Properties

Label 294.10.a.r.1.2
Level $294$
Weight $10$
Character 294.1
Self dual yes
Analytic conductor $151.421$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,10,Mod(1,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,-243,768,-361] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(151.420535832\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 373x - 378 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 5\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(19.8013\) of defining polynomial
Character \(\chi\) \(=\) 294.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} -81.0000 q^{3} +256.000 q^{4} -472.452 q^{5} +1296.00 q^{6} -4096.00 q^{8} +6561.00 q^{9} +7559.24 q^{10} -18360.6 q^{11} -20736.0 q^{12} -4756.67 q^{13} +38268.6 q^{15} +65536.0 q^{16} -262780. q^{17} -104976. q^{18} +716930. q^{19} -120948. q^{20} +293770. q^{22} +259822. q^{23} +331776. q^{24} -1.72991e6 q^{25} +76106.8 q^{26} -531441. q^{27} +4.40930e6 q^{29} -612298. q^{30} -6.02490e6 q^{31} -1.04858e6 q^{32} +1.48721e6 q^{33} +4.20449e6 q^{34} +1.67962e6 q^{36} -4.56879e6 q^{37} -1.14709e7 q^{38} +385291. q^{39} +1.93516e6 q^{40} +1.47923e7 q^{41} -2.14447e7 q^{43} -4.70032e6 q^{44} -3.09976e6 q^{45} -4.15715e6 q^{46} +3.80870e7 q^{47} -5.30842e6 q^{48} +2.76786e7 q^{50} +2.12852e7 q^{51} -1.21771e6 q^{52} +3.17480e6 q^{53} +8.50306e6 q^{54} +8.67452e6 q^{55} -5.80713e7 q^{57} -7.05487e7 q^{58} +5.35841e7 q^{59} +9.79677e6 q^{60} -6.13901e7 q^{61} +9.63983e7 q^{62} +1.67772e7 q^{64} +2.24730e6 q^{65} -2.37954e7 q^{66} +2.35128e8 q^{67} -6.72718e7 q^{68} -2.10456e7 q^{69} -2.74423e8 q^{71} -2.68739e7 q^{72} +2.33403e8 q^{73} +7.31007e7 q^{74} +1.40123e8 q^{75} +1.83534e8 q^{76} -6.16465e6 q^{78} -5.50930e7 q^{79} -3.09626e7 q^{80} +4.30467e7 q^{81} -2.36676e8 q^{82} +9.49452e7 q^{83} +1.24151e8 q^{85} +3.43116e8 q^{86} -3.57153e8 q^{87} +7.52051e7 q^{88} +6.98706e8 q^{89} +4.95962e7 q^{90} +6.65144e7 q^{92} +4.88017e8 q^{93} -6.09392e8 q^{94} -3.38715e8 q^{95} +8.49347e7 q^{96} +1.52006e9 q^{97} -1.20464e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} - 243 q^{3} + 768 q^{4} - 361 q^{5} + 3888 q^{6} - 12288 q^{8} + 19683 q^{9} + 5776 q^{10} - 37799 q^{11} - 62208 q^{12} - 220586 q^{13} + 29241 q^{15} + 196608 q^{16} + 781816 q^{17} - 314928 q^{18}+ \cdots - 247999239 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) −81.0000 −0.577350
\(4\) 256.000 0.500000
\(5\) −472.452 −0.338059 −0.169030 0.985611i \(-0.554063\pi\)
−0.169030 + 0.985611i \(0.554063\pi\)
\(6\) 1296.00 0.408248
\(7\) 0 0
\(8\) −4096.00 −0.353553
\(9\) 6561.00 0.333333
\(10\) 7559.24 0.239044
\(11\) −18360.6 −0.378112 −0.189056 0.981966i \(-0.560543\pi\)
−0.189056 + 0.981966i \(0.560543\pi\)
\(12\) −20736.0 −0.288675
\(13\) −4756.67 −0.0461911 −0.0230956 0.999733i \(-0.507352\pi\)
−0.0230956 + 0.999733i \(0.507352\pi\)
\(14\) 0 0
\(15\) 38268.6 0.195179
