Properties

Label 294.4.d.a.293.9
Level $294$
Weight $4$
Character 294.293
Analytic conductor $17.347$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,4,Mod(293,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.293"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 294.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3465615417\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - x^{14} - 2 x^{13} + 9 x^{12} - 24 x^{11} + 714 x^{10} - 1940 x^{9} - 2834 x^{8} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{8}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 293.9
Root \(0.339489 + 2.98073i\) of defining polynomial
Character \(\chi\) \(=\) 294.293
Dual form 294.4.d.a.293.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +(-4.76510 + 2.07215i) q^{3} -4.00000 q^{4} -8.55823 q^{5} +(-4.14431 - 9.53020i) q^{6} -8.00000i q^{8} +(18.4124 - 19.7480i) q^{9} -17.1165i q^{10} -62.1932i q^{11} +(19.0604 - 8.28861i) q^{12} +61.7061i q^{13} +(40.7808 - 17.7340i) q^{15} +16.0000 q^{16} +26.6731 q^{17} +(39.4961 + 36.8247i) q^{18} -67.6901i q^{19} +34.2329 q^{20} +124.386 q^{22} +52.9184i q^{23} +(16.5772 + 38.1208i) q^{24} -51.7568 q^{25} -123.412 q^{26} +(-46.8158 + 132.255i) q^{27} +55.1116i q^{29} +(35.4679 + 81.5616i) q^{30} +154.822i q^{31} +32.0000i q^{32} +(128.874 + 296.357i) q^{33} +53.3461i q^{34} +(-73.6494 + 78.9922i) q^{36} +315.880 q^{37} +135.380 q^{38} +(-127.865 - 294.036i) q^{39} +68.4658i q^{40} -210.211 q^{41} +351.939 q^{43} +248.773i q^{44} +(-157.577 + 169.008i) q^{45} -105.837 q^{46} +231.638 q^{47} +(-76.2416 + 33.1545i) q^{48} -103.514i q^{50} +(-127.100 + 55.2707i) q^{51} -246.824i q^{52} +268.918i q^{53} +(-264.509 - 93.6315i) q^{54} +532.263i q^{55} +(140.264 + 322.550i) q^{57} -110.223 q^{58} +18.2831 q^{59} +(-163.123 + 70.9358i) q^{60} -83.5218i q^{61} -309.643 q^{62} -64.0000 q^{64} -528.095i q^{65} +(-592.713 + 257.748i) q^{66} +129.471 q^{67} -106.692 q^{68} +(-109.655 - 252.162i) q^{69} +804.537i q^{71} +(-157.984 - 147.299i) q^{72} -427.674i q^{73} +631.759i q^{74} +(246.626 - 107.248i) q^{75} +270.760i q^{76} +(588.072 - 255.729i) q^{78} +1218.57 q^{79} -136.932 q^{80} +(-50.9701 - 727.216i) q^{81} -420.423i q^{82} +1371.18 q^{83} -228.274 q^{85} +703.879i q^{86} +(-114.200 - 262.612i) q^{87} -497.545 q^{88} -773.679 q^{89} +(-338.016 - 315.154i) q^{90} -211.674i q^{92} +(-320.814 - 737.741i) q^{93} +463.277i q^{94} +579.307i q^{95} +(-66.3089 - 152.483i) q^{96} -848.768i q^{97} +(-1228.19 - 1145.12i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 64 q^{4} - 36 q^{9} + 256 q^{16} + 96 q^{18} + 24 q^{22} + 388 q^{25} - 720 q^{30} + 144 q^{36} + 1924 q^{37} - 1188 q^{39} + 1732 q^{43} - 336 q^{46} - 3276 q^{51} - 2664 q^{57} + 1560 q^{58} - 1024 q^{64}+ \cdots - 4284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) −4.76510 + 2.07215i −0.917044 + 0.398786i
\(4\) −4.00000 −0.500000
\(5\) −8.55823 −0.765471 −0.382736 0.923858i \(-0.625018\pi\)
−0.382736 + 0.923858i \(0.625018\pi\)
\(6\) −4.14431 9.53020i −0.281984 0.648448i
\(7\) 0 0
\(8\) 8.00000i 0.353553i
\(9\) 18.4124 19.7480i 0.681939 0.731409i
\(10\) 17.1165i 0.541270i
\(11\) 62.1932i 1.70472i −0.522954 0.852361i \(-0.675170\pi\)
0.522954 0.852361i \(-0.324830\pi\)
\(12\) 19.0604 8.28861i 0.458522 0.199393i
\(13\) 61.7061i 1.31648i 0.752810 + 0.658238i \(0.228698\pi\)
−0.752810 + 0.658238i \(0.771302\pi\)
\(14\) 0 0
\(15\) 40.7808 17.7340i 0.701971 0.305259i
\(16\) 16.0000 0.250000
\(17\) 26.6731 0.380539 0.190270 0.981732i \(-0.439064\pi\)
0.190270 + 0.981732i \(0.439064\pi\)
\(18\) 39.4961 + 36.8247i 0.517184 + 0.482204i
\(19\) 67.6901i 0.817324i −0.912686 0.408662i \(-0.865995\pi\)
0.912686 0.408662i \(-0.134005\pi\)
\(20\) 34.2329 0.382736
\(21\) 0 0
\(22\) 124.386 1.20542
\(23\) 52.9184i 0.479750i 0.970804 + 0.239875i \(0.0771065\pi\)
−0.970804 + 0.239875i \(0.922894\pi\)
\(24\) 16.5772 + 38.1208i 0.140992 + 0.324224i
\(25\) −51.7568 −0.414054
\(26\) −123.412 −0.930889
\(27\) −46.8158 + 132.255i −0.333693 + 0.942682i
\(28\) 0 0
\(29\) 55.1116i 0.352895i 0.984310 + 0.176448i \(0.0564606\pi\)
−0.984310 + 0.176448i \(0.943539\pi\)
\(30\) 35.4679 + 81.5616i 0.215851 + 0.496368i
\(31\) 154.822i 0.896993i 0.893785 + 0.448497i \(0.148040\pi\)
−0.893785 + 0.448497i \(0.851960\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 128.874 + 296.357i 0.679820 + 1.56331i
\(34\) 53.3461i 0.269082i
\(35\) 0 0
\(36\) −73.6494 + 78.9922i −0.340970 + 0.365704i
\(37\) 315.880 1.40352 0.701761 0.712413i \(-0.252398\pi\)
0.701761 + 0.712413i \(0.252398\pi\)
\(38\) 135.380 0.577936
\(39\) −127.865 294.036i −0.524993 1.20727i
\(40\) 68.4658i 0.270635i
\(41\) −210.211 −0.800719 −0.400360 0.916358i \(-0.631115\pi\)
−0.400360 + 0.916358i \(0.631115\pi\)
\(42\) 0 0
\(43\) 351.939 1.24815 0.624073 0.781366i \(-0.285477\pi\)
0.624073 + 0.781366i \(0.285477\pi\)
\(44\) 248.773i 0.852361i
\(45\) −157.577 + 169.008i −0.522005 + 0.559872i
\(46\) −105.837 −0.339235
\(47\) 231.638 0.718892 0.359446 0.933166i \(-0.382966\pi\)
0.359446 + 0.933166i \(0.382966\pi\)
\(48\) −76.2416 + 33.1545i −0.229261 + 0.0996965i
\(49\) 0 0
\(50\) 103.514i 0.292780i
\(51\) −127.100 + 55.2707i −0.348971 + 0.151754i
\(52\) 246.824i 0.658238i
\(53\) 268.918i 0.696958i 0.937317 + 0.348479i \(0.113302\pi\)
−0.937317 + 0.348479i \(0.886698\pi\)
\(54\) −264.509 93.6315i −0.666577 0.235956i
\(55\) 532.263i 1.30492i
\(56\) 0 0
\(57\) 140.264 + 322.550i 0.325938 + 0.749522i
\(58\) −110.223 −0.249535
\(59\) 18.2831 0.0403433 0.0201717 0.999797i \(-0.493579\pi\)
0.0201717 + 0.999797i \(0.493579\pi\)
\(60\) −163.123 + 70.9358i −0.350985 + 0.152630i
\(61\) 83.5218i 0.175309i −0.996151 0.0876547i \(-0.972063\pi\)
0.996151 0.0876547i \(-0.0279372\pi\)
\(62\) −309.643 −0.634270
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) 528.095i 1.00772i
