Properties

Label 294.6.e.s.79.2
Level $294$
Weight $6$
Character 294.79
Analytic conductor $47.153$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,6,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.1528430250\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{9601})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2401x^{2} + 2400x + 5760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(-24.2462 + 41.9956i\) of defining polynomial
Character \(\chi\) \(=\) 294.79
Dual form 294.6.e.s.67.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 + 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(11.2462 - 19.4789i) q^{5} +36.0000 q^{6} +64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +O(q^{10})\) \(q+(-2.00000 + 3.46410i) q^{2} +(-4.50000 - 7.79423i) q^{3} +(-8.00000 - 13.8564i) q^{4} +(11.2462 - 19.4789i) q^{5} +36.0000 q^{6} +64.0000 q^{8} +(-40.5000 + 70.1481i) q^{9} +(44.9847 + 77.9158i) q^{10} +(-170.231 - 294.849i) q^{11} +(-72.0000 + 124.708i) q^{12} +728.416 q^{13} -202.431 q^{15} +(-128.000 + 221.703i) q^{16} +(404.923 + 701.348i) q^{17} +(-162.000 - 280.592i) q^{18} +(513.101 - 888.717i) q^{19} -359.878 q^{20} +1361.85 q^{22} +(-711.015 + 1231.51i) q^{23} +(-288.000 - 498.831i) q^{24} +(1309.55 + 2268.20i) q^{25} +(-1456.83 + 2523.31i) q^{26} +729.000 q^{27} +5218.03 q^{29} +(404.862 - 701.242i) q^{30} +(-3518.87 - 6094.87i) q^{31} +(-512.000 - 886.810i) q^{32} +(-1532.08 + 2653.64i) q^{33} -3239.39 q^{34} +1296.00 q^{36} +(-6396.05 + 11078.3i) q^{37} +(2052.40 + 3554.87i) q^{38} +(-3277.87 - 5677.44i) q^{39} +(719.755 - 1246.65i) q^{40} -1173.51 q^{41} +3664.17 q^{43} +(-2723.69 + 4717.58i) q^{44} +(910.940 + 1577.79i) q^{45} +(-2844.06 - 4926.06i) q^{46} +(4656.60 - 8065.46i) q^{47} +2304.00 q^{48} -10476.4 q^{50} +(3644.31 - 6312.13i) q^{51} +(-5827.33 - 10093.2i) q^{52} +(-17821.4 - 30867.6i) q^{53} +(-1458.00 + 2525.33i) q^{54} -7657.78 q^{55} -9235.81 q^{57} +(-10436.1 + 18075.8i) q^{58} +(-15188.1 - 26306.5i) q^{59} +(1619.45 + 2804.97i) q^{60} +(16093.1 - 27874.1i) q^{61} +28151.0 q^{62} +4096.00 q^{64} +(8191.89 - 14188.8i) q^{65} +(-6128.31 - 10614.5i) q^{66} +(-10675.5 - 18490.6i) q^{67} +(6478.78 - 11221.6i) q^{68} +12798.3 q^{69} +61153.7 q^{71} +(-2592.00 + 4489.48i) q^{72} +(20633.9 + 35739.0i) q^{73} +(-25584.2 - 44313.2i) q^{74} +(11785.9 - 20413.8i) q^{75} -16419.2 q^{76} +26223.0 q^{78} +(17500.2 - 30311.3i) q^{79} +(2879.02 + 4986.61i) q^{80} +(-3280.50 - 5681.99i) q^{81} +(2347.01 - 4065.14i) q^{82} -86193.0 q^{83} +18215.4 q^{85} +(-7328.33 + 12693.0i) q^{86} +(-23481.1 - 40670.5i) q^{87} +(-10894.8 - 18870.3i) q^{88} +(38996.3 - 67543.6i) q^{89} -7287.52 q^{90} +22752.5 q^{92} +(-31669.9 + 54853.8i) q^{93} +(18626.4 + 32261.9i) q^{94} +(-11540.8 - 19989.3i) q^{95} +(-4608.00 + 7981.29i) q^{96} +161765. q^{97} +27577.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 18 q^{3} - 32 q^{4} - 53 q^{5} + 144 q^{6} + 256 q^{8} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{2} - 18 q^{3} - 32 q^{4} - 53 q^{5} + 144 q^{6} + 256 q^{8} - 162 q^{9} - 212 q^{10} - 191 q^{11} - 288 q^{12} + 758 q^{13} + 954 q^{15} - 512 q^{16} - 340 q^{17} - 648 q^{18} - 1769 q^{19} + 1696 q^{20} + 1528 q^{22} - 3236 q^{23} - 1152 q^{24} + 45 q^{25} - 1516 q^{26} + 2916 q^{27} + 8918 q^{29} - 1908 q^{30} + 1994 q^{31} - 2048 q^{32} - 1719 q^{33} + 2720 q^{34} + 5184 q^{36} - 20587 q^{37} - 7076 q^{38} - 3411 q^{39} - 3392 q^{40} - 17628 q^{41} + 31706 q^{43} - 3056 q^{44} - 4293 q^{45} - 12944 q^{46} + 33912 q^{47} + 9216 q^{48} - 360 q^{50} - 3060 q^{51} - 6064 q^{52} - 49239 q^{53} - 5832 q^{54} - 37882 q^{55} + 31842 q^{57} - 17836 q^{58} - 56735 q^{59} - 7632 q^{60} + 67508 q^{61} - 15952 q^{62} + 16384 q^{64} + 42762 q^{65} - 6876 q^{66} - 75723 q^{67} - 5440 q^{68} + 58248 q^{69} - 17984 q^{71} - 10368 q^{72} - 3201 q^{73} - 82348 q^{74} + 405 q^{75} + 56608 q^{76} + 27288 q^{78} - 26612 q^{79} - 13568 q^{80} - 13122 q^{81} + 35256 q^{82} + 1898 q^{83} + 210040 q^{85} - 63412 q^{86} - 40131 q^{87} - 12224 q^{88} + 176562 q^{89} + 34344 q^{90} + 103552 q^{92} + 17946 q^{93} + 135648 q^{94} - 234098 q^{95} - 18432 q^{96} + 258846 q^{97} + 30942 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 + 3.46410i −0.353553 + 0.612372i
\(3\) −4.50000 7.79423i −0.288675 0.500000i
\(4\) −8.00000 13.8564i −0.250000 0.433013i
\(5\) 11.2462 19.4789i 0.201178 0.348450i −0.747730 0.664002i \(-0.768856\pi\)
0.948908 + 0.315552i \(0.102190\pi\)
\(6\) 36.0000 0.408248
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) −40.5000 + 70.1481i −0.166667 + 0.288675i
\(10\) 44.9847 + 77.9158i 0.142254 + 0.246391i
\(11\) −170.231 294.849i −0.424186 0.734712i 0.572158 0.820144i \(-0.306106\pi\)
−0.996344 + 0.0854314i \(0.972773\pi\)
\(12\) −72.0000 + 124.708i −0.144338 + 0.250000i
\(13\) 728.416 1.19542 0.597711 0.801712i \(-0.296077\pi\)
0.597711 + 0.801712i \(0.296077\pi\)
\(14\) 0 0
\(15\) −202.431 −0.232300
\(16\) −128.000 + 221.703i −0.125000 + 0.216506i
\(17\) 404.923 + 701.348i 0.339821 + 0.588588i 0.984399 0.175951i \(-0.0563001\pi\)
−0.644578 + 0.764539i \(0.722967\pi\)
\(18\) −162.000 280.592i −0.117851 0.204124i
\(19\) 513.101 888.717i 0.326076 0.564780i −0.655654 0.755062i \(-0.727607\pi\)
0.981730 + 0.190282i \(0.0609402\pi\)
\(20\) −359.878 −0.201178
\(21\) 0 0
\(22\) 1361.85 0.599890
