078i
\(665\) 0 0
\(666\) 0 0
\(667\) −0.218511 0.378473i −0.218511 0.378473i
\(668\) −0.563320 + 0.975699i −0.563320 + 0.975699i
\(669\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(670\) 1.17809 + 1.26968i 1.17809 + 1.26968i
\(671\) 0 0
\(672\) −0.997204 + 0.0747301i −0.997204 + 0.0747301i
\(673\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(674\) 0 0
\(675\) 0.680173 0.733052i 0.680173 0.733052i
\(676\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(677\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.488831 0.716983i −0.488831 0.716983i
\(682\) 0 0
\(683\) 1.12397 1.21135i 1.12397 1.21135i 0.149042 0.988831i \(-0.452381\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.500000 0.866025i −0.500000 0.866025i
\(687\) 1.49419 0.460898i 1.49419 0.460898i
\(688\) 1.64786 + 1.12349i 1.64786 + 1.12349i
\(689\) 0 0
\(690\) −1.14625 + 0.914101i −1.14625 + 0.914101i
\(691\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0.0332580 0.145713i 0.0332580 0.145713i
\(695\) 0 0
\(696\) 0.298085i 0.298085i
\(697\) 0 0
\(698\) −0.728639 + 1.85654i −0.728639 + 1.85654i
\(699\) 0 0
\(700\) −0.974928 0.222521i −0.974928 0.222521i
\(701\) 0.255779 0.531130i 0.255779 0.531130i −0.733052 0.680173i \(-0.761905\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.32624 + 1.42935i −1.32624 + 1.42935i
\(706\) 0 0
\(707\) 0.680173 + 0.266948i 0.680173 + 0.266948i
\(708\) 0 0
\(709\) −0.722521 0.108903i −0.722521 0.108903i −0.222521 0.974928i \(-0.571429\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −0.294755 + 1.95557i −0.294755 + 1.95557i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(720\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(721\) −0.623490 0.781831i −0.623490 0.781831i
\(722\) −0.433884 0.900969i −0.433884 0.900969i
\(723\) 0.0648483 0.865341i 0.0648483 0.865341i
\(724\) 1.72721 + 0.129436i 1.72721 + 0.129436i
\(725\) 0.0878620 0.284841i 0.0878620 0.284841i
\(726\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(727\) −0.712362 0.162592i −0.712362 0.162592i −0.149042 0.988831i \(-0.547619\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(728\) 0 0
\(729\) 0.900969 0.433884i 0.900969 0.433884i
\(730\) 0 0
\(731\) 0 0
\(732\) 1.22563 + 0.590232i 1.22563 + 0.590232i
\(733\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(734\) 1.65248 1.65248
\(735\) −0.563320 0.826239i −0.563320 0.826239i
\(736\) 1.46610 1.46610
\(737\) 0 0
\(738\) 0.0222759 0.147791i 0.0222759 0.147791i
\(739\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.61105 0.367711i −1.61105 0.367711i −0.680173 0.733052i \(-0.738095\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(744\) 0 0
\(745\) 0.548760 1.77904i 0.548760 1.77904i
\(746\) 0 0
\(747\) −0.414278 1.81507i −0.414278 1.81507i
\(748\) 0 0
\(749\) −0.658322 + 0.317031i −0.658322 + 0.317031i
\(750\) −0.988831 0.149042i −0.988831 0.149042i
\(751\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(752\) 1.92808 0.290611i 1.92808 0.290611i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.826239 0.563320i −0.826239 0.563320i
\(757\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.78181 + 0.268565i 1.78181 + 0.268565i 0.955573 0.294755i \(-0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(762\) 0.317031 0.807782i 0.317031 0.807782i
\(763\) 0.294755 + 0.955573i 0.294755 + 0.955573i
\(764\) 0 0
\(765\) 0 0
\(766\) −0.258149 0.149042i −0.258149 0.149042i
\(767\) 0 0
\(768\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(769\) −0.376510 + 0.781831i −0.376510 + 0.781831i 0.623490 + 0.781831i \(0.285714\pi\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(774\) 0.587862 + 1.90580i 0.587862 + 1.90580i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0.347948 + 1.52446i 0.347948 + 1.52446i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.185853 0.233052i 0.185853 0.233052i
\(784\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.34515 1.44973i 1.34515 1.44973i 0.563320 0.826239i \(-0.309524\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(788\) 0 0