\(66\) −592.713 + 257.748i −1.10542 + 0.480705i
\(67\) 129.471 0.236080 0.118040 0.993009i \(-0.462339\pi\)
0.118040 + 0.993009i \(0.462339\pi\)
\(68\) −106.692 −0.190270
\(69\) −109.655 252.162i −0.191318 0.439952i
\(70\) 0 0
\(71\) 804.537i 1.34480i 0.740186 + 0.672402i \(0.234737\pi\)
−0.740186 + 0.672402i \(0.765263\pi\)
\(72\) −157.984 147.299i −0.258592 0.241102i
\(73\) 427.674i 0.685691i −0.939392 0.342846i \(-0.888609\pi\)
0.939392 0.342846i \(-0.111391\pi\)
\(74\) 631.759i 0.992439i
\(75\) 246.626 107.248i 0.379706 0.165119i
\(76\) 270.760i 0.408662i
\(77\) 0 0
\(78\) 588.072 255.729i 0.853667 0.371226i
\(79\) 1218.57 1.73544 0.867718 0.497056i \(-0.165586\pi\)
0.867718 + 0.497056i \(0.165586\pi\)
\(80\) −136.932 −0.191368
\(81\) −50.9701 727.216i −0.0699178 0.997553i
\(82\) 420.423i 0.566194i
\(83\) 1371.18 1.81333 0.906663 0.421855i \(-0.138621\pi\)
0.906663 + 0.421855i \(0.138621\pi\)
\(84\) 0 0
\(85\) −228.274 −0.291292
\(86\) 703.879i 0.882572i
\(87\) −114.200 262.612i −0.140730 0.323620i
\(88\) −497.545 −0.602710
\(89\) −773.679 −0.921459 −0.460729 0.887541i \(-0.652412\pi\)
−0.460729 + 0.887541i \(0.652412\pi\)
\(90\) −338.016 315.154i −0.395890 0.369113i
\(91\) 0 0
\(92\) 211.674i 0.239875i
\(93\) −320.814 737.741i −0.357709 0.822582i
\(94\) 463.277i 0.508333i
\(95\) 579.307i 0.625638i
\(96\) −66.3089 152.483i −0.0704961 0.162112i
\(97\) 848.768i 0.888447i −0.895916 0.444223i \(-0.853480\pi\)
0.895916 0.444223i \(-0.146520\pi\)
\(98\) 0 0
\(99\) −1228.19 1145.12i −1.24685 1.16252i
\(100\) 207.027 0.207027
\(101\) 1025.29 1.01011 0.505053 0.863088i \(-0.331473\pi\)
0.505053 + 0.863088i \(0.331473\pi\)
\(102\) −110.541 254.200i −0.107306 0.246760i
\(103\) 321.360i 0.307423i 0.988116 + 0.153711i \(0.0491226\pi\)
−0.988116 + 0.153711i \(0.950877\pi\)
\(104\) 493.649 0.465445
\(105\) 0 0
\(106\) −537.837 −0.492824
\(107\) 136.079i 0.122946i −0.998109 0.0614730i \(-0.980420\pi\)
0.998109 0.0614730i \(-0.0195798\pi\)
\(108\) 187.263 529.018i 0.166846 0.471341i
\(109\) 1406.16 1.23565 0.617823 0.786317i \(-0.288015\pi\)
0.617823 + 0.786317i \(0.288015\pi\)
\(110\) −1064.53 −0.922715
\(111\) −1505.20 + 654.551i −1.28709 + 0.559705i
\(112\) 0 0
\(113\) 467.285i 0.389013i −0.980901 0.194506i \(-0.937690\pi\)
0.980901 0.194506i \(-0.0623105\pi\)
\(114\) −645.100 + 280.528i −0.529992 + 0.230473i
\(115\) 452.888i 0.367235i
\(116\) 220.446i 0.176448i
\(117\) 1218.57 + 1136.15i 0.962883 + 0.897757i
\(118\) 36.5662i 0.0285270i
\(119\) 0 0
\(120\) −141.872 326.246i −0.107925 0.248184i
\(121\) −2536.99 −1.90608
\(122\) 167.044 0.123962
\(123\) 1001.68 435.590i 0.734295 0.319316i
\(124\) 619.287i 0.448497i
\(125\) 1512.72 1.08242
\(126\) 0 0
\(127\) 259.166 0.181081 0.0905404 0.995893i \(-0.471141\pi\)
0.0905404 + 0.995893i \(0.471141\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −1677.03 + 729.272i −1.14460 + 0.497743i
\(130\) 1056.19 0.712569
\(131\) 2647.85 1.76598 0.882991 0.469391i \(-0.155526\pi\)
0.882991 + 0.469391i \(0.155526\pi\)
\(132\) −515.495 1185.43i −0.339910 0.781653i
\(133\) 0 0
\(134\) 258.941i 0.166934i
\(135\) 400.660 1131.87i 0.255432 0.721596i
\(136\) 213.384i 0.134541i
\(137\) 468.016i 0.291863i −0.989295 0.145932i \(-0.953382\pi\)
0.989295 0.145932i \(-0.0466180\pi\)
\(138\) 504.323 219.310i 0.311093 0.135282i
\(139\) 2923.27i 1.78380i −0.452229 0.891902i \(-0.649371\pi\)
0.452229 0.891902i \(-0.350629\pi\)
\(140\) 0 0
\(141\) −1103.78 + 479.990i −0.659256 + 0.286684i
\(142\) −1609.07 −0.950920
\(143\) 3837.70 2.24423
\(144\) 294.598 315.969i 0.170485 0.182852i
\(145\) 471.657i 0.270131i
\(146\) 855.348 0.484857
\(147\) 0 0
\(148\) −1263.52 −0.701761
\(149\) 1813.16i 0.996912i 0.866915 + 0.498456i \(0.166099\pi\)
−0.866915 + 0.498456i \(0.833901\pi\)
\(150\) 214.496 + 493.252i 0.116757 + 0.268493i
\(151\) −1654.31 −0.891561 −0.445780 0.895142i \(-0.647074\pi\)
−0.445780 + 0.895142i \(0.647074\pi\)
\(152\) −541.520 −0.288968
\(153\) 491.114 526.740i 0.259505 0.278330i
\(154\) 0 0
\(155\) 1325.00i 0.686622i
\(156\) 511.458 + 1176.14i 0.262496 + 0.603633i
\(157\) 1385.98i 0.704541i 0.935898 + 0.352271i \(0.114590\pi\)
−0.935898 + 0.352271i \(0.885410\pi\)
\(158\) 2437.13i 1.22714i
\(159\) −557.240 1281.42i −0.277937 0.639141i
\(160\) 273.863i 0.135317i
\(161\) 0 0
\(162\) 1454.43 101.940i 0.705376 0.0494393i
\(163\) −1153.08 −0.554088 −0.277044 0.960857i \(-0.589355\pi\)
−0.277044 + 0.960857i \(0.589355\pi\)
\(164\) 840.845 0.400360
\(165\) −1102.93 2536.29i −0.520382 1.19666i
\(166\) 2742.35i 1.28222i
\(167\) 303.672 0.140712 0.0703559 0.997522i \(-0.477586\pi\)
0.0703559 + 0.997522i \(0.477586\pi\)
\(168\) 0 0
\(169\) −1610.64 −0.733110
\(170\) 456.548i 0.205974i
\(171\) −1336.75 1246.33i −0.597798 0.557366i
\(172\) −1407.76 −0.624073
\(173\) −2617.94 −1.15051 −0.575256 0.817973i \(-0.695098\pi\)
−0.575256 + 0.817973i \(0.695098\pi\)
\(174\) 525.224 228.399i 0.228834 0.0995110i
\(175\) 0 0
\(176\) 995.091i 0.426181i
\(177\) −87.1208 + 37.8854i −0.0369966 + 0.0160884i
\(178\) 1547.36i 0.651570i
\(179\) 2766.39i 1.15514i 0.816342 + 0.577569i \(0.195999\pi\)
−0.816342 + 0.577569i \(0.804001\pi\)
\(180\) 630.309 676.033i 0.261002 0.279936i
\(181\) 539.608i 0.221595i 0.993843 + 0.110798i \(0.0353405\pi\)
−0.993843 + 0.110798i \(0.964659\pi\)
\(182\) 0 0
\(183\) 173.070 + 397.990i 0.0699109 + 0.160766i
\(184\) 423.347 0.169617
\(185\) −2703.37 −1.07436
\(186\) 1475.48 641.629i 0.581654 0.252938i
\(187\) 1658.88i 0.648714i
\(188\) −926.553 −0.359446
\(189\) 0 0
\(190\) −1158.61 −0.442393
\(191\) 3192.31i 1.20936i −0.796468 0.604680i \(-0.793301\pi\)
0.796468 0.604680i \(-0.206699\pi\)
\(192\) 304.966 132.618i 0.114630 0.0498483i
\(193\) 1437.37 0.536083 0.268042 0.963407i \(-0.413624\pi\)
0.268042 + 0.963407i \(0.413624\pi\)
\(194\) 1697.54 0.628227