\(23\) −711.015 + 1231.51i −0.280259 + 0.485423i −0.971448 0.237251i \(-0.923754\pi\)
0.691190 + 0.722674i \(0.257087\pi\)
\(24\) −288.000 498.831i −0.102062 0.176777i
\(25\) 1309.55 + 2268.20i 0.419055 + 0.725825i
\(26\) −1456.83 + 2523.31i −0.422645 + 0.732043i
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) 5218.03 1.15216 0.576079 0.817394i \(-0.304582\pi\)
0.576079 + 0.817394i \(0.304582\pi\)
\(30\) 404.862 701.242i 0.0821304 0.142254i
\(31\) −3518.87 6094.87i −0.657657 1.13909i −0.981221 0.192889i \(-0.938214\pi\)
0.323564 0.946206i \(-0.395119\pi\)
\(32\) −512.000 886.810i −0.0883883 0.153093i
\(33\) −1532.08 + 2653.64i −0.244904 + 0.424186i
\(34\) −3239.39 −0.480580
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −6396.05 + 11078.3i −0.768082 + 1.33036i 0.170519 + 0.985354i \(0.445456\pi\)
−0.938601 + 0.345004i \(0.887878\pi\)
\(38\) 2052.40 + 3554.87i 0.230570 + 0.399360i
\(39\) −3277.87 5677.44i −0.345088 0.597711i
\(40\) 719.755 1246.65i 0.0711270 0.123196i
\(41\) −1173.51 −0.109025 −0.0545124 0.998513i \(-0.517360\pi\)
−0.0545124 + 0.998513i \(0.517360\pi\)
\(42\) 0 0
\(43\) 3664.17 0.302207 0.151103 0.988518i \(-0.451717\pi\)
0.151103 + 0.988518i \(0.451717\pi\)
\(44\) −2723.69 + 4717.58i −0.212093 + 0.367356i
\(45\) 910.940 + 1577.79i 0.0670592 + 0.116150i
\(46\) −2844.06 4926.06i −0.198173 0.343246i
\(47\) 4656.60 8065.46i 0.307485 0.532580i −0.670326 0.742066i \(-0.733846\pi\)
0.977812 + 0.209487i \(0.0671793\pi\)
\(48\) 2304.00 0.144338
\(49\) 0 0
\(50\) −10476.4 −0.592633
\(51\) 3644.31 6312.13i 0.196196 0.339821i
\(52\) −5827.33 10093.2i −0.298855 0.517633i
\(53\) −17821.4 30867.6i −0.871469 1.50943i −0.860477 0.509489i \(-0.829835\pi\)
−0.0109916 0.999940i \(-0.503499\pi\)
\(54\) −1458.00 + 2525.33i −0.0680414 + 0.117851i
\(55\) −7657.78 −0.341347
\(56\) 0 0
\(57\) −9235.81 −0.376520
\(58\) −10436.1 + 18075.8i −0.407349 + 0.705549i
\(59\) −15188.1 26306.5i −0.568033 0.983861i −0.996760 0.0804276i \(-0.974371\pi\)
0.428728 0.903434i \(-0.358962\pi\)
\(60\) 1619.45 + 2804.97i 0.0580750 + 0.100589i
\(61\) 16093.1 27874.1i 0.553753 0.959128i −0.444247 0.895904i \(-0.646529\pi\)
0.997999 0.0632231i \(-0.0201380\pi\)
\(62\) 28151.0 0.930067
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 8191.89 14188.8i 0.240492 0.416544i
\(66\) −6128.31 10614.5i −0.173173 0.299945i
\(67\) −10675.5 18490.6i −0.290538 0.503226i 0.683399 0.730045i \(-0.260501\pi\)
−0.973937 + 0.226819i \(0.927168\pi\)
\(68\) 6478.78 11221.6i 0.169911 0.294294i
\(69\) 12798.3 0.323615
\(70\) 0 0
\(71\) 61153.7 1.43972 0.719859 0.694121i \(-0.244207\pi\)
0.719859 + 0.694121i \(0.244207\pi\)
\(72\) −2592.00 + 4489.48i −0.0589256 + 0.102062i
\(73\) 20633.9 + 35739.0i 0.453184 + 0.784937i 0.998582 0.0532401i \(-0.0169549\pi\)
−0.545398 + 0.838177i \(0.683622\pi\)
\(74\) −25584.2 44313.2i −0.543116 0.940705i
\(75\) 11785.9 20413.8i 0.241942 0.419055i
\(76\) −16419.2 −0.326076
\(77\) 0 0
\(78\) 26223.0 0.488029
\(79\) 17500.2 30311.3i 0.315483 0.546433i −0.664057 0.747682i \(-0.731167\pi\)
0.979540 + 0.201249i \(0.0645001\pi\)
\(80\) 2879.02 + 4986.61i 0.0502944 + 0.0871125i
\(81\) −3280.50 5681.99i −0.0555556 0.0962250i
\(82\) 2347.01 4065.14i 0.0385461 0.0667638i
\(83\) −86193.0 −1.37334 −0.686668 0.726972i \(-0.740927\pi\)
−0.686668 + 0.726972i \(0.740927\pi\)
\(84\) 0 0
\(85\) 18215.4 0.273458
\(86\) −7328.33 + 12693.0i −0.106846 + 0.185063i
\(87\) −23481.1 40670.5i −0.332599 0.576079i
\(88\) −10894.8 18870.3i −0.149972 0.259760i
\(89\) 38996.3 67543.6i 0.521853 0.903876i −0.477824 0.878456i \(-0.658574\pi\)
0.999677 0.0254206i \(-0.00809249\pi\)
\(90\) −7287.52 −0.0948361
\(91\) 0 0
\(92\) 22752.5 0.280259
\(93\) −31669.9 + 54853.8i −0.379698 + 0.657657i
\(94\) 18626.4 + 32261.9i 0.217425 + 0.376591i
\(95\) −11540.8 19989.3i −0.131198 0.227242i
\(96\) −4608.00 + 7981.29i −0.0510310 + 0.0883883i
\(97\) 161765. 1.74565 0.872823 0.488037i \(-0.162287\pi\)
0.872823 + 0.488037i \(0.162287\pi\)
\(98\) 0 0
\(99\) 27577.4 0.282791
\(100\) 20952.8 36291.2i 0.209528 0.362912i
\(101\) −32927.2 57031.6i −0.321182 0.556304i 0.659550 0.751661i \(-0.270747\pi\)
−0.980732 + 0.195357i \(0.937414\pi\)
\(102\) 14577.2 + 25248.5i 0.138731 + 0.240290i
\(103\) 65099.0 112755.i 0.604619 1.04723i −0.387493 0.921873i \(-0.626659\pi\)
0.992112 0.125358i \(-0.0400078\pi\)
\(104\) 46618.6 0.422645
\(105\) 0 0
\(106\) 142571. 1.23244
\(107\) −1295.48 + 2243.83i −0.0109388 + 0.0189466i −0.871443 0.490497i \(-0.836815\pi\)
0.860504 + 0.509443i \(0.170149\pi\)
\(108\) −5832.00 10101.3i −0.0481125 0.0833333i
\(109\) −55326.9 95828.9i −0.446036 0.772557i 0.552088 0.833786i \(-0.313831\pi\)
−0.998124 + 0.0612291i \(0.980498\pi\)
\(110\) 15315.6 26527.3i 0.120684 0.209032i
\(111\) 115129. 0.886905
\(112\) 0 0
\(113\) −193910. −1.42858 −0.714291 0.699849i \(-0.753251\pi\)
−0.714291 + 0.699849i \(0.753251\pi\)
\(114\) 18471.6 31993.8i 0.133120 0.230570i
\(115\) 15992.4 + 27699.7i 0.112764 + 0.195312i
\(116\) −41744.3 72303.2i −0.288039 0.498899i
\(117\) −29500.8 + 51097.0i −0.199237 + 0.345088i
\(118\) 121505. 0.803319
\(119\) 0 0
\(120\) −12955.6 −0.0821304
\(121\) 22568.4 39089.6i 0.140132 0.242716i
\(122\) 64372.5 + 111496.i 0.391562 + 0.678206i
\(123\) 5280.77 + 9146.57i 0.0314728 + 0.0545124i
\(124\) −56302.0 + 97517.9i −0.328828 + 0.569547i
\(125\) 129198. 0.739573
\(126\) 0 0