\(16\) 65536.0 0.250000
\(17\) −262780. −0.763085 −0.381543 0.924351i \(-0.624607\pi\)
−0.381543 + 0.924351i \(0.624607\pi\)
\(18\) −104976. −0.235702
\(19\) 716930. 1.26208 0.631038 0.775752i \(-0.282629\pi\)
0.631038 + 0.775752i \(0.282629\pi\)
\(20\) −120948. −0.169030
\(21\) 0 0
\(22\) 293770. 0.267366
\(23\) 259822. 0.193598 0.0967989 0.995304i \(-0.469140\pi\)
0.0967989 + 0.995304i \(0.469140\pi\)
\(24\) 331776. 0.204124
\(25\) −1.72991e6 −0.885716
\(26\) 76106.8 0.0326620
\(27\) −531441. −0.192450
\(28\) 0 0
\(29\) 4.40930e6 1.15765 0.578826 0.815451i \(-0.303511\pi\)
0.578826 + 0.815451i \(0.303511\pi\)
\(30\) −612298. −0.138012
\(31\) −6.02490e6 −1.17171 −0.585857 0.810414i \(-0.699242\pi\)
−0.585857 + 0.810414i \(0.699242\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 1.48721e6 0.218303
\(34\) 4.20449e6 0.539583
\(35\) 0 0
\(36\) 1.67962e6 0.166667
\(37\) −4.56879e6 −0.400769 −0.200384 0.979717i \(-0.564219\pi\)
−0.200384 + 0.979717i \(0.564219\pi\)
\(38\) −1.14709e7 −0.892423
\(39\) 385291. 0.0266684
\(40\) 1.93516e6 0.119522
\(41\) 1.47923e7 0.817537 0.408769 0.912638i \(-0.365958\pi\)
0.408769 + 0.912638i \(0.365958\pi\)
\(42\) 0 0
\(43\) −2.14447e7 −0.956561 −0.478281 0.878207i \(-0.658740\pi\)
−0.478281 + 0.878207i \(0.658740\pi\)
\(44\) −4.70032e6 −0.189056
\(45\) −3.09976e6 −0.112686
\(46\) −4.15715e6 −0.136894
\(47\) 3.80870e7 1.13851 0.569254 0.822162i \(-0.307232\pi\)
0.569254 + 0.822162i \(0.307232\pi\)
\(48\) −5.30842e6 −0.144338
\(49\) 0 0
\(50\) 2.76786e7 0.626296
\(51\) 2.12852e7 0.440567
\(52\) −1.21771e6 −0.0230956
\(53\) 3.17480e6 0.0552682 0.0276341 0.999618i \(-0.491203\pi\)
0.0276341 + 0.999618i \(0.491203\pi\)
\(54\) 8.50306e6 0.136083
\(55\) 8.67452e6 0.127824
\(56\) 0 0
\(57\) −5.80713e7 −0.728660
\(58\) −7.05487e7 −0.818584
\(59\) 5.35841e7 0.575708 0.287854 0.957674i \(-0.407058\pi\)
0.287854 + 0.957674i \(0.407058\pi\)
\(60\) 9.79677e6 0.0975893
\(61\) −6.13901e7 −0.567693 −0.283847 0.958870i \(-0.591611\pi\)
−0.283847 + 0.958870i \(0.591611\pi\)
\(62\) 9.63983e7 0.828527
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 2.24730e6 0.0156153
\(66\) −2.37954e7 −0.154364
\(67\) 2.35128e8 1.42550 0.712750 0.701419i \(-0.247450\pi\)
0.712750 + 0.701419i \(0.247450\pi\)
\(68\) −6.72718e7 −0.381543
\(69\) −2.10456e7 −0.111774
\(70\) 0 0
\(71\) −2.74423e8 −1.28162 −0.640808 0.767701i \(-0.721400\pi\)
−0.640808 + 0.767701i \(0.721400\pi\)
\(72\) −2.68739e7 −0.117851
\(73\) 2.33403e8 0.961950 0.480975 0.876734i \(-0.340283\pi\)
0.480975 + 0.876734i \(0.340283\pi\)
\(74\) 7.31007e7 0.283386
\(75\) 1.40123e8 0.511368
\(76\) 1.83534e8 0.631038
\(77\) 0 0
\(78\) −6.16465e6 −0.0188574
\(79\) −5.50930e7 −0.159138 −0.0795691 0.996829i \(-0.525354\pi\)
−0.0795691 + 0.996829i \(0.525354\pi\)
\(80\) −3.09626e7 −0.0845148
\(81\) 4.30467e7 0.111111
\(82\) −2.36676e8 −0.578086