\(195\) 1094.29 + 2516.42i 0.401867 + 0.924128i
\(196\) 0 0
\(197\) 2346.26i 0.848548i 0.905534 + 0.424274i \(0.139471\pi\)
−0.905534 + 0.424274i \(0.860529\pi\)
\(198\) 2290.25 2456.39i 0.822024 0.881655i
\(199\) 1831.53i 0.652431i 0.945295 + 0.326216i \(0.105774\pi\)
−0.945295 + 0.326216i \(0.894226\pi\)
\(200\) 414.054i 0.146390i
\(201\) −616.941 + 268.283i −0.216496 + 0.0941455i
\(202\) 2050.59i 0.714252i
\(203\) 0 0
\(204\) 508.399 221.083i 0.174486 0.0758769i
\(205\) 1799.04 0.612928
\(206\) −642.720 −0.217381
\(207\) 1045.03 + 974.353i 0.350893 + 0.327160i
\(208\) 987.298i 0.329119i
\(209\) −4209.86 −1.39331
\(210\) 0 0
\(211\) 4291.48 1.40018 0.700090 0.714055i \(-0.253143\pi\)
0.700090 + 0.714055i \(0.253143\pi\)
\(212\) 1075.67i 0.348479i
\(213\) −1667.13 3833.70i −0.536289 1.23324i
\(214\) 272.157 0.0869359
\(215\) −3011.98 −0.955419
\(216\) 1058.04 + 374.526i 0.333288 + 0.117978i
\(217\) 0 0
\(218\) 2812.31i 0.873734i
\(219\) 886.206 + 2037.91i 0.273444 + 0.628809i
\(220\) 2129.05i 0.652458i
\(221\) 1645.89i 0.500971i
\(222\) −1309.10 3010.40i −0.395771 0.910111i
\(223\) 1170.88i 0.351604i 0.984426 + 0.175802i \(0.0562519\pi\)
−0.984426 + 0.175802i \(0.943748\pi\)
\(224\) 0 0
\(225\) −952.964 + 1022.09i −0.282360 + 0.302843i
\(226\) 934.569 0.275074
\(227\) −2126.99 −0.621908 −0.310954 0.950425i \(-0.600648\pi\)
−0.310954 + 0.950425i \(0.600648\pi\)
\(228\) −561.057 1290.20i −0.162969 0.374761i
\(229\) 1298.10i 0.374589i −0.982304 0.187294i \(-0.940028\pi\)
0.982304 0.187294i \(-0.0599718\pi\)
\(230\) 905.776 0.259674
\(231\) 0 0
\(232\) 440.893 0.124767
\(233\) 4204.46i 1.18216i 0.806613 + 0.591081i \(0.201298\pi\)
−0.806613 + 0.591081i \(0.798702\pi\)
\(234\) −2272.31 + 2437.15i −0.634810 + 0.680861i
\(235\) −1982.41 −0.550291
\(236\) −73.1324 −0.0201717
\(237\) −5806.59 + 2525.06i −1.59147 + 0.692068i
\(238\) 0 0
\(239\) 3816.77i 1.03300i −0.856288 0.516498i \(-0.827235\pi\)
0.856288 0.516498i \(-0.172765\pi\)
\(240\) 652.493 283.743i 0.175493 0.0763148i
\(241\) 1636.98i 0.437540i 0.975776 + 0.218770i \(0.0702045\pi\)
−0.975776 + 0.218770i \(0.929795\pi\)
\(242\) 5073.98i 1.34780i
\(243\) 1749.78 + 3359.64i 0.461928 + 0.886917i
\(244\) 334.087i 0.0876547i
\(245\) 0 0
\(246\) 871.180 + 2003.36i 0.225790 + 0.519225i
\(247\) 4176.89 1.07599
\(248\) 1238.57 0.317135
\(249\) −6533.79 + 2841.29i −1.66290 + 0.723129i
\(250\) 3025.45i 0.765385i
\(251\) 5269.47 1.32512 0.662562 0.749007i \(-0.269469\pi\)
0.662562 + 0.749007i \(0.269469\pi\)
\(252\) 0 0
\(253\) 3291.16 0.817841
\(254\) 518.332i 0.128043i
\(255\) 1087.75 473.019i 0.267127 0.116163i
\(256\) 256.000 0.0625000
\(257\) −1141.19 −0.276986 −0.138493 0.990363i \(-0.544226\pi\)
−0.138493 + 0.990363i \(0.544226\pi\)
\(258\) −1458.54 3354.05i −0.351957 0.809357i
\(259\) 0 0
\(260\) 2112.38i 0.503862i
\(261\) 1088.35 + 1014.73i 0.258111 + 0.240653i
\(262\) 5295.70i 1.24874i
\(263\) 2285.05i 0.535751i −0.963454 0.267875i \(-0.913678\pi\)
0.963454 0.267875i \(-0.0863215\pi\)
\(264\) 2370.85 1030.99i 0.552712 0.240353i
\(265\) 2301.46i 0.533501i
\(266\) 0 0
\(267\) 3686.66 1603.18i 0.845018 0.367465i
\(268\) −517.883 −0.118040
\(269\) 1874.38 0.424844 0.212422 0.977178i \(-0.431865\pi\)
0.212422 + 0.977178i \(0.431865\pi\)
\(270\) 2263.73 + 801.320i 0.510245 + 0.180618i
\(271\) 3281.32i 0.735521i 0.929921 + 0.367760i \(0.119875\pi\)
−0.929921 + 0.367760i \(0.880125\pi\)
\(272\) 426.769 0.0951348
\(273\) 0 0
\(274\) 936.032 0.206379
\(275\) 3218.92i 0.705847i
\(276\) 438.620 + 1008.65i 0.0956588 + 0.219976i
\(277\) −530.749 −0.115125 −0.0575625 0.998342i \(-0.518333\pi\)
−0.0575625 + 0.998342i \(0.518333\pi\)
\(278\) 5846.54 1.26134
\(279\) 3057.42 + 2850.63i 0.656069 + 0.611695i
\(280\) 0 0
\(281\) 5216.62i 1.10747i 0.832695 + 0.553733i \(0.186797\pi\)
−0.832695 + 0.553733i \(0.813203\pi\)
\(282\) −959.980 2207.56i −0.202716 0.466164i
\(283\) 1048.27i 0.220189i 0.993921 + 0.110094i \(0.0351153\pi\)
−0.993921 + 0.110094i \(0.964885\pi\)
\(284\) 3218.15i 0.672402i
\(285\) −1200.41 2760.46i −0.249496 0.573738i
\(286\) 7675.40i 1.58691i
\(287\) 0 0
\(288\) 631.937 + 589.195i 0.129296 + 0.120551i
\(289\) −4201.55 −0.855190
\(290\) 943.315 0.191012
\(291\) 1758.78 + 4044.46i 0.354300 + 0.814745i
\(292\) 1710.70i 0.342846i
\(293\) −6408.45 −1.27777 −0.638884 0.769303i \(-0.720603\pi\)
−0.638884 + 0.769303i \(0.720603\pi\)
\(294\) 0 0
\(295\) −156.471 −0.0308817
\(296\) 2527.04i 0.496220i
\(297\) 8225.33 + 2911.62i 1.60701 + 0.568853i
\(298\) −3626.32 −0.704923
\(299\) −3265.39 −0.631580
\(300\) −986.504 + 428.992i −0.189853 + 0.0825595i
\(301\) 0 0
\(302\) 3308.62i 0.630429i
\(303\) −4885.63 + 2124.57i −0.926311 + 0.402816i
\(304\) 1083.04i 0.204331i
\(305\) 714.798i 0.134194i
\(306\) 1053.48 + 982.228i 0.196809 + 0.183497i
\(307\) 3717.93i 0.691184i 0.938385 + 0.345592i \(0.112322\pi\)
−0.938385 + 0.345592i \(0.887678\pi\)
\(308\) 0 0
\(309\) −665.907 1531.31i −0.122596 0.281920i
\(310\) 2650.00 0.485515
\(311\) 405.631 0.0739589 0.0369795 0.999316i \(-0.488226\pi\)
0.0369795 + 0.999316i \(0.488226\pi\)
\(312\) −2352.29 + 1022.92i −0.426833 + 0.185613i
\(313\) 3048.42i 0.550501i −0.961373 0.275251i \(-0.911239\pi\)
0.961373 0.275251i \(-0.0887608\pi\)
\(314\) −2771.95 −0.498186
\(315\) 0 0
\(316\) −4874.27 −0.867718
\(317\) 6598.53i 1.16912i 0.811351 + 0.584559i \(0.198733\pi\)
−0.811351 + 0.584559i \(0.801267\pi\)
\(318\) 2562.85 1114.48i 0.451941 0.196531i
\(319\) 3427.56 0.601588
\(320\) 547.727 0.0956839
\(321\) 281.976 + 648.428i 0.0490292 + 0.112747i
\(322\) 0 0
\(323\) 1805.50i 0.311024i
\(324\) 203.880 + 2908.86i 0.0349589 + 0.498776i
\(325\) 3193.71i 0.545092i
\(326\) 2306.16i 0.391799i
\(327\) −6700.48 + 2913.77i −1.13314 + 0.492759i
\(328\) 1681.69i 0.283097i
\(329\) 0 0
\(330\) 5072.58 2205.86i 0.846170 0.367966i