\(127\) 27429.2 0.150905 0.0754526 0.997149i \(-0.475960\pi\)
0.0754526 + 0.997149i \(0.475960\pi\)
\(128\) −8192.00 + 14189.0i −0.0441942 + 0.0765466i
\(129\) −16488.7 28559.3i −0.0872395 0.151103i
\(130\) 32767.6 + 56755.1i 0.170054 + 0.294541i
\(131\) 75188.0 130229.i 0.382798 0.663026i −0.608663 0.793429i \(-0.708294\pi\)
0.991461 + 0.130403i \(0.0416271\pi\)
\(132\) 49026.5 0.244904
\(133\) 0 0
\(134\) 85404.3 0.410883
\(135\) 8198.46 14200.1i 0.0387167 0.0670592i
\(136\) 25915.1 + 44886.3i 0.120145 + 0.208097i
\(137\) −48051.0 83226.8i −0.218726 0.378845i 0.735693 0.677316i \(-0.236857\pi\)
−0.954419 + 0.298471i \(0.903524\pi\)
\(138\) −25596.6 + 44334.5i −0.114415 + 0.198173i
\(139\) −100854. −0.442749 −0.221375 0.975189i \(-0.571054\pi\)
−0.221375 + 0.975189i \(0.571054\pi\)
\(140\) 0 0
\(141\) −83818.7 −0.355053
\(142\) −122307. + 211843.i −0.509017 + 0.881643i
\(143\) −123999. 214772.i −0.507081 0.878291i
\(144\) −10368.0 17957.9i −0.0416667 0.0721688i
\(145\) 58682.9 101642.i 0.231788 0.401469i
\(146\) −165071. −0.640898
\(147\) 0 0
\(148\) 204674. 0.768082
\(149\) 180472. 312587.i 0.665954 1.15347i −0.313071 0.949730i \(-0.601358\pi\)
0.979026 0.203737i \(-0.0653087\pi\)
\(150\) 47143.7 + 81655.3i 0.171079 + 0.296317i
\(151\) 217028. + 375903.i 0.774592 + 1.34163i 0.935023 + 0.354586i \(0.115378\pi\)
−0.160431 + 0.987047i \(0.551288\pi\)
\(152\) 32838.4 56877.9i 0.115285 0.199680i
\(153\) −65597.6 −0.226548
\(154\) 0 0
\(155\) −158295. −0.529223
\(156\) −52445.9 + 90839.0i −0.172544 + 0.298855i
\(157\) −255798. 443055.i −0.828225 1.43453i −0.899430 0.437066i \(-0.856018\pi\)
0.0712046 0.997462i \(-0.477316\pi\)
\(158\) 70000.9 + 121245.i 0.223080 + 0.386386i
\(159\) −160393. + 277808.i −0.503143 + 0.871469i
\(160\) −23032.2 −0.0711270
\(161\) 0 0
\(162\) 26244.0 0.0785674
\(163\) 125635. 217606.i 0.370374 0.641507i −0.619249 0.785195i \(-0.712563\pi\)
0.989623 + 0.143688i \(0.0458962\pi\)
\(164\) 9388.04 + 16260.6i 0.0272562 + 0.0472091i
\(165\) 34460.0 + 59686.5i 0.0985384 + 0.170674i
\(166\) 172386. 298581.i 0.485547 0.840993i
\(167\) −419277. −1.16335 −0.581674 0.813422i \(-0.697602\pi\)
−0.581674 + 0.813422i \(0.697602\pi\)
\(168\) 0 0
\(169\) 159297. 0.429032
\(170\) −36430.7 + 63099.8i −0.0966819 + 0.167458i
\(171\) 41561.2 + 71986.0i 0.108692 + 0.188260i
\(172\) −29313.3 50772.2i −0.0755517 0.130859i
\(173\) −230688. + 399564.i −0.586017 + 1.01501i 0.408731 + 0.912655i \(0.365971\pi\)
−0.994748 + 0.102356i \(0.967362\pi\)
\(174\) 187849. 0.470366
\(175\) 0 0
\(176\) 87158.2 0.212093
\(177\) −136693. + 236759.i −0.327954 + 0.568033i
\(178\) 155985. + 270174.i 0.369006 + 0.639137i
\(179\) −370853. 642336.i −0.865105 1.49841i −0.866942 0.498408i \(-0.833918\pi\)
0.00183697 0.999998i \(-0.499415\pi\)
\(180\) 14575.0 25244.7i 0.0335296 0.0580750i
\(181\) −301371. −0.683762 −0.341881 0.939743i \(-0.611064\pi\)
−0.341881 + 0.939743i \(0.611064\pi\)
\(182\) 0 0
\(183\) −289676. −0.639418
\(184\) −45505.0 + 78816.9i −0.0990865 + 0.171623i
\(185\) 143862. + 249177.i 0.309042 + 0.535277i
\(186\) −126679. 219415.i −0.268487 0.465034i
\(187\) 137861. 238782.i 0.288295 0.499342i
\(188\) −149011. −0.307485
\(189\) 0 0
\(190\) 92326.7 0.185542
\(191\) −131591. + 227923.i −0.261002 + 0.452069i −0.966508 0.256635i \(-0.917386\pi\)
0.705507 + 0.708703i \(0.250720\pi\)
\(192\) −18432.0 31925.2i −0.0360844 0.0625000i
\(193\) 415563. + 719777.i 0.803053 + 1.39093i 0.917598 + 0.397510i \(0.130126\pi\)
−0.114545 + 0.993418i \(0.536541\pi\)
\(194\) −323531. + 560372.i −0.617179 + 1.06899i
\(195\) −147454. −0.277696
\(196\) 0 0
\(197\) −1.05421e6 −1.93536 −0.967681 0.252178i \(-0.918853\pi\)
−0.967681 + 0.252178i \(0.918853\pi\)
\(198\) −55154.8 + 95530.9i −0.0999817 + 0.173173i
\(199\) 349284. + 604977.i 0.625239 + 1.08295i 0.988495 + 0.151256i \(0.0483317\pi\)
−0.363256 + 0.931689i \(0.618335\pi\)
\(200\) 83811.0 + 145165.i 0.148158 + 0.256618i
\(201\) −96079.9 + 166415.i −0.167742 + 0.290538i
\(202\) 263418. 0.454220
\(203\) 0 0
\(204\) −116618. −0.196196
\(205\) −13197.4 + 22858.6i −0.0219334 + 0.0379897i
\(206\) 260396. + 451019.i 0.427530 + 0.740504i
\(207\) −57592.2 99752.7i −0.0934196 0.161808i
\(208\) −93237.2 + 161492.i −0.149428 + 0.258816i
\(209\) −349382. −0.553268
\(210\) 0 0
\(211\) −99693.6 −0.154156 −0.0770781 0.997025i \(-0.524559\pi\)
−0.0770781 + 0.997025i \(0.524559\pi\)
\(212\) −285142. + 493881.i −0.435734 + 0.754714i
\(213\) −275192. 476646.i −0.415611 0.719859i
\(214\) −5181.90 8975.32i −0.00773490 0.0133972i
\(215\) 41207.8 71374.1i 0.0607972 0.105304i
\(216\) 46656.0 0.0680414
\(217\) 0 0
\(218\) 442615. 0.630790
\(219\) 185705. 321651.i 0.261646 0.453184i
\(220\) 61262.3 + 106109.i 0.0853368 + 0.147808i
\(221\) 294953. + 510873.i 0.406230 + 0.703610i
\(222\) −230258. + 398819.i −0.313568 + 0.543116i
\(223\) −526194. −0.708572 −0.354286 0.935137i \(-0.615276\pi\)
−0.354286 + 0.935137i \(0.615276\pi\)
\(224\) 0 0
\(225\) −212147. −0.279370
\(226\) 387821. 671725.i 0.505080 0.874824i
\(227\) −490802. 850095.i −0.632182 1.09497i −0.987105 0.160076i \(-0.948826\pi\)
0.354923 0.934896i \(-0.384507\pi\)
\(228\) 73886.5 + 127975.i 0.0941300 + 0.163038i
\(229\) −42540.5 + 73682.3i −0.0536061 + 0.0928484i −0.891583 0.452857i \(-0.850405\pi\)
0.837977 + 0.545705i \(0.183738\pi\)
\(230\) −127939. −0.159472
\(231\) 0 0
\(232\) 333954. 0.407349
