Properties

Label 294.8.e.x
Level $294$
Weight $8$
Character orbit 294.e
Analytic conductor $91.841$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(91.8411974923\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 \beta_{2} q^{2} + (27 \beta_{2} + 27) q^{3} + ( - 64 \beta_{2} - 64) q^{4} + (7 \beta_{3} + 486 \beta_{2} + 7 \beta_1) q^{5} + 216 q^{6} - 512 q^{8} + 729 \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 \beta_{2} q^{2} + (27 \beta_{2} + 27) q^{3} + ( - 64 \beta_{2} - 64) q^{4} + (7 \beta_{3} + 486 \beta_{2} + 7 \beta_1) q^{5} + 216 q^{6} - 512 q^{8} + 729 \beta_{2} q^{9} + (3888 \beta_{2} + 56 \beta_1 + 3888) q^{10} + (1838 \beta_{2} + 468 \beta_1 + 1838) q^{11} - 1728 \beta_{2} q^{12} + (675 \beta_{3} - 5436) q^{13} + (189 \beta_{3} - 13122) q^{15} + 4096 \beta_{2} q^{16} + ( - 7686 \beta_{2} + 2777 \beta_1 - 7686) q^{17} + (5832 \beta_{2} + 5832) q^{18} + (3662 \beta_{3} + 360 \beta_{2} + 3662 \beta_1) q^{19} + ( - 448 \beta_{3} + 31104) q^{20} + ( - 3744 \beta_{3} + 14704) q^{22} + ( - 864 \beta_{3} + 44282 \beta_{2} - 864 \beta_1) q^{23} + ( - 13824 \beta_{2} - 13824) q^{24} + ( - 162873 \beta_{2} - 6804 \beta_1 - 162873) q^{25} + (5400 \beta_{3} + 43488 \beta_{2} + 5400 \beta_1) q^{26} - 19683 q^{27} + (3690 \beta_{3} + 105044) q^{29} + (1512 \beta_{3} + 104976 \beta_{2} + 1512 \beta_1) q^{30} + (134604 \beta_{2} + 17478 \beta_1 + 134604) q^{31} + (32768 \beta_{2} + 32768) q^{32} + (12636 \beta_{3} + 49626 \beta_{2} + 12636 \beta_1) q^{33} + ( - 22216 \beta_{3} - 61488) q^{34} + 46656 q^{36} + ( - 26280 \beta_{3} + \cdots - 26280 \beta_1) q^{37}+ \cdots + (341172 \beta_{3} - 1339902) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 16 q^{2} + 54 q^{3} - 128 q^{4} - 972 q^{5} + 864 q^{6} - 2048 q^{8} - 1458 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 16 q^{2} + 54 q^{3} - 128 q^{4} - 972 q^{5} + 864 q^{6} - 2048 q^{8} - 1458 q^{9} + 7776 q^{10} + 3676 q^{11} + 3456 q^{12} - 21744 q^{13} - 52488 q^{15} - 8192 q^{16} - 15372 q^{17} + 11664 q^{18} - 720 q^{19} + 124416 q^{20} + 58816 q^{22} - 88564 q^{23} - 27648 q^{24} - 325746 q^{25} - 86976 q^{26} - 78732 q^{27} + 420176 q^{29} - 209952 q^{30} + 269208 q^{31} + 65536 q^{32} - 99252 q^{33} - 245952 q^{34} + 186624 q^{36} - 265400 q^{37} + 5760 q^{38} - 293544 q^{39} + 497664 q^{40} + 2768472 q^{41} - 1076416 q^{43} + 235264 q^{44} - 708588 q^{45} + 708512 q^{46} + 357264 q^{47} - 442368 q^{48} - 5211936 q^{50} + 415044 q^{51} + 695808 q^{52} + 644692 q^{53} - 314928 q^{54} - 4857264 q^{55} - 38880 q^{57} + 1680704 q^{58} - 55656 q^{59} + 1679616 q^{60} + 810144 q^{61} + 4307328 q^{62} + 1048576 q^{64} + 6209892 q^{65} + 794016 q^{66} + 171744 q^{67} - 983808 q^{68} - 4782456 q^{69} + 2470248 q^{71} + 746496 q^{72} - 439128 q^{73} + 2123200 q^{74} + 8795142 q^{75} + 92160 q^{76} - 4696704 q^{78} - 166192 q^{79} - 3981312 q^{80} - 1062882 q^{81} + 11073888 q^{82} + 13707504 q^{83} + 7321496 q^{85} - 4305664 q^{86} + 5672376 q^{87} - 1882112 q^{88} - 3841668 q^{89} - 11337408 q^{90} + 11336192 q^{92} - 7268616 q^{93} - 2858112 q^{94} - 5374184 q^{95} - 1769472 q^{96} + 9265392 q^{97} - 5359608 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 7\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 7 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{3} ) / 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.707107 1.22474i
−0.707107 + 1.22474i
0.707107 + 1.22474i
−0.707107 1.22474i
4.00000 + 6.92820i 13.5000 23.3827i −32.0000 + 55.4256i −277.648 480.901i 216.000 0 −512.000 −364.500 631.333i 2221.19 3847.21i
67.2 4.00000 + 6.92820i 13.5000 23.3827i −32.0000 + 55.4256i −208.352 360.876i 216.000 0 −512.000 −364.500 631.333i 1666.81 2887.01i
79.1 4.00000 6.92820i 13.5000 + 23.3827i −32.0000 55.4256i −277.648 + 480.901i 216.000 0 −512.000 −364.500 + 631.333i 2221.19 + 3847.21i
79.2 4.00000 6.92820i 13.5000 + 23.3827i −32.0000 55.4256i −208.352 + 360.876i 216.000 0 −512.000 −364.500 + 631.333i 1666.81 + 2887.01i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.8.e.x 4
7.b odd 2 1 294.8.e.w 4
7.c even 3 1 294.8.a.o 2
7.c even 3 1 inner 294.8.e.x 4
7.d odd 6 1 294.8.a.p yes 2
7.d odd 6 1 294.8.e.w 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.8.a.o 2 7.c even 3 1
294.8.a.p yes 2 7.d odd 6 1
294.8.e.w 4 7.b odd 2 1
294.8.e.w 4 7.d odd 6 1
294.8.e.x 4 1.a even 1 1 trivial
294.8.e.x 4 7.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 972T_{5}^{3} + 713390T_{5}^{2} + 224914968T_{5} + 53543183236 \) acting on \(S_{8}^{\mathrm{new}}(294, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 27 T + 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 53543183236 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 327107302587664 \) Copy content Toggle raw display
$13$ \( (T^{2} + 10872 T - 15101154)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 48\!\cdots\!16 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 17\!\cdots\!44 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 35\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( (T^{2} - 210088 T + 9699864136)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 13\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{2} - 1384236 T + 473846316706)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 538208 T + 57648345568)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 49\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 52\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots - 1291266940284)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 30\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 38\!\cdots\!56 \) Copy content Toggle raw display
$83$ \( (T^{2} + \cdots - 16055471360624)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 2650595998994)^{2} \) Copy content Toggle raw display
show more
show less