\(331\) −368.054 −0.0611181 −0.0305591 0.999533i \(-0.509729\pi\)
−0.0305591 + 0.999533i \(0.509729\pi\)
\(332\) −5484.70 −0.906663
\(333\) 5816.09 6238.00i 0.957116 1.02655i
\(334\) 607.345i 0.0994983i
\(335\) −1108.04 −0.180712
\(336\) 0 0
\(337\) 6514.00 1.05294 0.526469 0.850194i \(-0.323516\pi\)
0.526469 + 0.850194i \(0.323516\pi\)
\(338\) 3221.29i 0.518387i
\(339\) 968.285 + 2226.66i 0.155133 + 0.356742i
\(340\) 913.096 0.145646
\(341\) 9628.85 1.52912
\(342\) 2492.67 2673.49i 0.394117 0.422707i
\(343\) 0 0
\(344\) 2815.51i 0.441286i
\(345\) 938.453 + 2158.06i 0.146448 + 0.336770i
\(346\) 5235.89i 0.813535i
\(347\) 2423.63i 0.374948i −0.982270 0.187474i \(-0.939970\pi\)
0.982270 0.187474i \(-0.0600301\pi\)
\(348\) 456.799 + 1050.45i 0.0703649 + 0.161810i
\(349\) 10490.9i 1.60907i −0.593903 0.804536i \(-0.702414\pi\)
0.593903 0.804536i \(-0.297586\pi\)
\(350\) 0 0
\(351\) −8160.92 2888.82i −1.24102 0.439298i
\(352\) 1990.18 0.301355
\(353\) −8010.85 −1.20786 −0.603930 0.797038i \(-0.706399\pi\)
−0.603930 + 0.797038i \(0.706399\pi\)
\(354\) −75.7708 174.242i −0.0113762 0.0261606i
\(355\) 6885.41i 1.02941i
\(356\) 3094.72 0.460729
\(357\) 0 0
\(358\) −5532.78 −0.816807
\(359\) 11438.5i 1.68163i −0.541326 0.840813i \(-0.682078\pi\)
0.541326 0.840813i \(-0.317922\pi\)
\(360\) 1352.07 + 1260.62i 0.197945 + 0.184557i
\(361\) 2277.06 0.331981
\(362\) −1079.22 −0.156692
\(363\) 12089.0 5257.03i 1.74796 0.760118i
\(364\) 0 0
\(365\) 3660.13i 0.524877i
\(366\) −795.979 + 346.140i −0.113679 + 0.0494345i
\(367\) 1454.25i 0.206843i 0.994638 + 0.103421i \(0.0329790\pi\)
−0.994638 + 0.103421i \(0.967021\pi\)
\(368\) 846.695i 0.119938i
\(369\) −3870.49 + 4151.26i −0.546042 + 0.585653i
\(370\) 5406.74i 0.759684i
\(371\) 0 0
\(372\) 1283.26 + 2950.96i 0.178854 + 0.411291i
\(373\) 7980.82 1.10786 0.553929 0.832564i \(-0.313128\pi\)
0.553929 + 0.832564i \(0.313128\pi\)
\(374\) 3317.76 0.458710
\(375\) −7208.28 + 3134.60i −0.992624 + 0.431653i
\(376\) 1853.11i 0.254167i
\(377\) −3400.72 −0.464578
\(378\) 0 0
\(379\) 5818.85 0.788639 0.394320 0.918973i \(-0.370980\pi\)
0.394320 + 0.918973i \(0.370980\pi\)
\(380\) 2317.23i 0.312819i
\(381\) −1234.95 + 537.031i −0.166059 + 0.0722125i
\(382\) 6384.63 0.855147
\(383\) 1237.22 0.165063 0.0825314 0.996588i \(-0.473700\pi\)
0.0825314 + 0.996588i \(0.473700\pi\)
\(384\) 265.236 + 609.933i 0.0352480 + 0.0810560i
\(385\) 0 0
\(386\) 2874.74i 0.379068i
\(387\) 6480.03 6950.11i 0.851159 0.912904i
\(388\) 3395.07i 0.444223i
\(389\) 3005.11i 0.391685i −0.980635 0.195842i \(-0.937256\pi\)
0.980635 0.195842i \(-0.0627441\pi\)
\(390\) −5032.85 + 2188.59i −0.653457 + 0.284163i
\(391\) 1411.50i 0.182564i
\(392\) 0 0
\(393\) −12617.3 + 5486.75i −1.61948 + 0.704249i
\(394\) −4692.52 −0.600014
\(395\) −10428.8 −1.32843
\(396\) 4912.77 + 4580.49i 0.623424 + 0.581259i
\(397\) 6411.23i 0.810505i −0.914205 0.405253i \(-0.867184\pi\)
0.914205 0.405253i \(-0.132816\pi\)
\(398\) −3663.06 −0.461338
\(399\) 0 0
\(400\) −828.108 −0.103514
\(401\) 3457.14i 0.430528i −0.976556 0.215264i \(-0.930939\pi\)
0.976556 0.215264i \(-0.0690611\pi\)
\(402\) −536.566 1233.88i −0.0665709 0.153086i
\(403\) −9553.44 −1.18087
\(404\) −4101.18 −0.505053
\(405\) 436.213 + 6223.68i 0.0535200 + 0.763598i
\(406\) 0 0
\(407\) 19645.6i 2.39261i
\(408\) 442.165 + 1016.80i 0.0536530 + 0.123380i
\(409\) 15340.8i 1.85466i −0.374246 0.927329i \(-0.622099\pi\)
0.374246 0.927329i \(-0.377901\pi\)
\(410\) 3598.07i 0.433405i
\(411\) 969.801 + 2230.14i 0.116391 + 0.267652i
\(412\) 1285.44i 0.153711i
\(413\) 0 0
\(414\) −1948.71 + 2090.07i −0.231337 + 0.248119i
\(415\) −11734.8 −1.38805
\(416\) −1974.60 −0.232722
\(417\) 6057.47 + 13929.7i 0.711356 + 1.63583i
\(418\) 8419.72i 0.985220i
\(419\) −2968.51 −0.346112 −0.173056 0.984912i \(-0.555364\pi\)
−0.173056 + 0.984912i \(0.555364\pi\)
\(420\) 0 0
\(421\) −8733.67 −1.01105 −0.505526 0.862811i \(-0.668702\pi\)
−0.505526 + 0.862811i \(0.668702\pi\)
\(422\) 8582.97i 0.990077i
\(423\) 4265.01 4574.40i 0.490241 0.525804i
\(424\) 2151.35 0.246412
\(425\) −1380.51 −0.157564
\(426\) 7667.40 3334.25i 0.872035 0.379214i
\(427\) 0 0
\(428\) 544.315i 0.0614730i
\(429\) −18287.0 + 7952.30i −2.05805 + 0.894967i
\(430\) 6023.95i 0.675583i
\(431\) 59.2559i 0.00662240i 0.999995 + 0.00331120i \(0.00105399\pi\)
−0.999995 + 0.00331120i \(0.998946\pi\)
\(432\) −749.052 + 2116.07i −0.0834231 + 0.235670i
\(433\) 3034.66i 0.336805i −0.985718 0.168403i \(-0.946139\pi\)
0.985718 0.168403i \(-0.0538609\pi\)
\(434\) 0 0
\(435\) 977.347 + 2247.49i 0.107725 + 0.247722i
\(436\) −5624.63 −0.617823
\(437\) 3582.05 0.392111
\(438\) −4075.82 + 1772.41i −0.444635 + 0.193354i
\(439\) 2489.21i 0.270623i −0.990803 0.135312i \(-0.956796\pi\)
0.990803 0.135312i \(-0.0432036\pi\)
\(440\) 4258.11 0.461357
\(441\) 0 0
\(442\) −3291.78 −0.354240
\(443\) 15071.7i 1.61642i −0.588891 0.808212i \(-0.700435\pi\)
0.588891 0.808212i \(-0.299565\pi\)
\(444\) 6020.79 2618.20i 0.643545 0.279852i
\(445\) 6621.32 0.705350
\(446\) −2341.76 −0.248622
\(447\) −3757.15 8639.89i −0.397555 0.914212i
\(448\) 0 0
\(449\) 5352.96i 0.562632i 0.959615 + 0.281316i \(0.0907709\pi\)
−0.959615 + 0.281316i \(0.909229\pi\)
\(450\) −2044.19 1905.93i −0.214142 0.199658i
\(451\) 13073.7i 1.36500i
\(452\) 1869.14i 0.194506i
\(453\) 7882.94 3427.98i 0.817600 0.355542i
\(454\) 4253.97i 0.439755i
\(455\) 0 0
\(456\) 2580.40 1122.11i 0.264996 0.115236i
\(457\) 2126.09 0.217624 0.108812 0.994062i \(-0.465295\pi\)
0.108812 + 0.994062i \(0.465295\pi\)
\(458\) 2596.20 0.264874
\(459\) −1248.72 + 3527.63i −0.126983 + 0.358727i
\(460\) 1811.55i 0.183617i
\(461\) −987.346 −0.0997512 −0.0498756 0.998755i \(-0.515882\pi\)
−0.0498756 + 0.998755i \(0.515882\pi\)
\(462\) 0 0
\(463\) −17023.3 −1.70872 −0.854362 0.519678i \(-0.826052\pi\)
−0.854362 + 0.519678i \(0.826052\pi\)