\(233\) −56561.4 + 97967.3i −0.0682544 + 0.118220i −0.898133 0.439724i \(-0.855076\pi\)
0.829879 + 0.557944i \(0.188410\pi\)
\(234\) −118003. 204388.i −0.140882 0.244014i
\(235\) −104738. 181411.i −0.123718 0.214286i
\(236\) −243009. + 420905.i −0.284016 + 0.491931i
\(237\) −315004. −0.364288
\(238\) 0 0
\(239\) −895100. −1.01362 −0.506812 0.862057i \(-0.669176\pi\)
−0.506812 + 0.862057i \(0.669176\pi\)
\(240\) 25911.2 44879.5i 0.0290375 0.0502944i
\(241\) 263857. + 457014.i 0.292635 + 0.506859i 0.974432 0.224683i \(-0.0721345\pi\)
−0.681797 + 0.731542i \(0.738801\pi\)
\(242\) 90273.6 + 156358.i 0.0990883 + 0.171626i
\(243\) −29524.5 + 51137.9i −0.0320750 + 0.0555556i
\(244\) −514980. −0.553753
\(245\) 0 0
\(246\) −42246.2 −0.0445092
\(247\) 373751. 647355.i 0.389798 0.675150i
\(248\) −225208. 390071.i −0.232517 0.402731i
\(249\) 387868. + 671808.i 0.396448 + 0.686668i
\(250\) −258396. + 447556.i −0.261479 + 0.452894i
\(251\) 1.19293e6 1.19517 0.597584 0.801806i \(-0.296127\pi\)
0.597584 + 0.801806i \(0.296127\pi\)
\(252\) 0 0
\(253\) 484147. 0.475528
\(254\) −54858.5 + 95017.7i −0.0533531 + 0.0924102i
\(255\) −81969.1 141975.i −0.0789405 0.136729i
\(256\) −32768.0 56755.8i −0.0312500 0.0541266i
\(257\) −597462. + 1.03483e6i −0.564257 + 0.977322i 0.432861 + 0.901461i \(0.357504\pi\)
−0.997118 + 0.0758617i \(0.975829\pi\)
\(258\) 131910. 0.123375
\(259\) 0 0
\(260\) −262140. −0.240492
\(261\) −211330. + 366035.i −0.192026 + 0.332599i
\(262\) 300752. + 520917.i 0.270679 + 0.468830i
\(263\) 1.06115e6 + 1.83797e6i 0.945993 + 1.63851i 0.753750 + 0.657161i \(0.228243\pi\)
0.192244 + 0.981347i \(0.438424\pi\)
\(264\) −98053.0 + 169833.i −0.0865867 + 0.149972i
\(265\) −801690. −0.701280
\(266\) 0 0
\(267\) −701933. −0.602584
\(268\) −170809. + 295849.i −0.145269 + 0.251613i
\(269\) 77488.3 + 134214.i 0.0652913 + 0.113088i 0.896823 0.442389i \(-0.145869\pi\)
−0.831532 + 0.555477i \(0.812536\pi\)
\(270\) 32793.8 + 56800.6i 0.0273768 + 0.0474180i
\(271\) 979439. 1.69644e6i 0.810129 1.40318i −0.102645 0.994718i \(-0.532730\pi\)
0.912773 0.408466i \(-0.133936\pi\)
\(272\) −207321. −0.169911
\(273\) 0 0
\(274\) 384408. 0.309326
\(275\) 445851. 772236.i 0.355515 0.615770i
\(276\) −102386. 177338.i −0.0809038 0.140129i
\(277\) 874763. + 1.51513e6i 0.685001 + 1.18646i 0.973437 + 0.228957i \(0.0735315\pi\)
−0.288436 + 0.957499i \(0.593135\pi\)
\(278\) 201709. 349370.i 0.156536 0.271128i
\(279\) 570057. 0.438438
\(280\) 0 0
\(281\) 1.40665e6 1.06272 0.531361 0.847145i \(-0.321681\pi\)
0.531361 + 0.847145i \(0.321681\pi\)
\(282\) 167637. 290357.i 0.125530 0.217425i
\(283\) 978536. + 1.69487e6i 0.726291 + 1.25797i 0.958441 + 0.285292i \(0.0920907\pi\)
−0.232150 + 0.972680i \(0.574576\pi\)
\(284\) −489230. 847371.i −0.359929 0.623416i
\(285\) −103868. + 179904.i −0.0757474 + 0.131198i
\(286\) 991991. 0.717121
\(287\) 0 0
\(288\) 82944.0 0.0589256
\(289\) 382002. 661648.i 0.269043 0.465996i
\(290\) 234732. + 406567.i 0.163899 + 0.283882i
\(291\) −727944. 1.26084e6i −0.503925 0.872823i
\(292\) 330142. 571823.i 0.226592 0.392469i
\(293\) 1.26998e6 0.864229 0.432114 0.901819i \(-0.357768\pi\)
0.432114 + 0.901819i \(0.357768\pi\)
\(294\) 0 0
\(295\) −683232. −0.457102
\(296\) −409348. + 709011.i −0.271558 + 0.470353i
\(297\) −124098. 214945.i −0.0816347 0.141395i
\(298\) 721888. + 1.25035e6i 0.470901 + 0.815624i
\(299\) −517915. + 897055.i −0.335027 + 0.580285i
\(300\) −377150. −0.241942
\(301\) 0 0
\(302\) −1.73622e6 −1.09544
\(303\) −296345. + 513284.i −0.185435 + 0.321182i
\(304\) 131354. + 227511.i 0.0815190 + 0.141195i
\(305\) −361972. 626954.i −0.222805 0.385910i
\(306\) 131195. 227237.i 0.0800967 0.138731i
\(307\) 41854.4 0.0253451 0.0126726 0.999920i \(-0.495966\pi\)
0.0126726 + 0.999920i \(0.495966\pi\)
\(308\) 0 0
\(309\) −1.17178e6 −0.698154
\(310\) 316591. 548351.i 0.187109 0.324082i
\(311\) −1.14595e6 1.98484e6i −0.671837 1.16366i −0.977383 0.211478i \(-0.932172\pi\)
0.305546 0.952177i \(-0.401161\pi\)
\(312\) −209784. 363356.i −0.122007 0.211323i
\(313\) 1.13575e6 1.96717e6i 0.655271 1.13496i −0.326555 0.945178i \(-0.605888\pi\)
0.981826 0.189785i \(-0.0607790\pi\)
\(314\) 2.04639e6 1.17129
\(315\) 0 0
\(316\) −560007. −0.315483
\(317\) 992372. 1.71884e6i 0.554659 0.960698i −0.443271 0.896388i \(-0.646182\pi\)
0.997930 0.0643100i \(-0.0204847\pi\)
\(318\) −641570. 1.11123e6i −0.355776 0.616222i
\(319\) −888270. 1.53853e6i −0.488729 0.846504i
\(320\) 46064.3 79785.8i 0.0251472 0.0435562i
\(321\) 23318.6 0.0126310
\(322\) 0 0
\(323\) 831066. 0.443230
\(324\) −52488.0 + 90911.9i −0.0277778 + 0.0481125i
\(325\) 953895. + 1.65219e6i 0.500947 + 0.867666i
\(326\) 502539. + 870423.i 0.261894 + 0.453614i
\(327\) −497942. + 862460.i −0.257519 + 0.446036i
\(328\) −75104.3 −0.0385461
\(329\) 0 0
\(330\) −275680. −0.139354
\(331\) −319230. + 552923.i −0.160153 + 0.277393i −0.934923 0.354850i \(-0.884532\pi\)
0.774771 + 0.632242i \(0.217865\pi\)
\(332\) 689544. + 1.19432e6i 0.343334 + 0.594672i
\(333\) −518080. 897342.i −0.256027 0.443453i
\(334\) 838553. 1.45242e6i 0.411305 0.712402i
\(335\) −480236. −0.233799
\(336\) 0 0
\(337\) 2.72026e6 1.30478 0.652388 0.757886i \(-0.273767\pi\)
0.652388 + 0.757886i \(0.273767\pi\)
\(338\) −318593. + 551820.i −0.151686 + 0.262727i
\(339\) 872597. + 1.51138e6i 0.412396 + 0.714291i
\(340\) −145723. 252399.i −0.0683645 0.118411i