\(83\) 9.49452e7 0.219595 0.109797 0.993954i \(-0.464980\pi\)
0.109797 + 0.993954i \(0.464980\pi\)
\(84\) 0 0
\(85\) 1.24151e8 0.257968
\(86\) 3.43116e8 0.676391
\(87\) −3.57153e8 −0.668371
\(88\) 7.52051e7 0.133683
\(89\) 6.98706e8 1.18043 0.590214 0.807247i \(-0.299043\pi\)
0.590214 + 0.807247i \(0.299043\pi\)
\(90\) 4.95962e7 0.0796813
\(91\) 0 0
\(92\) 6.65144e7 0.0967989
\(93\) 4.88017e8 0.676490
\(94\) −6.09392e8 −0.805047
\(95\) −3.38715e8 −0.426657
\(96\) 8.49347e7 0.102062
\(97\) 1.52006e9 1.74336 0.871681 0.490073i \(-0.163030\pi\)
0.871681 + 0.490073i \(0.163030\pi\)
\(98\) 0 0
\(99\) −1.20464e8 −0.126037
\(100\) −4.42858e8 −0.442858
\(101\) −2.64704e8 −0.253113 −0.126557 0.991959i \(-0.540393\pi\)
−0.126557 + 0.991959i \(0.540393\pi\)
\(102\) −3.40564e8 −0.311528
\(103\) −1.51768e9 −1.32866 −0.664328 0.747441i \(-0.731282\pi\)
−0.664328 + 0.747441i \(0.731282\pi\)
\(104\) 1.94833e7 0.0163310
\(105\) 0 0
\(106\) −5.07969e7 −0.0390805
\(107\) 2.24545e9 1.65606 0.828031 0.560682i \(-0.189461\pi\)
0.828031 + 0.560682i \(0.189461\pi\)
\(108\) −1.36049e8 −0.0962250
\(109\) 9.65239e8 0.654961 0.327481 0.944858i \(-0.393800\pi\)
0.327481 + 0.944858i \(0.393800\pi\)
\(110\) −1.38792e8 −0.0903854
\(111\) 3.70072e8 0.231384
\(112\) 0 0
\(113\) 1.82803e9 1.05470 0.527352 0.849647i \(-0.323185\pi\)
0.527352 + 0.849647i \(0.323185\pi\)
\(114\) 9.29141e8 0.515240
\(115\) −1.22753e8 −0.0654475
\(116\) 1.12878e9 0.578826
\(117\) −3.12085e7 −0.0153970
\(118\) −8.57346e8 −0.407087
\(119\) 0 0
\(120\) −1.56748e8 −0.0690061
\(121\) −2.02083e9 −0.857031
\(122\) 9.82241e8 0.401420
\(123\) −1.19817e9 −0.472005
\(124\) −1.54237e9 −0.585857
\(125\) 1.74006e9 0.637484
\(126\) 0 0
\(127\) 1.83082e9 0.624495 0.312248 0.950001i \(-0.398918\pi\)
0.312248 + 0.950001i \(0.398918\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 1.73702e9 0.552271
\(130\) −3.59568e7 −0.0110417
\(131\) −3.01836e9 −0.895468 −0.447734 0.894167i \(-0.647769\pi\)
−0.447734 + 0.894167i \(0.647769\pi\)
\(132\) 3.80726e8 0.109152
\(133\) 0 0
\(134\) −3.76204e9 −1.00798
\(135\) 2.51081e8 0.0650595
\(136\) 1.07635e9 0.269791
\(137\) −2.38667e9 −0.578829 −0.289414 0.957204i \(-0.593461\pi\)
−0.289414 + 0.957204i \(0.593461\pi\)
\(138\) 3.36729e8 0.0790360
\(139\) −2.56337e8 −0.0582432 −0.0291216 0.999576i \(-0.509271\pi\)
−0.0291216 + 0.999576i \(0.509271\pi\)
\(140\) 0 0
\(141\) −3.08505e9 −0.657318
\(142\) 4.39077e9 0.906239
\(143\) 8.73356e7 0.0174654
\(144\) 4.29982e8 0.0833333
\(145\) −2.08318e9 −0.391355
\(146\) −3.73444e9 −0.680202
\(147\) 0 0
\(148\) −1.16961e9 −0.200384
\(149\) 5.29448e8 0.0880005 0.0440003 0.999032i \(-0.485990\pi\)
0.0440003 + 0.999032i \(0.485990\pi\)
\(150\) −2.24197e9 −0.361592
\(151\) −3.47450e9 −0.543871 −0.271935 0.962315i \(-0.587664\pi\)
−0.271935 + 0.962315i \(0.587664\pi\)
\(152\) −2.93655e9 −0.446211
\(153\) −1.72410e9 −0.254362
\(154\) 0 0
\(155\) 2.84648e9 0.396109