\(464\) 881.785i 0.0882238i
\(465\) 2745.60 + 6313.75i 0.273816 + 0.629663i
\(466\) −8408.93 −0.835914
\(467\) 13717.1 1.35922 0.679608 0.733576i \(-0.262150\pi\)
0.679608 + 0.733576i \(0.262150\pi\)
\(468\) −4874.30 4544.62i −0.481441 0.448878i
\(469\) 0 0
\(470\) 3964.83i 0.389114i
\(471\) −2871.96 6604.32i −0.280961 0.646095i
\(472\) 146.265i 0.0142635i
\(473\) 21888.2i 2.12774i
\(474\) −5050.12 11613.2i −0.489366 1.12534i
\(475\) 3503.42i 0.338416i
\(476\) 0 0
\(477\) 5310.61 + 4951.42i 0.509761 + 0.475283i
\(478\) 7633.54 0.730439
\(479\) 1949.68 0.185977 0.0929887 0.995667i \(-0.470358\pi\)
0.0929887 + 0.995667i \(0.470358\pi\)
\(480\) 567.487 + 1304.99i 0.0539627 + 0.124092i
\(481\) 19491.7i 1.84770i
\(482\) −3273.96 −0.309388
\(483\) 0 0
\(484\) 10148.0 0.953039
\(485\) 7263.95i 0.680080i
\(486\) −6719.28 + 3499.56i −0.627145 + 0.326632i
\(487\) 2538.95 0.236244 0.118122 0.992999i \(-0.462313\pi\)
0.118122 + 0.992999i \(0.462313\pi\)
\(488\) −668.174 −0.0619812
\(489\) 5494.55 2389.36i 0.508123 0.220962i
\(490\) 0 0
\(491\) 17119.1i 1.57347i 0.617289 + 0.786737i \(0.288231\pi\)
−0.617289 + 0.786737i \(0.711769\pi\)
\(492\) −4006.71 + 1742.36i −0.367147 + 0.159658i
\(493\) 1469.99i 0.134290i
\(494\) 8353.78i 0.760839i
\(495\) 10511.2 + 9800.22i 0.954427 + 0.889873i
\(496\) 2477.15i 0.224248i
\(497\) 0 0
\(498\) −5682.57 13067.6i −0.511330 1.17585i
\(499\) 908.846 0.0815342 0.0407671 0.999169i \(-0.487020\pi\)
0.0407671 + 0.999169i \(0.487020\pi\)
\(500\) −6050.90 −0.541209
\(501\) −1447.03 + 629.256i −0.129039 + 0.0561139i
\(502\) 10538.9i 0.937004i
\(503\) 13477.7 1.19471 0.597356 0.801976i \(-0.296218\pi\)
0.597356 + 0.801976i \(0.296218\pi\)
\(504\) 0 0
\(505\) −8774.71 −0.773207
\(506\) 6582.33i 0.578301i
\(507\) 7674.88 3337.50i 0.672294 0.292354i
\(508\) −1036.66 −0.0905404
\(509\) −14131.5 −1.23059 −0.615294 0.788298i \(-0.710963\pi\)
−0.615294 + 0.788298i \(0.710963\pi\)
\(510\) 946.038 + 2175.50i 0.0821397 + 0.188888i
\(511\) 0 0
\(512\) 512.000i 0.0441942i
\(513\) 8952.32 + 3168.96i 0.770477 + 0.272735i
\(514\) 2282.38i 0.195859i
\(515\) 2750.27i 0.235323i
\(516\) 6708.10 2917.09i 0.572302 0.248871i
\(517\) 14406.3i 1.22551i
\(518\) 0 0
\(519\) 12474.8 5424.78i 1.05507 0.458808i
\(520\) −4224.76 −0.356284
\(521\) −11065.6 −0.930503 −0.465251 0.885179i \(-0.654036\pi\)
−0.465251 + 0.885179i \(0.654036\pi\)
\(522\) −2029.47 + 2176.69i −0.170167 + 0.182512i
\(523\) 6017.49i 0.503110i −0.967843 0.251555i \(-0.919058\pi\)
0.967843 0.251555i \(-0.0809419\pi\)
\(524\) −10591.4 −0.882991
\(525\) 0 0
\(526\) 4570.11 0.378833
\(527\) 4129.57i 0.341341i
\(528\) 2061.98 + 4741.71i 0.169955 + 0.390826i
\(529\) 9366.64 0.769840
\(530\) 4602.93 0.377242
\(531\) 336.635 361.055i 0.0275117 0.0295075i
\(532\) 0 0
\(533\) 12971.3i 1.05413i
\(534\) 3206.36 + 7373.32i 0.259837 + 0.597518i
\(535\) 1164.59i 0.0941116i
\(536\) 1035.77i 0.0834669i
\(537\) −5732.39 13182.1i −0.460653 1.05931i
\(538\) 3748.76i 0.300410i
\(539\) 0 0
\(540\) −1602.64 + 4527.46i −0.127716 + 0.360798i
\(541\) 6954.15 0.552647 0.276324 0.961065i \(-0.410884\pi\)
0.276324 + 0.961065i \(0.410884\pi\)
\(542\) −6562.64 −0.520092
\(543\) −1118.15 2571.29i −0.0883691 0.203213i
\(544\) 853.538i 0.0672705i
\(545\) −12034.2 −0.945852
\(546\) 0 0
\(547\) 14101.3 1.10224 0.551122 0.834424i \(-0.314200\pi\)
0.551122 + 0.834424i \(0.314200\pi\)
\(548\) 1872.06i 0.145932i
\(549\) −1649.39 1537.83i −0.128223 0.119550i
\(550\) −6437.83 −0.499109
\(551\) 3730.51 0.288430
\(552\) −2017.29 + 877.241i −0.155546 + 0.0676410i
\(553\) 0 0
\(554\) 1061.50i 0.0814056i
\(555\) 12881.8 5601.80i 0.985231 0.428438i
\(556\) 11693.1i 0.891902i
\(557\) 8446.45i 0.642527i −0.946990 0.321263i \(-0.895892\pi\)
0.946990 0.321263i \(-0.104108\pi\)
\(558\) −5701.26 + 6114.85i −0.432534 + 0.463911i
\(559\) 21716.8i 1.64315i
\(560\) 0 0
\(561\) 3437.46 + 7904.74i 0.258698 + 0.594899i
\(562\) −10433.2 −0.783096
\(563\) 21902.1 1.63955 0.819774 0.572688i \(-0.194099\pi\)
0.819774 + 0.572688i \(0.194099\pi\)
\(564\) 4415.12 1919.96i 0.329628 0.143342i
\(565\) 3999.13i 0.297778i
\(566\) −2096.55 −0.155697
\(567\) 0 0
\(568\) 6436.30 0.475460
\(569\) 10074.6i 0.742266i −0.928580 0.371133i \(-0.878969\pi\)
0.928580 0.371133i \(-0.121031\pi\)
\(570\) 5520.91 2400.83i 0.405694 0.176420i
\(571\) 18266.9 1.33879 0.669394 0.742908i \(-0.266554\pi\)
0.669394 + 0.742908i \(0.266554\pi\)
\(572\) −15350.8 −1.12211
\(573\) 6614.97 + 15211.7i 0.482276 + 1.10904i
\(574\) 0 0
\(575\) 2738.89i 0.198642i
\(576\) −1178.39 + 1263.87i −0.0852424 + 0.0914261i
\(577\) 3902.69i 0.281579i −0.990040 0.140789i \(-0.955036\pi\)
0.990040 0.140789i \(-0.0449641\pi\)
\(578\) 8403.10i 0.604711i
\(579\) −6849.21 + 2978.45i −0.491612 + 0.213783i
\(580\) 1886.63i 0.135066i
\(581\) 0 0
\(582\) −8088.93 + 3517.56i −0.576111 + 0.250528i
\(583\) 16724.9 1.18812
\(584\) −3421.39 −0.242428
\(585\) −10428.8 9723.47i −0.737059 0.687207i
\(586\) 12816.9i 0.903518i
\(587\) 3318.05 0.233306 0.116653 0.993173i \(-0.462783\pi\)
0.116653 + 0.993173i \(0.462783\pi\)
\(588\) 0 0
\(589\) 10479.9 0.733135
\(590\) 312.942i 0.0218366i
\(591\) −4861.81 11180.2i −0.338389 0.778156i
\(592\) 5054.07 0.350880
\(593\) 24252.9 1.67951 0.839754 0.542968i \(-0.182699\pi\)
0.839754 + 0.542968i \(0.182699\pi\)
\(594\) −5823.24 + 16450.7i −0.402240 + 1.13633i
\(595\) 0 0
\(596\) 7252.64i 0.498456i
\(597\) −3795.21 8727.43i −0.260180 0.598308i
\(598\) 6530.78i 0.446594i
\(599\) 11107.9i 0.757694i 0.925459 + 0.378847i \(0.123679\pi\)
−0.925459 + 0.378847i \(0.876321\pi\)
\(600\) −857.984 1973.01i −0.0583784 0.134246i
\(601\) 13367.3i 0.907258i 0.891191 + 0.453629i \(0.149871\pi\)
−0.891191 + 0.453629i \(0.850129\pi\)
\(602\) 0 0
\(603\) 2383.86 2556.79i 0.160992 0.172671i
\(604\) 6617.23 0.445780
\(605\) 21712.1 1.45905