\(341\) −1.19804e6 + 2.07507e6i −0.557938 + 0.966377i
\(342\) −332489. −0.153714
\(343\) 0 0
\(344\) 234507. 0.106846
\(345\) 143932. 249297.i 0.0651041 0.112764i
\(346\) −922753. 1.59825e6i −0.414376 0.717721i
\(347\) −1.31038e6 2.26965e6i −0.584217 1.01189i −0.994973 0.100148i \(-0.968068\pi\)
0.410755 0.911746i \(-0.365265\pi\)
\(348\) −375698. + 650729.i −0.166300 + 0.288039i
\(349\) −575592. −0.252960 −0.126480 0.991969i \(-0.540368\pi\)
−0.126480 + 0.991969i \(0.540368\pi\)
\(350\) 0 0
\(351\) 531015. 0.230059
\(352\) −174316. + 301925.i −0.0749862 + 0.129880i
\(353\) −1.29486e6 2.24276e6i −0.553077 0.957957i −0.998050 0.0624135i \(-0.980120\pi\)
0.444974 0.895544i \(-0.353213\pi\)
\(354\) −546771. 947036.i −0.231898 0.401660i
\(355\) 687746. 1.19121e6i 0.289639 0.501669i
\(356\) −1.24788e6 −0.521853
\(357\) 0 0
\(358\) 2.96682e6 1.22344
\(359\) −1.43389e6 + 2.48358e6i −0.587193 + 1.01705i 0.407405 + 0.913248i \(0.366434\pi\)
−0.994598 + 0.103801i \(0.966900\pi\)
\(360\) 58300.2 + 100979.i 0.0237090 + 0.0410652i
\(361\) 711505. + 1.23236e6i 0.287349 + 0.497703i
\(362\) 602742. 1.04398e6i 0.241746 0.418717i
\(363\) −406231. −0.161811
\(364\) 0 0
\(365\) 928210. 0.364682
\(366\) 579352. 1.00347e6i 0.226069 0.391562i
\(367\) −977255. 1.69265e6i −0.378741 0.655999i 0.612138 0.790751i \(-0.290310\pi\)
−0.990879 + 0.134752i \(0.956976\pi\)
\(368\) −182020. 315268.i −0.0700647 0.121356i
\(369\) 47527.0 82319.1i 0.0181708 0.0314728i
\(370\) −1.15090e6 −0.437052
\(371\) 0 0
\(372\) 1.01344e6 0.379698
\(373\) −1.10555e6 + 1.91486e6i −0.411439 + 0.712633i −0.995047 0.0994020i \(-0.968307\pi\)
0.583608 + 0.812035i \(0.301640\pi\)
\(374\) 551444. + 955129.i 0.203855 + 0.353088i
\(375\) −581392. 1.00700e6i −0.213496 0.369787i
\(376\) 298022. 516190.i 0.108712 0.188295i
\(377\) 3.80090e6 1.37731
\(378\) 0 0
\(379\) 3.81232e6 1.36330 0.681649 0.731679i \(-0.261263\pi\)
0.681649 + 0.731679i \(0.261263\pi\)
\(380\) −184653. + 319829.i −0.0655992 + 0.113621i
\(381\) −123432. 213790.i −0.0435626 0.0754526i
\(382\) −526365. 911691.i −0.184556 0.319661i
\(383\) 1.90303e6 3.29614e6i 0.662901 1.14818i −0.316949 0.948442i \(-0.602658\pi\)
0.979850 0.199735i \(-0.0640082\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) −3.32451e6 −1.13569
\(387\) −148399. + 257034.i −0.0503678 + 0.0872395i
\(388\) −1.29412e6 2.24149e6i −0.436411 0.755887i
\(389\) −1.53762e6 2.66324e6i −0.515200 0.892352i −0.999844 0.0176410i \(-0.994384\pi\)
0.484645 0.874711i \(-0.338949\pi\)
\(390\) 294908. 510796.i 0.0981805 0.170054i
\(391\) −1.15163e6 −0.380952
\(392\) 0 0
\(393\) −1.35338e6 −0.442017
\(394\) 2.10842e6 3.65190e6i 0.684254 1.18516i
\(395\) −393621. 681772.i −0.126936 0.219860i
\(396\) −220619. 382124.i −0.0706977 0.122452i
\(397\) 1.09566e6 1.89774e6i 0.348900 0.604312i −0.637154 0.770736i \(-0.719889\pi\)
0.986054 + 0.166424i \(0.0532220\pi\)
\(398\) −2.79427e6 −0.884221
\(399\) 0 0
\(400\) −670488. −0.209528
\(401\) −888340. + 1.53865e6i −0.275879 + 0.477836i −0.970356 0.241678i \(-0.922302\pi\)
0.694478 + 0.719514i \(0.255635\pi\)
\(402\) −384319. 665661.i −0.118612 0.205441i
\(403\) −2.56320e6 4.43960e6i −0.786177 1.36170i
\(404\) −526835. + 912505.i −0.160591 + 0.278152i
\(405\) −147572. −0.0447061
\(406\) 0 0
\(407\) 4.35522e6 1.30324
\(408\) 233236. 403976.i 0.0693657 0.120145i
\(409\) 1.18059e6 + 2.04484e6i 0.348973 + 0.604438i 0.986067 0.166347i \(-0.0531973\pi\)
−0.637095 + 0.770786i \(0.719864\pi\)
\(410\) −52789.8 91434.6i −0.0155092 0.0268628i
\(411\) −432459. + 749041.i −0.126282 + 0.218726i
\(412\) −2.08317e6 −0.604619
\(413\) 0 0
\(414\) 460738. 0.132115
\(415\) −969341. + 1.67895e6i −0.276284 + 0.478539i
\(416\) −372949. 645966.i −0.105661 0.183011i
\(417\) 453845. + 786082.i 0.127811 + 0.221375i
\(418\) 698765. 1.21030e6i 0.195610 0.338806i
\(419\) 3.23493e6 0.900181 0.450090 0.892983i \(-0.351392\pi\)
0.450090 + 0.892983i \(0.351392\pi\)
\(420\) 0 0
\(421\) −2.85759e6 −0.785769 −0.392884 0.919588i \(-0.628523\pi\)
−0.392884 + 0.919588i \(0.628523\pi\)
\(422\) 199387. 345349.i 0.0545025 0.0944010i
\(423\) 377184. + 653302.i 0.102495 + 0.177527i
\(424\) −1.14057e6 1.97552e6i −0.308111 0.533664i
\(425\) −1.06053e6 + 1.83690e6i −0.284808 + 0.493301i
\(426\) 2.20153e6 0.587762
\(427\) 0 0
\(428\) 41455.2 0.0109388
\(429\) −1.11599e6 + 1.93295e6i −0.292764 + 0.507081i
\(430\) 164831. + 285496.i 0.0429901 + 0.0744611i
\(431\) 44193.1 + 76544.7i 0.0114594 + 0.0198482i 0.871698 0.490043i \(-0.163019\pi\)
−0.860239 + 0.509891i \(0.829686\pi\)
\(432\) −93312.0 + 161621.i −0.0240563 + 0.0416667i
\(433\) 3.09418e6 0.793097 0.396549 0.918014i \(-0.370208\pi\)
0.396549 + 0.918014i \(0.370208\pi\)
\(434\) 0 0
\(435\) −1.05629e6 −0.267646
\(436\) −885230. + 1.53326e6i −0.223018 + 0.386278i
\(437\) 729645. + 1.26378e6i 0.182771 + 0.316569i
\(438\) 742820. + 1.28660e6i 0.185011 + 0.320449i
\(439\) 242589. 420177.i 0.0600773 0.104057i −0.834422 0.551125i \(-0.814199\pi\)
0.894500 + 0.447068i \(0.147532\pi\)
\(440\) −490098. −0.120684
\(441\) 0 0
\(442\) −2.35962e6 −0.574495
\(443\) −637598. + 1.10435e6i −0.154361 + 0.267361i −0.932826 0.360327i \(-0.882665\pi\)
0.778465 + 0.627688i \(0.215999\pi\)
\(444\) −921032. 1.59527e6i −0.221726 0.384041i
\(445\) −877118. 1.51921e6i −0.209970 0.363679i
\(446\) 1.05239e6 1.82279e6i 0.250518 0.433910i
\(447\) −3.24850e6 −0.768978