\(789\) −1.63402 + 1.11406i −1.63402 + 1.11406i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.680173 + 0.733052i 0.680173 + 0.733052i
\(801\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(802\) 0.294755 0.510531i 0.294755 0.510531i
\(803\) 0 0
\(804\) 0.975699 1.43109i 0.975699 1.43109i
\(805\) 0.733052 + 1.26968i 0.733052 + 1.26968i
\(806\) 0 0
\(807\) 0.246289 + 1.63402i 0.246289 + 1.63402i
\(808\) −0.411608 0.603718i −0.411608 0.603718i
\(809\) 0.975699 + 1.43109i 0.975699 + 1.43109i 0.900969 + 0.433884i \(0.142857\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(810\) −0.866025 0.500000i −0.866025 0.500000i
\(811\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(812\) −0.294755 0.0444272i −0.294755 0.0444272i
\(813\) 0 0
\(814\) 0 0
\(815\) 0.781831 1.35417i 0.781831 1.35417i
\(816\) 0 0
\(817\) 0 0
\(818\) 1.01507 + 0.488831i 1.01507 + 0.488831i
\(819\) 0 0
\(820\) −0.134659 + 0.0648483i −0.134659 + 0.0648483i
\(821\) 0.807782 + 0.317031i 0.807782 + 0.317031i 0.733052 0.680173i \(-0.238095\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(822\) 0 0
\(823\) 1.07659 + 0.332083i 1.07659 + 0.332083i 0.781831 0.623490i \(-0.214286\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(824\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(825\) 0 0
\(826\) 0 0
\(827\) 1.86323 0.425270i 1.86323 0.425270i 0.866025 0.500000i \(-0.166667\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(828\) 1.14625 + 0.914101i 1.14625 + 0.914101i
\(829\) −1.45557 + 0.571270i −1.45557 + 0.571270i −0.955573 0.294755i \(-0.904762\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) −1.26631 + 1.36476i −1.26631 + 1.36476i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0.930874 + 0.634659i 0.930874 + 0.634659i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(840\) 1.00000i 1.00000i
\(841\) −0.202749 + 0.888301i −0.202749 + 0.888301i
\(842\) −1.90580 + 0.142820i −1.90580 + 0.142820i
\(843\) −1.94986 −1.94986
\(844\) 0 0
\(845\) 0.365341 0.930874i 0.365341 0.930874i
\(846\) 1.68862 + 0.974928i 1.68862 + 0.974928i
\(847\) 0.974928 0.222521i 0.974928 0.222521i
\(848\) 0 0
\(849\) −0.222521 + 0.385418i −0.222521 + 0.385418i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(854\) 0.766310 1.12397i 0.766310 1.12397i
\(855\) 0 0
\(856\) 0.722521 + 0.108903i 0.722521 + 0.108903i
\(857\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(858\) 0 0
\(859\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(860\) 1.24349 1.55929i 1.24349 1.55929i
\(861\) −0.142820 0.0440542i −0.142820 0.0440542i
\(862\) 0 0
\(863\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(864\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(865\) 0 0
\(866\) 0 0
\(867\) −0.149042 + 0.988831i −0.149042 + 0.988831i
\(868\) 0 0
\(869\) 0 0
\(870\) −0.297251 0.0222759i −0.297251 0.0222759i
\(871\) 0 0
\(872\) 0.294755 0.955573i 0.294755 0.955573i
\(873\) 0 0
\(874\) 0 0
\(875\) −0.294755 + 0.955573i −0.294755 + 0.955573i
\(876\) 0 0
\(877\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(882\) −0.680173 + 0.733052i −0.680173 + 0.733052i
\(883\) −0.867767 −0.867767 −0.433884 0.900969i \(-0.642857\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.722521 1.84095i −0.722521 1.84095i
\(887\) −1.29991 + 0.400969i −1.29991 + 0.400969i −0.866025 0.500000i \(-0.833333\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(888\) 0 0
\(889\) −0.751509 0.433884i −0.751509 0.433884i
\(890\) 1.92808 + 0.440071i 1.92808 + 0.440071i
\(891\) 0 0
\(892\) 0.531130 1.72188i 0.531130 1.72188i
\(893\) 0 0
\(894\) −1.85654 0.139129i −1.85654 0.139129i
\(895\) 0 0
\(896\) 0.623490 0.781831i 0.623490 0.781831i
\(897\) 0 0
\(898\) 0.997204 0.925270i 0.997204 0.925270i
\(899\) 0 0
\(900\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(901\) 0 0
\(902\) 0 0
\(903\) 1.97213 0.297251i 1.97213 0.297251i
\(904\) 0 0
\(905\) 0.258149 1.71271i 0.258149 1.71271i
\(906\) 0 0
\(907\) 0.487076 0.332083i 0.487076 0.332083i −0.294755 0.955573i \(-0.595238\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(908\) 0.858075 + 0.129334i 0.858075 + 0.129334i