\(606\) −4249.14 9771.27i −0.284834 0.655001i
\(607\) 11755.8i 0.786084i 0.919521 + 0.393042i \(0.128577\pi\)
−0.919521 + 0.393042i \(0.871423\pi\)
\(608\) 2166.08 0.144484
\(609\) 0 0
\(610\) −1429.60 −0.0948896
\(611\) 14293.5i 0.946404i
\(612\) −1964.46 + 2106.96i −0.129752 + 0.139165i
\(613\) −23720.1 −1.56288 −0.781439 0.623982i \(-0.785514\pi\)
−0.781439 + 0.623982i \(0.785514\pi\)
\(614\) −7435.86 −0.488741
\(615\) −8572.59 + 3727.88i −0.562082 + 0.244427i
\(616\) 0 0
\(617\) 9294.78i 0.606473i 0.952915 + 0.303237i \(0.0980672\pi\)
−0.952915 + 0.303237i \(0.901933\pi\)
\(618\) 3062.62 1331.81i 0.199348 0.0866884i
\(619\) 13438.6i 0.872603i 0.899801 + 0.436301i \(0.143712\pi\)
−0.899801 + 0.436301i \(0.856288\pi\)
\(620\) 5300.00i 0.343311i
\(621\) −6998.70 2477.42i −0.452252 0.160089i
\(622\) 811.262i 0.0522969i
\(623\) 0 0
\(624\) −2045.83 4704.57i −0.131248 0.301817i
\(625\) −6476.64 −0.414505
\(626\) 6096.84 0.389263
\(627\) 20060.4 8723.47i 1.27773 0.555633i
\(628\) 5543.91i 0.352271i
\(629\) 8425.47 0.534095
\(630\) 0 0
\(631\) 11635.5 0.734076 0.367038 0.930206i \(-0.380372\pi\)
0.367038 + 0.930206i \(0.380372\pi\)
\(632\) 9748.54i 0.613570i
\(633\) −20449.4 + 8892.61i −1.28403 + 0.558372i
\(634\) −13197.1 −0.826692
\(635\) −2218.00 −0.138612
\(636\) 2228.96 + 5125.69i 0.138969 + 0.319571i
\(637\) 0 0
\(638\) 6855.13i 0.425387i
\(639\) 15888.0 + 14813.4i 0.983601 + 0.917074i
\(640\) 1095.45i 0.0676587i
\(641\) 24648.6i 1.51882i 0.650614 + 0.759409i \(0.274512\pi\)
−0.650614 + 0.759409i \(0.725488\pi\)
\(642\) −1296.86 + 563.952i −0.0797241 + 0.0346688i
\(643\) 5268.28i 0.323111i −0.986864 0.161556i \(-0.948349\pi\)
0.986864 0.161556i \(-0.0516511\pi\)
\(644\) 0 0
\(645\) 14352.4 6241.28i 0.876161 0.381008i
\(646\) 3611.00 0.219927
\(647\) −18470.6 −1.12234 −0.561169 0.827701i \(-0.689648\pi\)
−0.561169 + 0.827701i \(0.689648\pi\)
\(648\) −5817.73 + 407.761i −0.352688 + 0.0247197i
\(649\) 1137.08i 0.0687742i
\(650\) 6387.42 0.385439
\(651\) 0 0
\(652\) 4612.32 0.277044
\(653\) 13180.0i 0.789850i −0.918713 0.394925i \(-0.870771\pi\)
0.918713 0.394925i \(-0.129229\pi\)
\(654\) −5827.55 13401.0i −0.348433 0.801252i
\(655\) −22660.9 −1.35181
\(656\) −3363.38 −0.200180
\(657\) −8445.72 7874.49i −0.501521 0.467600i
\(658\) 0 0
\(659\) 10701.0i 0.632549i 0.948668 + 0.316275i \(0.102432\pi\)
−0.948668 + 0.316275i \(0.897568\pi\)
\(660\) 4411.72 + 10145.2i 0.260191 + 0.598332i
\(661\) 12950.0i 0.762023i 0.924570 + 0.381011i \(0.124424\pi\)
−0.924570 + 0.381011i \(0.875576\pi\)
\(662\) 736.109i 0.0432170i
\(663\) −3410.54 7842.83i −0.199780 0.459412i
\(664\) 10969.4i 0.641108i
\(665\) 0 0
\(666\) 12476.0 + 11632.2i 0.725879 + 0.676783i
\(667\) −2916.42 −0.169302
\(668\) −1214.69 −0.0703559
\(669\) −2426.24 5579.35i −0.140215 0.322437i
\(670\) 2216.08i 0.127783i
\(671\) −5194.48 −0.298854
\(672\) 0 0
\(673\) 3025.28 0.173278 0.0866389 0.996240i \(-0.472387\pi\)
0.0866389 + 0.996240i \(0.472387\pi\)
\(674\) 13028.0i 0.744540i
\(675\) 2423.03 6845.07i 0.138167 0.390321i
\(676\) 6442.57 0.366555
\(677\) −2736.45 −0.155348 −0.0776739 0.996979i \(-0.524749\pi\)
−0.0776739 + 0.996979i \(0.524749\pi\)
\(678\) −4453.32 + 1936.57i −0.252254 + 0.109696i
\(679\) 0 0
\(680\) 1826.19i 0.102987i
\(681\) 10135.3 4407.44i 0.570317 0.248008i
\(682\) 19257.7i 1.08125i
\(683\) 9211.67i 0.516069i 0.966136 + 0.258034i \(0.0830747\pi\)
−0.966136 + 0.258034i \(0.916925\pi\)
\(684\) 5346.98 + 4985.33i 0.298899 + 0.278683i
\(685\) 4005.39i 0.223413i
\(686\) 0 0
\(687\) 2689.86 + 6185.57i 0.149381 + 0.343514i
\(688\) 5631.03 0.312036
\(689\) −16593.9 −0.917529
\(690\) −4316.11 + 1876.91i −0.238133 + 0.103554i
\(691\) 2573.02i 0.141653i 0.997489 + 0.0708264i \(0.0225636\pi\)
−0.997489 + 0.0708264i \(0.977436\pi\)
\(692\) 10471.8 0.575256
\(693\) 0 0
\(694\) 4847.25 0.265128
\(695\) 25018.0i 1.36545i
\(696\) −2100.90 + 913.597i −0.114417 + 0.0497555i
\(697\) −5606.98 −0.304705
\(698\) 20981.9 1.13779
\(699\) −8712.29 20034.7i −0.471430 1.08409i
\(700\) 0 0
\(701\) 18596.9i 1.00199i 0.865450 + 0.500996i \(0.167033\pi\)
−0.865450 + 0.500996i \(0.832967\pi\)
\(702\) 5777.64 16321.8i 0.310631 0.877533i
\(703\) 21381.9i 1.14713i
\(704\) 3980.36i 0.213090i
\(705\) 9446.40 4107.86i 0.504641 0.219448i
\(706\) 16021.7i 0.854085i
\(707\) 0 0
\(708\) 348.483 151.542i 0.0184983 0.00804418i
\(709\) −24000.2 −1.27129 −0.635647 0.771980i \(-0.719266\pi\)
−0.635647 + 0.771980i \(0.719266\pi\)
\(710\) 13770.8 0.727901
\(711\) 22436.7 24064.3i 1.18346 1.26931i
\(712\) 6189.43i 0.325785i
\(713\) −8192.92 −0.430333
\(714\) 0 0
\(715\) −32843.9 −1.71789
\(716\) 11065.6i 0.577569i
\(717\) 7908.93 + 18187.3i 0.411945 + 0.947303i
\(718\) 22877.1 1.18909
\(719\) −16611.9 −0.861638 −0.430819 0.902438i \(-0.641775\pi\)
−0.430819 + 0.902438i \(0.641775\pi\)
\(720\) −2521.23 + 2704.13i −0.130501 + 0.139968i
\(721\) 0 0
\(722\) 4554.11i 0.234746i
\(723\) −3392.08 7800.38i −0.174485 0.401244i
\(724\) 2158.43i 0.110798i
\(725\) 2852.40i 0.146118i
\(726\) 10514.1 + 24178.0i 0.537484 + 1.23599i
\(727\) 31798.3i 1.62219i 0.584912 + 0.811097i \(0.301129\pi\)
−0.584912 + 0.811097i \(0.698871\pi\)
\(728\) 0 0
\(729\) −15299.6 12383.2i −0.777299 0.629132i
\(730\) −7320.26 −0.371144
\(731\) 9387.30 0.474968
\(732\) −692.280 1591.96i −0.0349555 0.0803832i
\(733\) 33962.6i 1.71137i 0.517495 + 0.855686i \(0.326864\pi\)
−0.517495 + 0.855686i \(0.673136\pi\)
\(734\) −2908.50 −0.146260
\(735\) 0 0
\(736\) −1693.39 −0.0848086
\(737\) 8052.19i 0.402451i
\(738\) −8302.52 7740.97i −0.414119 0.386110i
\(739\) −28894.7 −1.43831 −0.719153 0.694852i \(-0.755470\pi\)
−0.719153 + 0.694852i \(0.755470\pi\)
\(740\) 10813.5 0.537178
\(741\) −19903.3 + 8655.16i −0.986729 + 0.429089i
\(742\) 0 0
\(743\) 8565.28i 0.422920i −0.977387 0.211460i \(-0.932178\pi\)
0.977387 0.211460i \(-0.0678218\pi\)