\(448\) 0 0
\(449\) −3.79144e6 −0.887541 −0.443770 0.896141i \(-0.646359\pi\)
−0.443770 + 0.896141i \(0.646359\pi\)
\(450\) 424293. 734898.i 0.0987722 0.171079i
\(451\) 199767. + 346006.i 0.0462468 + 0.0801019i
\(452\) 1.55128e6 + 2.68690e6i 0.357145 + 0.618594i
\(453\) 1.95325e6 3.38313e6i 0.447211 0.774592i
\(454\) 3.92642e6 0.894040
\(455\) 0 0
\(456\) −591092. −0.133120
\(457\) −851404. + 1.47467e6i −0.190698 + 0.330298i −0.945482 0.325675i \(-0.894408\pi\)
0.754784 + 0.655973i \(0.227742\pi\)
\(458\) −170162. 294729.i −0.0379052 0.0656537i
\(459\) 295189. + 511283.i 0.0653986 + 0.113274i
\(460\) 255878. 443194.i 0.0563818 0.0976562i
\(461\) −4.55537e6 −0.998323 −0.499161 0.866509i \(-0.666358\pi\)
−0.499161 + 0.866509i \(0.666358\pi\)
\(462\) 0 0
\(463\) 5.82647e6 1.26314 0.631572 0.775317i \(-0.282410\pi\)
0.631572 + 0.775317i \(0.282410\pi\)
\(464\) −667908. + 1.15685e6i −0.144020 + 0.249449i
\(465\) 712329. + 1.23379e6i 0.152774 + 0.264612i
\(466\) −226246. 391869.i −0.0482631 0.0835942i
\(467\) −1.77131e6 + 3.06799e6i −0.375839 + 0.650972i −0.990452 0.137857i \(-0.955979\pi\)
0.614614 + 0.788828i \(0.289312\pi\)
\(468\) 944027. 0.199237
\(469\) 0 0
\(470\) 837902. 0.174964
\(471\) −2.30218e6 + 3.98750e6i −0.478176 + 0.828225i
\(472\) −972038. 1.68362e6i −0.200830 0.347847i
\(473\) −623754. 1.08037e6i −0.128192 0.222035i
\(474\) 630008. 1.09121e6i 0.128795 0.223080i
\(475\) 2.68772e6 0.546575
\(476\) 0 0
\(477\) 2.88707e6 0.580979
\(478\) 1.79020e6 3.10072e6i 0.358370 0.620715i
\(479\) −2.11771e6 3.66798e6i −0.421723 0.730446i 0.574385 0.818585i \(-0.305241\pi\)
−0.996108 + 0.0881390i \(0.971908\pi\)
\(480\) 103645. + 179518.i 0.0205326 + 0.0355635i
\(481\) −4.65899e6 + 8.06960e6i −0.918182 + 1.59034i
\(482\) −2.11086e6 −0.413849
\(483\) 0 0
\(484\) −722189. −0.140132
\(485\) 1.81924e6 3.15102e6i 0.351185 0.608270i
\(486\) −118098. 204552.i −0.0226805 0.0392837i
\(487\) 2.82740e6 + 4.89719e6i 0.540212 + 0.935675i 0.998891 + 0.0470729i \(0.0149893\pi\)
−0.458679 + 0.888602i \(0.651677\pi\)
\(488\) 1.02996e6 1.78394e6i 0.195781 0.339103i
\(489\) −2.26142e6 −0.427671
\(490\) 0 0
\(491\) 8.33183e6 1.55968 0.779842 0.625976i \(-0.215299\pi\)
0.779842 + 0.625976i \(0.215299\pi\)
\(492\) 84492.4 146345.i 0.0157364 0.0272562i
\(493\) 2.11290e6 + 3.65966e6i 0.391528 + 0.678146i
\(494\) 1.49500e6 + 2.58942e6i 0.275629 + 0.477403i
\(495\) 310140. 537179.i 0.0568912 0.0985384i
\(496\) 1.80166e6 0.328828
\(497\) 0 0
\(498\) −3.10295e6 −0.560662
\(499\) 3.61884e6 6.26802e6i 0.650607 1.12688i −0.332369 0.943149i \(-0.607848\pi\)
0.982976 0.183734i \(-0.0588187\pi\)
\(500\) −1.03359e6 1.79022e6i −0.184893 0.320245i
\(501\) 1.88674e6 + 3.26794e6i 0.335829 + 0.581674i
\(502\) −2.38585e6 + 4.13242e6i −0.422556 + 0.731888i
\(503\) 6.16761e6 1.08692 0.543459 0.839436i \(-0.317114\pi\)
0.543459 + 0.839436i \(0.317114\pi\)
\(504\) 0 0
\(505\) −1.48122e6 −0.258459
\(506\) −968294. + 1.67713e6i −0.168124 + 0.291200i
\(507\) −716835. 1.24159e6i −0.123851 0.214516i
\(508\) −219434. 380071.i −0.0377263 0.0653439i
\(509\) 917439. 1.58905e6i 0.156958 0.271859i −0.776812 0.629732i \(-0.783165\pi\)
0.933770 + 0.357873i \(0.116498\pi\)
\(510\) 655753. 0.111639
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 374050. 647874.i 0.0627533 0.108692i
\(514\) −2.38985e6 4.13934e6i −0.398990 0.691071i
\(515\) −1.46423e6 2.53612e6i −0.243272 0.421359i
\(516\) −263820. + 456950.i −0.0436198 + 0.0755517i
\(517\) −3.17079e6 −0.521724
\(518\) 0 0
\(519\) 4.15239e6 0.676674
\(520\) 524281. 908081.i 0.0850268 0.147271i
\(521\) 2.65520e6 + 4.59894e6i 0.428551 + 0.742273i 0.996745 0.0806224i \(-0.0256908\pi\)
−0.568193 + 0.822895i \(0.692357\pi\)
\(522\) −845321. 1.46414e6i −0.135783 0.235183i
\(523\) −1.49418e6 + 2.58799e6i −0.238862 + 0.413722i −0.960388 0.278666i \(-0.910108\pi\)
0.721526 + 0.692388i \(0.243441\pi\)
\(524\) −2.40601e6 −0.382798
\(525\) 0 0
\(526\) −8.48921e6 −1.33784
\(527\) 2.84975e6 4.93591e6i 0.446972 0.774178i
\(528\) −392212. 679331.i −0.0612260 0.106047i
\(529\) 2.20709e6 + 3.82279e6i 0.342910 + 0.593937i
\(530\) 1.60338e6 2.77713e6i 0.247940 0.429445i
\(531\) 2.46047e6 0.378688
\(532\) 0 0
\(533\) −854800. −0.130331
\(534\) 1.40387e6 2.43157e6i 0.213046 0.369006i
\(535\) 29138.3 + 50469.0i 0.00440128 + 0.00762325i
\(536\) −683235. 1.18340e6i −0.102721 0.177917i
\(537\) −3.33768e6 + 5.78102e6i −0.499469 + 0.865105i
\(538\) −619907. −0.0923359
\(539\) 0 0
\(540\) −262351. −0.0387167
\(541\) −1.08416e6 + 1.87782e6i −0.159258 + 0.275843i −0.934601 0.355697i \(-0.884243\pi\)
0.775343 + 0.631540i \(0.217577\pi\)
\(542\) 3.91775e6 + 6.78575e6i 0.572848 + 0.992201i
\(543\) 1.35617e6 + 2.34895e6i 0.197385 + 0.341881i
\(544\) 414642. 718180.i 0.0600725 0.104049i
\(545\) −2.48886e6 −0.358930
\(546\) 0 0
\(547\) −9.13272e6 −1.30506 −0.652532 0.757761i \(-0.726293\pi\)
−0.652532 + 0.757761i \(0.726293\pi\)
\(548\) −768816. + 1.33163e6i −0.109363 + 0.189423i
\(549\) 1.30354e6 + 2.25780e6i 0.184584 + 0.319709i
\(550\) 1.78340e6 + 3.08894e6i 0.251387 + 0.435415i
\(551\) 2.67738e6 4.63735e6i 0.375691 0.650715i
\(552\) 819090. 0.114415
\(553\) 0 0
\(554\) −6.99810e6 −0.968737
\(555\) 1.29476e6 2.24259e6i 0.178426 0.309042i
\(556\) 806835. + 1.39748e6i 0.110687 + 0.191716i
\(557\) 4.61014e6 + 7.98500e6i 0.629617 + 1.09053i 0.987629 + 0.156811i \(0.0501214\pi\)