\(909\) 0.0546039 0.728639i 0.0546039 0.728639i
\(910\) 0 0
\(911\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0.680173 1.17809i 0.680173 1.17809i
\(916\) −0.678448 + 1.40881i −0.678448 + 1.40881i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(920\) 0.109562 1.46200i 0.109562 1.46200i
\(921\) −1.65248 −1.65248
\(922\) −0.443797 + 0.0332580i −0.443797 + 0.0332580i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −0.548760 1.77904i −0.548760 1.77904i
\(927\) −0.563320 + 0.826239i −0.563320 + 0.826239i
\(928\) 0.218511 + 0.202749i 0.218511 + 0.202749i
\(929\) 1.21135 + 0.825886i 1.21135 + 0.825886i 0.988831 0.149042i \(-0.0476190\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 1.17809 1.26968i 1.17809 1.26968i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(938\) −1.26968 1.17809i −1.26968 1.17809i
\(939\) 0 0
\(940\) −0.145713 1.94440i −0.145713 1.94440i
\(941\) 1.19158 + 0.367554i 1.19158 + 0.367554i 0.826239 0.563320i \(-0.190476\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(942\) 0 0
\(943\) 0.203977 + 0.0800550i 0.203977 + 0.0800550i
\(944\) 0 0
\(945\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(946\) 0 0
\(947\) 1.12397 + 1.21135i 1.12397 + 1.21135i 0.974928 + 0.222521i \(0.0714286\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.563320 0.826239i 0.563320 0.826239i
\(961\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0.496990 + 0.535628i 0.496990 + 0.535628i
\(964\) 0.590232 + 0.636119i 0.590232 + 0.636119i
\(965\) 0 0
\(966\) 1.07473 0.997204i 1.07473 0.997204i
\(967\) −0.531130 + 0.255779i −0.531130 + 0.255779i −0.680173 0.733052i \(-0.738095\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(968\) −0.930874 0.365341i −0.930874 0.365341i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(972\) −0.294755 + 0.955573i −0.294755 + 0.955573i
\(973\) 0 0
\(974\) −1.90097 + 0.433884i −1.90097 + 0.433884i
\(975\) 0 0
\(976\) −1.26631 + 0.496990i −1.26631 + 0.496990i
\(977\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(978\) −1.49419 0.460898i −1.49419 0.460898i
\(979\) 0 0
\(980\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(981\) 0.826239 0.563320i 0.826239 0.563320i
\(982\) 0 0
\(983\) −0.997204 0.925270i −0.997204 0.925270i 1.00000i \(-0.5\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(984\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i
\(985\) 0 0
\(986\) 0 0
\(987\) 1.21572 1.52446i 1.21572 1.52446i
\(988\) 0 0
\(989\) −2.91583 + 0.218511i −2.91583 + 0.218511i
\(990\) 0 0
\(991\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 1.61232 + 0.930874i 1.61232 + 0.930874i
\(997\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2940.1.dd.a.1319.2 yes 24
3.2 odd 2 2940.1.dd.b.1319.1 yes 24
4.3 odd 2 inner 2940.1.dd.a.1319.1 yes 24
5.4 even 2 inner 2940.1.dd.a.1319.1 yes 24
12.11 even 2 2940.1.dd.b.1319.2 yes 24
15.14 odd 2 2940.1.dd.b.1319.2 yes 24
20.19 odd 2 CM 2940.1.dd.a.1319.2 yes 24
49.12 odd 42 2940.1.dd.b.1139.1 yes 24
60.59 even 2 2940.1.dd.b.1319.1 yes 24
147.110 even 42 inner 2940.1.dd.a.1139.2 yes 24
196.159 even 42 2940.1.dd.b.1139.2 yes 24
245.159 odd 42 2940.1.dd.b.1139.2 yes 24
588.551 odd 42 inner 2940.1.dd.a.1139.1 24
735.404 even 42 inner 2940.1.dd.a.1139.1 24
980.159 even 42 2940.1.dd.b.1139.1 yes 24
2940.1139 odd 42 inner 2940.1.dd.a.1139.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2940.1.dd.a.1139.1 24 588.551 odd 42 inner
2940.1.dd.a.1139.1 24 735.404 even 42 inner
2940.1.dd.a.1139.2 yes 24 147.110 even 42 inner
2940.1.dd.a.1139.2 yes 24 2940.1139 odd 42 inner
2940.1.dd.a.1319.1 yes 24 4.3 odd 2 inner
2940.1.dd.a.1319.1 yes 24 5.4 even 2 inner
2940.1.dd.a.1319.2 yes 24 1.1 even 1 trivial
2940.1.dd.a.1319.2 yes 24 20.19 odd 2 CM
2940.1.dd.b.1139.1 yes 24 49.12 odd 42
2940.1.dd.b.1139.1 yes 24 980.159 even 42
2940.1.dd.b.1139.2 yes 24 196.159 even 42
2940.1.dd.b.1139.2 yes 24 245.159 odd 42
2940.1.dd.b.1319.1 yes 24 3.2 odd 2
2940.1.dd.b.1319.1 yes 24 60.59 even 2
2940.1.dd.b.1319.2 yes 24 12.11 even 2
2940.1.dd.b.1319.2 yes 24 15.14 odd 2