\(744\) −5901.93 + 2566.51i −0.290827 + 0.126469i
\(745\) 15517.4i 0.763107i
\(746\) 15961.6i 0.783374i
\(747\) 25246.6 27078.0i 1.23658 1.32628i
\(748\) 6635.53i 0.324357i
\(749\) 0 0
\(750\) −6269.19 14416.6i −0.305225 0.701891i
\(751\) −14666.1 −0.712616 −0.356308 0.934369i \(-0.615965\pi\)
−0.356308 + 0.934369i \(0.615965\pi\)
\(752\) 3706.21 0.179723
\(753\) −25109.6 + 10919.2i −1.21520 + 0.528441i
\(754\) 6801.44i 0.328507i
\(755\) 14157.9 0.682464
\(756\) 0 0
\(757\) −19962.2 −0.958439 −0.479220 0.877695i \(-0.659080\pi\)
−0.479220 + 0.877695i \(0.659080\pi\)
\(758\) 11637.7i 0.557652i
\(759\) −15682.7 + 6819.80i −0.749996 + 0.326144i
\(760\) 4634.45 0.221197
\(761\) −38332.6 −1.82596 −0.912980 0.408005i \(-0.866225\pi\)
−0.912980 + 0.408005i \(0.866225\pi\)
\(762\) −1074.06 2469.90i −0.0510619 0.117421i
\(763\) 0 0
\(764\) 12769.3i 0.604680i
\(765\) −4203.06 + 4507.96i −0.198643 + 0.213053i
\(766\) 2474.44i 0.116717i
\(767\) 1128.18i 0.0531111i
\(768\) −1219.87 + 530.471i −0.0573152 + 0.0249241i
\(769\) 1797.33i 0.0842826i −0.999112 0.0421413i \(-0.986582\pi\)
0.999112 0.0421413i \(-0.0134180\pi\)
\(770\) 0 0
\(771\) 5437.89 2364.72i 0.254009 0.110458i
\(772\) −5749.48 −0.268042
\(773\) 11732.3 0.545901 0.272951 0.962028i \(-0.412000\pi\)
0.272951 + 0.962028i \(0.412000\pi\)
\(774\) 13900.2 + 12960.1i 0.645521 + 0.601860i
\(775\) 8013.07i 0.371404i
\(776\) −6790.14 −0.314113
\(777\) 0 0
\(778\) 6010.23 0.276963
\(779\) 14229.2i 0.654448i
\(780\) −4377.17 10065.7i −0.200933 0.462064i
\(781\) 50036.7 2.29252
\(782\) −2822.99 −0.129092
\(783\) −7288.76 2580.09i −0.332668 0.117759i
\(784\) 0 0
\(785\) 11861.5i 0.539306i
\(786\) −10973.5 25234.5i −0.497979 1.14515i
\(787\) 15373.0i 0.696299i −0.937439 0.348150i \(-0.886810\pi\)
0.937439 0.348150i \(-0.113190\pi\)
\(788\) 9385.03i 0.424274i
\(789\) 4734.98 + 10888.5i 0.213650 + 0.491307i
\(790\) 20857.5i 0.939339i
\(791\) 0 0
\(792\) −9160.98 + 9825.54i −0.411012 + 0.440828i
\(793\) 5153.80 0.230791
\(794\) 12822.5 0.573114
\(795\) 4768.99 + 10966.7i 0.212753 + 0.489244i
\(796\) 7326.12i 0.326216i
\(797\) 33773.5 1.50103 0.750513 0.660856i \(-0.229807\pi\)
0.750513 + 0.660856i \(0.229807\pi\)
\(798\) 0 0
\(799\) 6178.50 0.273567
\(800\) 1656.22i 0.0731951i
\(801\) −14245.3 + 15278.6i −0.628379 + 0.673963i
\(802\) 6914.29 0.304429
\(803\) −26598.4 −1.16891
\(804\) 2467.76 1073.13i 0.108248 0.0470727i
\(805\) 0 0
\(806\) 19106.9i 0.835002i
\(807\) −8931.61 + 3884.01i −0.389601 + 0.169422i
\(808\) 8202.36i 0.357126i
\(809\) 35476.1i 1.54175i 0.636987 + 0.770874i \(0.280180\pi\)
−0.636987 + 0.770874i \(0.719820\pi\)
\(810\) −12447.4 + 872.427i −0.539945 + 0.0378444i
\(811\) 31038.0i 1.34389i −0.740603 0.671943i \(-0.765460\pi\)
0.740603 0.671943i \(-0.234540\pi\)
\(812\) 0 0
\(813\) −6799.40 15635.8i −0.293315 0.674505i
\(814\) 39291.1 1.69183
\(815\) 9868.33 0.424138
\(816\) −2033.60 + 884.331i −0.0872428 + 0.0379384i
\(817\) 23822.8i 1.02014i
\(818\) 30681.7 1.31144
\(819\) 0 0
\(820\) −7196.15 −0.306464
\(821\) 4874.37i 0.207207i 0.994619 + 0.103603i \(0.0330372\pi\)
−0.994619 + 0.103603i \(0.966963\pi\)
\(822\) −4460.28 + 1939.60i −0.189258 + 0.0823009i
\(823\) −22102.2 −0.936127 −0.468064 0.883695i \(-0.655048\pi\)
−0.468064 + 0.883695i \(0.655048\pi\)
\(824\) 2570.88 0.108690
\(825\) −6670.09 15338.5i −0.281482 0.647293i
\(826\) 0 0
\(827\) 18204.1i 0.765439i 0.923865 + 0.382719i \(0.125012\pi\)
−0.923865 + 0.382719i \(0.874988\pi\)
\(828\) −4180.14 3897.41i −0.175447 0.163580i
\(829\) 31576.5i 1.32292i 0.749982 + 0.661458i \(0.230062\pi\)
−0.749982 + 0.661458i \(0.769938\pi\)
\(830\) 23469.7i 0.981499i
\(831\) 2529.07 1099.79i 0.105575 0.0459102i
\(832\) 3949.19i 0.164560i
\(833\) 0 0
\(834\) −27859.4 + 12114.9i −1.15670 + 0.503005i
\(835\) −2598.90 −0.107711
\(836\) 16839.4 0.696656
\(837\) −20475.9 7248.10i −0.845579 0.299320i
\(838\) 5937.01i 0.244738i
\(839\) −19529.4 −0.803612 −0.401806 0.915725i \(-0.631617\pi\)
−0.401806 + 0.915725i \(0.631617\pi\)
\(840\) 0 0
\(841\) 21351.7 0.875465
\(842\) 17467.3i 0.714922i
\(843\) −10809.6 24857.7i −0.441642 1.01559i
\(844\) −17165.9 −0.700090
\(845\) 13784.3 0.561175
\(846\) 9148.80 + 8530.02i 0.371800 + 0.346652i
\(847\) 0 0
\(848\) 4302.69i 0.174239i
\(849\) −2172.19 4995.13i −0.0878083 0.201923i
\(850\) 2761.02i 0.111414i
\(851\) 16715.8i 0.673340i
\(852\) 6668.50 + 15334.8i 0.268144 + 0.616622i
\(853\) 20178.9i 0.809979i −0.914321 0.404989i \(-0.867275\pi\)
0.914321 0.404989i \(-0.132725\pi\)
\(854\) 0 0
\(855\) 11440.2 + 10666.4i 0.457597 + 0.426647i
\(856\) −1088.63 −0.0434680
\(857\) 14116.6 0.562677 0.281338 0.959609i \(-0.409222\pi\)
0.281338 + 0.959609i \(0.409222\pi\)
\(858\) −15904.6 36574.0i −0.632837 1.45526i
\(859\) 19025.6i 0.755700i −0.925867 0.377850i \(-0.876663\pi\)
0.925867 0.377850i \(-0.123337\pi\)
\(860\) 12047.9 0.477709
\(861\) 0 0
\(862\) −118.512 −0.00468275
\(863\) 10804.8i 0.426188i −0.977032 0.213094i \(-0.931646\pi\)
0.977032 0.213094i \(-0.0683540\pi\)
\(864\) −4232.15 1498.10i −0.166644 0.0589891i
\(865\) 22405.0 0.880684
\(866\) 6069.33 0.238157
\(867\) 20020.8 8706.25i 0.784247 0.341038i
\(868\) 0 0
\(869\) 75786.5i 2.95844i
\(870\) −4494.99 + 1954.69i −0.175166 + 0.0761728i
\(871\) 7989.13i 0.310794i
\(872\) 11249.3i 0.436867i
\(873\) −16761.5 15627.8i −0.649818 0.605867i
\(874\) 7164.10i 0.277265i
\(875\) 0 0
\(876\) −3544.82 8151.64i −0.136722 0.314404i
\(877\) 3591.75 0.138295 0.0691476 0.997606i \(-0.477972\pi\)
0.0691476 + 0.997606i \(0.477972\pi\)
\(878\) 4978.43 0.191360
\(879\) 30536.9 13279.3i 1.17177 0.509556i
\(880\) 8516.21i 0.326229i
\(881\) 47633.6 1.82158 0.910792 0.412865i \(-0.135472\pi\)
0.910792 + 0.412865i \(0.135472\pi\)
\(882\) 0 0
\(883\) −42383.1 −1.61530 −0.807648 0.589665i \(-0.799260\pi\)
−0.807648 + 0.589665i \(0.799260\pi\)