−0.358012 + 0.933717i \(0.616545\pi\)
\(558\) −1.14011e6 + 1.97474e6i −0.155011 + 0.268487i
\(559\) 2.66904e6 0.361264
\(560\) 0 0
\(561\) −2.48150e6 −0.332894
\(562\) −2.81330e6 + 4.87277e6i −0.375729 + 0.650782i
\(563\) 4.24638e6 + 7.35495e6i 0.564610 + 0.977933i 0.997086 + 0.0762872i \(0.0243066\pi\)
−0.432476 + 0.901645i \(0.642360\pi\)
\(564\) 670550. + 1.16143e6i 0.0887633 + 0.153743i
\(565\) −2.18075e6 + 3.77717e6i −0.287399 + 0.497789i
\(566\) −7.82828e6 −1.02713
\(567\) 0 0
\(568\) 3.91384e6 0.509017
\(569\) 2.35456e6 4.07822e6i 0.304880 0.528068i −0.672355 0.740229i \(-0.734717\pi\)
0.977235 + 0.212162i \(0.0680503\pi\)
\(570\) −415470. 719616.i −0.0535615 0.0927712i
\(571\) 864035. + 1.49655e6i 0.110902 + 0.192089i 0.916134 0.400871i \(-0.131293\pi\)
−0.805232 + 0.592960i \(0.797959\pi\)
\(572\) −1.98398e6 + 3.43636e6i −0.253541 + 0.439145i
\(573\) 2.36864e6 0.301379
\(574\) 0 0
\(575\) −3.72443e6 −0.469776
\(576\) −165888. + 287326.i −0.0208333 + 0.0360844i
\(577\) 1.19249e6 + 2.06546e6i 0.149113 + 0.258272i 0.930900 0.365274i \(-0.119025\pi\)
−0.781787 + 0.623546i \(0.785691\pi\)
\(578\) 1.52801e6 + 2.64659e6i 0.190242 + 0.329509i
\(579\) 3.74007e6 6.47799e6i 0.463643 0.803053i
\(580\) −1.87785e6 −0.231788
\(581\) 0 0
\(582\) 5.82355e6 0.712657
\(583\) −6.06750e6 + 1.05092e7i −0.739330 + 1.28056i
\(584\) 1.32057e6 + 2.28729e6i 0.160225 + 0.277517i
\(585\) 663543. + 1.14929e6i 0.0801640 + 0.138848i
\(586\) −2.53997e6 + 4.39935e6i −0.305551 + 0.529230i
\(587\) 3.44904e6 0.413145 0.206573 0.978431i \(-0.433769\pi\)
0.206573 + 0.978431i \(0.433769\pi\)
\(588\) 0 0
\(589\) −7.22214e6 −0.857784
\(590\) 1.36646e6 2.36678e6i 0.161610 0.279917i
\(591\) 4.74395e6 + 8.21676e6i 0.558691 + 0.967681i
\(592\) −1.63739e6 2.83604e6i −0.192021 0.332589i
\(593\) 567341. 982664.i 0.0662533 0.114754i −0.830996 0.556278i \(-0.812229\pi\)
0.897249 + 0.441524i \(0.145562\pi\)
\(594\) 992786. 0.115449
\(595\) 0 0
\(596\) −5.77511e6 −0.665954
\(597\) 3.14355e6 5.44480e6i 0.360982 0.625239i
\(598\) −2.07166e6 3.58822e6i −0.236900 0.410323i
\(599\) −3.80933e6 6.59795e6i −0.433792 0.751349i 0.563404 0.826181i \(-0.309491\pi\)
−0.997196 + 0.0748320i \(0.976158\pi\)
\(600\) 754299. 1.30648e6i 0.0855393 0.148158i
\(601\) −9.78414e6 −1.10493 −0.552467 0.833535i \(-0.686314\pi\)
−0.552467 + 0.833535i \(0.686314\pi\)
\(602\) 0 0
\(603\) 1.72944e6 0.193692
\(604\) 3.47245e6 6.01445e6i 0.387296 0.670817i
\(605\) −507616. 879217.i −0.0563829 0.0976580i
\(606\) −1.18538e6 2.05314e6i −0.131122 0.227110i
\(607\) 926673. 1.60504e6i 0.102083 0.176813i −0.810460 0.585795i \(-0.800783\pi\)
0.912543 + 0.408981i \(0.134116\pi\)
\(608\) −1.05083e6 −0.115285
\(609\) 0 0
\(610\) 2.89578e6 0.315094
\(611\) 3.39194e6 5.87501e6i 0.367574 0.636657i
\(612\) 524781. + 908947.i 0.0566369 + 0.0980980i
\(613\) 3.56048e6 + 6.16694e6i 0.382699 + 0.662855i 0.991447 0.130509i \(-0.0416612\pi\)
−0.608748 + 0.793364i \(0.708328\pi\)
\(614\) −83708.7 + 144988.i −0.00896086 + 0.0155207i
\(615\) 237554. 0.0253265
\(616\) 0 0
\(617\) −2.75212e6 −0.291041 −0.145521 0.989355i \(-0.546486\pi\)
−0.145521 + 0.989355i \(0.546486\pi\)
\(618\) 2.34357e6 4.05917e6i 0.246835 0.427530i
\(619\) −6.51660e6 1.12871e7i −0.683588 1.18401i −0.973878 0.227070i \(-0.927085\pi\)
0.290291 0.956939i \(-0.406248\pi\)
\(620\) 1.26636e6 + 2.19341e6i 0.132306 + 0.229160i
\(621\) −518330. + 897774.i −0.0539358 + 0.0934196i
\(622\) 9.16758e6 0.950120
\(623\) 0 0
\(624\) 1.67827e6 0.172544
\(625\) −2.63935e6 + 4.57149e6i −0.270269 + 0.468120i
\(626\) 4.54299e6 + 7.86869e6i 0.463347 + 0.802540i
\(627\) 1.57222e6 + 2.72317e6i 0.159715 + 0.276634i
\(628\) −4.09277e6 + 7.08889e6i −0.414112 + 0.717264i
\(629\) −1.03597e7 −1.04404
\(630\) 0 0
\(631\) −4.40820e6 −0.440745 −0.220373 0.975416i \(-0.570727\pi\)
−0.220373 + 0.975416i \(0.570727\pi\)
\(632\) 1.12001e6 1.93992e6i 0.111540 0.193193i
\(633\) 448621. + 777035.i 0.0445011 + 0.0770781i
\(634\) 3.96949e6 + 6.87535e6i 0.392203 + 0.679316i
\(635\) 308474. 534293.i 0.0303588 0.0525829i
\(636\) 5.13256e6 0.503143
\(637\) 0 0
\(638\) 7.10616e6 0.691168
\(639\) −2.47673e6 + 4.28982e6i −0.239953 + 0.415611i
\(640\) 184257. + 319143.i 0.0177818 + 0.0307989i
\(641\) 3.99195e6 + 6.91426e6i 0.383742 + 0.664661i 0.991594 0.129389i \(-0.0413017\pi\)
−0.607851 + 0.794051i \(0.707968\pi\)
\(642\) −46637.1 + 80777.8i −0.00446575 + 0.00773490i
\(643\) −1.52102e6 −0.145080 −0.0725398 0.997366i \(-0.523110\pi\)
−0.0725398 + 0.997366i \(0.523110\pi\)
\(644\) 0 0
\(645\) −741741. −0.0702026
\(646\) −1.66213e6 + 2.87890e6i −0.156706 + 0.271422i
\(647\) −6.26247e6 1.08469e7i −0.588146 1.01870i −0.994475 0.104972i \(-0.966525\pi\)
0.406329 0.913727i \(-0.366809\pi\)
\(648\) −209952. 363648.i −0.0196419 0.0340207i
\(649\) −5.17096e6 + 8.95637e6i −0.481903 + 0.834681i
\(650\) −7.63116e6 −0.708447
\(651\) 0 0
\(652\) −4.02031e6 −0.370374
\(653\) 8.53702e6 1.47865e7i 0.783471 1.35701i −0.146436 0.989220i \(-0.546780\pi\)
0.929908 0.367792i \(-0.119886\pi\)
\(654\) −1.99177e6 3.44984e6i −0.182093 0.315395i
\(655\) −1.69115e6 2.92916e6i −0.154021 0.266772i
\(656\) 150209. 260169.i 0.0136281 0.0236046i
\(657\) −3.34269e6 −0.302122
\(658\) 0 0
\(659\) −2.12585e6 −0.190686 −0.0953432 0.995444i \(-0.530395\pi\)
−0.0953432 + 0.995444i \(0.530395\pi\)
\(660\) 551360. 954984.i 0.0492692 0.0853368i
\(661\) −1.30005e6 2.25176e6i −0.115733 0.200456i 0.802339 0.596868i \(-0.203588\pi\)
−0.918073 + 0.396412i \(0.870255\pi\)
\(662\) −1.27692e6 2.21169e6i −0.113245 0.196146i
\(663\) 2.65457e6 4.59786e6i 0.234537 0.406230i
\(664\) −5.51635e6 −0.485547
\(665\) 0 0
\(666\) 4.14464e6 0.362078
\(667\) −3.71010e6 + 6.42608e6i −0.322902 + 0.559283i
\(668\) 3.35421e6 + 5.80967e6i 0.290837 + 0.503744i
\(669\) 2.36787e6 + 4.10128e6i 0.204547 + 0.354286i
\(670\) 960472. 1.66359e6i 0.0826604 0.143172i
\(671\) −1.09582e7 −0.939577
\(672\) 0 0
\(673\) −1.44746e7 −1.23188 −0.615942 0.787792i \(-0.711224\pi\)
−0.615942 + 0.787792i \(0.711224\pi\)
\(674\) −5.44052e6 + 9.42326e6i −0.461308 + 0.799008i
\(675\) 954660. + 1.65352e6i 0.0806472 + 0.139685i
\(676\) −1.27437e6 2.20728e6i −0.107258 0.185776i
\(677\) −1.64423e6 + 2.84788e6i −0.137876 + 0.238809i −0.926693 0.375820i \(-0.877361\pi\)
0.788816 + 0.614629i \(0.210694\pi\)
\(678\) −6.98077e6 −0.583216
\(679\) 0 0
\(680\) 1.16578e6 0.0966819
\(681\) −4.41722e6 + 7.65085e6i −0.364990 + 0.632182i
\(682\) −4.79217e6 8.30027e6i −0.394522 0.683332i
\(683\) −4.40943e6 7.63736e6i −0.361685 0.626458i 0.626553 0.779379i \(-0.284465\pi\)
−0.988238 + 0.152921i \(0.951132\pi\)
\(684\) 664979. 1.15178e6i 0.0543460 0.0941300i
\(685\) −2.16156e6 −0.176011
\(686\) 0 0
\(687\) 765729. 0.0618989
\(688\) −469013. + 812355.i −0.0377758 + 0.0654297i
\(689\) −1.29814e7 2.24844e7i −1.04177 1.80440i
\(690\) 575726. + 997188.i 0.0460356 + 0.0797359i
\(691\) −4.29808e6 + 7.44450e6i −0.342436 + 0.593117i −0.984885 0.173212i \(-0.944585\pi\)
0.642448 + 0.766329i \(0.277919\pi\)
\(692\) 7.38202e6 0.586017
\(693\) 0 0
\(694\) 1.04831e7 0.826208
\(695\) −1.13423e6 + 1.96454e6i −0.0890713 + 0.154276i
\(696\) −1.50279e6 2.60291e6i −0.117592 0.203675i
\(697\) −475180. 823035.i −0.0370490 0.0641707i
\(698\) 1.15118e6 1.99391e6i 0.0894348 0.154906i
\(699\) 1.01811e6 0.0788134
\(700\) 0 0
\(701\) 2.06437e7 1.58669 0.793347 0.608770i \(-0.208337\pi\)
0.793347 + 0.608770i \(0.208337\pi\)
\(702\) −1.06203e6 + 1.83949e6i −0.0813381 + 0.140882i
\(703\) 6.56364e6 + 1.13686e7i 0.500906 + 0.867595i
\(704\) −697266. 1.20770e6i −0.0530233 0.0918390i
\(705\) −942640. + 1.63270e6i −0.0714288 + 0.123718i
\(706\) 1.03589e7 0.782169
\(707\) 0 0
\(708\) 4.37417e6 0.327954
\(709\) 213441. 369691.i 0.0159464 0.0276200i −0.857942 0.513746i \(-0.828257\pi\)
0.873888 + 0.486126i \(0.161591\pi\)
\(710\) 2.75098e6 + 4.76484e6i 0.204806 + 0.354734i
\(711\) 1.41752e6 + 2.45521e6i 0.105161 + 0.182144i
\(712\) 2.49576e6 4.32279e6i 0.184503 0.319569i
\(713\) 1.00079e7 0.737257
\(714\) 0 0
\(715\) −5.57805e6 −0.408054
\(716\) −5.93365e6 + 1.02774e7i −0.432553 + 0.749203i
\(717\) 4.02795e6 + 6.97662e6i 0.292608 + 0.506812i
\(718\) −5.73558e6 9.93431e6i −0.415208 0.719162i
\(719\) 1.90362e6 3.29716e6i 0.137328 0.237858i −0.789157 0.614192i \(-0.789482\pi\)
0.926484 + 0.376334i \(0.122815\pi\)
\(720\) −466401. −0.0335296
\(721\) 0 0
\(722\) −5.69204e6 −0.406373
\(723\) 2.37472e6 4.11313e6i 0.168953 0.292635i
\(724\) 2.41097e6 + 4.17592e6i 0.170940 + 0.296077i
\(725\) 6.83326e6 + 1.18356e7i 0.482817 + 0.836264i
\(726\) 812463. 1.40723e6i 0.0572087 0.0990883i
\(727\) 2.22044e7 1.55813 0.779065 0.626943i \(-0.215694\pi\)
0.779065 + 0.626943i \(0.215694\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −1.85642e6 + 3.21541e6i −0.128934 + 0.223321i
\(731\) 1.48371e6 + 2.56986e6i 0.102696 + 0.177875i
\(732\) 2.31741e6 + 4.01387e6i 0.159855 + 0.276876i
\(733\) −1.45286e7 + 2.51643e7i −0.998766 + 1.72991i −0.456365 + 0.889793i \(0.650849\pi\)
−0.542401 + 0.840120i \(0.682485\pi\)
\(734\) 7.81804e6 0.535621
\(735\) 0 0
\(736\) 1.45616e6 0.0990865
\(737\) −3.63461e6 + 6.29533e6i −0.246484 + 0.426923i
\(738\) 190108. + 329276.i 0.0128487 + 0.0222546i
\(739\) −1.06761e7 1.84916e7i −0.719122 1.24556i −0.961348 0.275337i \(-0.911211\pi\)
0.242226 0.970220i \(-0.422123\pi\)
\(740\) 2.30180e6 3.98683e6i 0.154521 0.267638i
\(741\) −6.72751e6 −0.450100
\(742\) 0 0
\(743\) 3.91874e6 0.260420 0.130210 0.991486i \(-0.458435\pi\)
0.130210 + 0.991486i \(0.458435\pi\)
\(744\) −2.02687e6 + 3.51064e6i −0.134244 + 0.232517i
\(745\) −4.05924e6 7.03081e6i −0.267950 0.464103i
\(746\) −4.42219e6 7.65946e6i −0.290931 0.503908i
\(747\) 3.49081e6 6.04627e6i 0.228889 0.396448i
\(748\) −4.41155e6 −0.288295
\(749\) 0 0
\(750\) 4.65113e6 0.301930
\(751\) −2.83456e6 + 4.90960e6i −0.183394 + 0.317648i −0.943034 0.332696i \(-0.892042\pi\)
0.759640 + 0.650344i \(0.225375\pi\)
\(752\) 1.19209e6 + 2.06476e6i 0.0768713 + 0.133145i
\(753\) −5.36817e6 9.29794e6i −0.345015 0.597584i
\(754\) −7.60180e6 + 1.31667e7i −0.486954 + 0.843429i
\(755\) 9.76293e6 0.623323
\(756\) 0 0
\(757\) −1.91706e7 −1.21590 −0.607949 0.793976i \(-0.708007\pi\)
−0.607949 + 0.793976i \(0.708007\pi\)
\(758\) −7.62463e6 + 1.32063e7i −0.481999 + 0.834846i
\(759\) −2.17866e6 3.77355e6i −0.137273 0.237764i
\(760\) −738614. 1.27932e6i −0.0463856 0.0803423i
\(761\) 7.31680e6 1.26731e7i 0.457993 0.793268i −0.540861 0.841112i \(-0.681902\pi\)
0.998855 + 0.0478438i \(0.0152350\pi\)
\(762\) 987453. 0.0616068
\(763\) 0 0
\(764\) 4.21092e6 0.261002
\(765\) −737722. + 1.27777e6i −0.0455763 + 0.0789405i
\(766\) 7.61212e6 + 1.31846e7i 0.468742 + 0.811884i
\(767\) −1.10632e7 1.91621e7i −0.679038 1.17613i
\(768\) −294912. + 510803.i −0.0180422 + 0.0312500i
\(769\) −1.57337e7