\(884\) 6583.56i 0.250485i
\(885\) 745.600 324.232i 0.0283198 0.0123152i
\(886\) 30143.3 1.14298
\(887\) 17268.6 0.653690 0.326845 0.945078i \(-0.394015\pi\)
0.326845 + 0.945078i \(0.394015\pi\)
\(888\) 5236.41 + 12041.6i 0.197886 + 0.455055i
\(889\) 0 0
\(890\) 13242.6i 0.498758i
\(891\) −45227.9 + 3169.99i −1.70055 + 0.119190i
\(892\) 4683.51i 0.175802i
\(893\) 15679.6i 0.587568i
\(894\) 17279.8 7514.29i 0.646445 0.281113i
\(895\) 23675.4i 0.884225i
\(896\) 0 0
\(897\) 15559.9 6766.39i 0.579186 0.251865i
\(898\) −10705.9 −0.397841
\(899\) −8532.47 −0.316545
\(900\) 3811.86 4088.38i 0.141180 0.151421i
\(901\) 7172.87i 0.265220i
\(902\) −26147.4 −0.965204
\(903\) 0 0
\(904\) −3738.28 −0.137537
\(905\) 4618.09i 0.169625i
\(906\) 6855.96 + 15765.9i 0.251406 + 0.578131i
\(907\) 4541.95 0.166277 0.0831383 0.996538i \(-0.473506\pi\)
0.0831383 + 0.996538i \(0.473506\pi\)
\(908\) 8507.94 0.310954
\(909\) 18878.1 20247.6i 0.688831 0.738800i
\(910\) 0 0
\(911\) 11585.4i 0.421342i −0.977557 0.210671i \(-0.932435\pi\)
0.977557 0.210671i \(-0.0675648\pi\)
\(912\) 2244.23 + 5160.80i 0.0814844 + 0.187381i
\(913\) 85277.8i 3.09122i
\(914\) 4252.18i 0.153884i
\(915\) −1481.17 3406.09i −0.0535148 0.123062i
\(916\) 5192.39i 0.187294i
\(917\) 0 0
\(918\) −7055.27 2497.44i −0.253659 0.0897906i
\(919\) −5332.33 −0.191401 −0.0957004 0.995410i \(-0.530509\pi\)
−0.0957004 + 0.995410i \(0.530509\pi\)
\(920\) −3623.10 −0.129837
\(921\) −7704.12 17716.3i −0.275634 0.633846i
\(922\) 1974.69i 0.0705347i
\(923\) −49644.9 −1.77040
\(924\) 0 0
\(925\) −16348.9 −0.581134
\(926\) 34046.6i 1.20825i
\(927\) 6346.23 + 5916.99i 0.224852 + 0.209644i
\(928\) −1763.57 −0.0623837
\(929\) −9930.07 −0.350694 −0.175347 0.984507i \(-0.556105\pi\)
−0.175347 + 0.984507i \(0.556105\pi\)
\(930\) −12627.5 + 5491.20i −0.445239 + 0.193617i
\(931\) 0 0
\(932\) 16817.9i 0.591081i
\(933\) −1932.87 + 840.530i −0.0678236 + 0.0294938i
\(934\) 27434.3i 0.961111i
\(935\) 14197.1i 0.496571i
\(936\) 9089.24 9748.60i 0.317405 0.340430i
\(937\) 28533.5i 0.994821i 0.867515 + 0.497411i \(0.165716\pi\)
−0.867515 + 0.497411i \(0.834284\pi\)
\(938\) 0 0
\(939\) 6316.79 + 14526.0i 0.219532 + 0.504834i
\(940\) 7929.65 0.275145
\(941\) 5701.85 0.197529 0.0987646 0.995111i \(-0.468511\pi\)
0.0987646 + 0.995111i \(0.468511\pi\)
\(942\) 13208.6 5743.91i 0.456858 0.198670i
\(943\) 11124.1i 0.384145i
\(944\) 292.530 0.0100858
\(945\) 0 0
\(946\) 43776.4 1.50454
\(947\) 17138.3i 0.588088i 0.955792 + 0.294044i \(0.0950013\pi\)
−0.955792 + 0.294044i \(0.904999\pi\)
\(948\) 23226.4 10100.2i 0.795736 0.346034i
\(949\) 26390.1 0.902696
\(950\) −7006.83 −0.239297
\(951\) −13673.2 31442.7i −0.466228 1.07213i
\(952\) 0 0
\(953\) 48616.8i 1.65252i 0.563287 + 0.826261i \(0.309536\pi\)
−0.563287 + 0.826261i \(0.690464\pi\)
\(954\) −9902.84 + 10621.2i −0.336076 + 0.360456i
\(955\) 27320.6i 0.925730i
\(956\) 15267.1i 0.516498i
\(957\) −16332.7 + 7102.44i −0.551683 + 0.239905i
\(958\) 3899.36i 0.131506i
\(959\) 0 0
\(960\) −2609.97 + 1134.97i −0.0877463 + 0.0381574i
\(961\) 5821.25 0.195403
\(962\) −38983.4 −1.30652
\(963\) −2687.29 2505.53i −0.0899238 0.0838417i
\(964\) 6547.93i 0.218770i
\(965\) −12301.3 −0.410356
\(966\) 0 0
\(967\) −14811.1 −0.492547 −0.246273 0.969200i \(-0.579206\pi\)
−0.246273 + 0.969200i \(0.579206\pi\)
\(968\) 20295.9i 0.673900i
\(969\) 3741.27 + 8603.39i 0.124032 + 0.285223i
\(970\) −14527.9 −0.480889
\(971\) −2729.87 −0.0902223 −0.0451111 0.998982i \(-0.514364\pi\)
−0.0451111 + 0.998982i \(0.514364\pi\)
\(972\) −6999.12 13438.6i −0.230964 0.443459i
\(973\) 0 0
\(974\) 5077.91i 0.167050i
\(975\) 6617.85 + 15218.3i 0.217375 + 0.499874i
\(976\) 1336.35i 0.0438273i
\(977\) 57020.3i 1.86719i 0.358334 + 0.933593i \(0.383345\pi\)
−0.358334 + 0.933593i \(0.616655\pi\)
\(978\) 4778.72 + 10989.1i 0.156244 + 0.359297i
\(979\) 48117.6i 1.57083i
\(980\) 0 0
\(981\) 25890.7 27768.9i 0.842636 0.903763i
\(982\) −34238.2 −1.11261
\(983\) 53108.2 1.72318 0.861591 0.507603i \(-0.169468\pi\)
0.861591 + 0.507603i \(0.169468\pi\)
\(984\) −3484.72 8013.43i −0.112895 0.259612i
\(985\) 20079.8i 0.649539i
\(986\) −2939.99 −0.0949577
\(987\) 0 0
\(988\) −16707.6 −0.537994
\(989\) 18624.1i 0.598798i
\(990\) −19600.4 + 21022.3i −0.629235 + 0.674882i
\(991\) −19122.7 −0.612969 −0.306485 0.951876i \(-0.599153\pi\)
−0.306485 + 0.951876i \(0.599153\pi\)
\(992\) −4954.29 −0.158568
\(993\) 1753.82 762.665i 0.0560480 0.0243731i
\(994\) 0 0
\(995\) 15674.7i 0.499417i
\(996\) 26135.2 11365.1i 0.831450 0.361565i
\(997\) 20960.6i 0.665827i −0.942957 0.332914i \(-0.891968\pi\)
0.942957 0.332914i \(-0.108032\pi\)
\(998\) 1817.69i 0.0576534i
\(999\) −14788.1 + 41776.5i −0.468345 + 1.32307i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.4.d.a.293.9 16
3.2 odd 2 inner 294.4.d.a.293.8 16
7.2 even 3 42.4.f.a.17.7 yes 16
7.3 odd 6 42.4.f.a.5.1 16
7.4 even 3 294.4.f.a.215.4 16
7.5 odd 6 294.4.f.a.227.6 16
7.6 odd 2 inner 294.4.d.a.293.16 16
21.2 odd 6 42.4.f.a.17.1 yes 16
21.5 even 6 294.4.f.a.227.4 16
21.11 odd 6 294.4.f.a.215.6 16
21.17 even 6 42.4.f.a.5.7 yes 16
21.20 even 2 inner 294.4.d.a.293.1 16
28.3 even 6 336.4.bc.e.257.7 16
28.23 odd 6 336.4.bc.e.17.4 16
84.23 even 6 336.4.bc.e.17.7 16
84.59 odd 6 336.4.bc.e.257.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.4.f.a.5.1 16 7.3 odd 6
42.4.f.a.5.7 yes 16 21.17 even 6
42.4.f.a.17.1 yes 16 21.2 odd 6
42.4.f.a.17.7 yes 16 7.2 even 3
294.4.d.a.293.1 16 21.20 even 2 inner
294.4.d.a.293.8 16 3.2 odd 2 inner
294.4.d.a.293.9 16 1.1 even 1 trivial
294.4.d.a.293.16 16 7.6 odd 2 inner
294.4.f.a.215.4 16 7.4 even 3
294.4.f.a.215.6 16 21.11 odd 6
294.4.f.a.227.4 16 21.5 even 6
294.4.f.a.227.6 16 7.5 odd 6
336.4.bc.e.17.4 16 28.23 odd 6
336.4.bc.e.17.7 16 84.23 even 6
336.4.bc.e.257.4 16 84.59 odd 6
336.4.bc.e.257.7 16 28.3 even 6