\(156\) 9.86344e7 0.0133342
\(157\) 5.50302e8 0.0722857 0.0361429 0.999347i \(-0.488493\pi\)
0.0361429 + 0.999347i \(0.488493\pi\)
\(158\) 8.81488e8 0.112528
\(159\) −2.57159e8 −0.0319091
\(160\) 4.95402e8 0.0597610
\(161\) 0 0
\(162\) −6.88748e8 −0.0785674
\(163\) −6.16114e8 −0.0683624 −0.0341812 0.999416i \(-0.510882\pi\)
−0.0341812 + 0.999416i \(0.510882\pi\)
\(164\) 3.78682e9 0.408769
\(165\) −7.02636e8 −0.0737994
\(166\) −1.51912e9 −0.155277
\(167\) 1.61177e10 1.60354 0.801771 0.597632i \(-0.203891\pi\)
0.801771 + 0.597632i \(0.203891\pi\)
\(168\) 0 0
\(169\) −1.05819e10 −0.997866
\(170\) −1.98642e9 −0.182411
\(171\) 4.70378e9 0.420692
\(172\) −5.48985e9 −0.478281
\(173\) −3.58098e9 −0.303945 −0.151973 0.988385i \(-0.548563\pi\)
−0.151973 + 0.988385i \(0.548563\pi\)
\(174\) 5.71445e9 0.472610
\(175\) 0 0
\(176\) −1.20328e9 −0.0945280
\(177\) −4.34031e9 −0.332385
\(178\) −1.11793e10 −0.834688
\(179\) −2.53160e10 −1.84313 −0.921566 0.388223i \(-0.873089\pi\)
−0.921566 + 0.388223i \(0.873089\pi\)
\(180\) −7.93538e8 −0.0563432
\(181\) −8.79219e9 −0.608896 −0.304448 0.952529i \(-0.598472\pi\)
−0.304448 + 0.952529i \(0.598472\pi\)
\(182\) 0 0
\(183\) 4.97260e9 0.327758
\(184\) −1.06423e9 −0.0684471
\(185\) 2.15854e9 0.135484
\(186\) −7.80826e9 −0.478351
\(187\) 4.82482e9 0.288532
\(188\) 9.75027e9 0.569254
\(189\) 0 0
\(190\) 5.41944e9 0.301692
\(191\) −2.24566e9 −0.122094 −0.0610468 0.998135i \(-0.519444\pi\)
−0.0610468 + 0.998135i \(0.519444\pi\)
\(192\) −1.35895e9 −0.0721688
\(193\) −2.56013e10 −1.32817 −0.664085 0.747657i \(-0.731179\pi\)
−0.664085 + 0.747657i \(0.731179\pi\)
\(194\) −2.43209e10 −1.23274
\(195\) −1.82031e8 −0.00901552
\(196\) 0 0
\(197\) −3.17764e10 −1.50317 −0.751583 0.659638i \(-0.770710\pi\)
−0.751583 + 0.659638i \(0.770710\pi\)
\(198\) 1.92743e9 0.0891219
\(199\) −2.47156e10 −1.11720 −0.558602 0.829436i \(-0.688662\pi\)
−0.558602 + 0.829436i \(0.688662\pi\)
\(200\) 7.08573e9 0.313148
\(201\) −1.90453e10 −0.823012
\(202\) 4.23527e9 0.178978
\(203\) 0 0
\(204\) 5.44902e9 0.220284
\(205\) −6.98864e9 −0.276376
\(206\) 2.42829e10 0.939502
\(207\) 1.70469e9 0.0645326
\(208\) −3.11733e8 −0.0115478
\(209\) −1.31633e10 −0.477206
\(210\) 0 0
\(211\) −3.48794e10 −1.21143 −0.605715 0.795681i \(-0.707113\pi\)
−0.605715 + 0.795681i \(0.707113\pi\)
\(212\) 8.12750e8 0.0276341
\(213\) 2.22283e10 0.739941
\(214\) −3.59272e10 −1.17101
\(215\) 1.01316e10 0.323374
\(216\) 2.17678e9 0.0680414
\(217\) 0 0
\(218\) −1.54438e10 −0.463127
\(219\) −1.89056e10 −0.555382
\(220\) 2.22068e9 0.0639122
\(221\) 1.24996e9 0.0352477
\(222\) −5.92116e9 −0.163613
\(223\) −1.39097e9 −0.0376656 −0.0188328 0.999823i \(-0.505995\pi\)
−0.0188328 + 0.999823i \(0.505995\pi\)
\(224\) 0 0
\(225\) −1.13500e10 −0.295239
\(226\) −2.92485e10 −0.745789
\(227\) 3.13351e10 0.783277 0.391638 0.920119i \(-0.371908\pi\)
0.391638 + 0.920119i \(0.371908\pi\)
\(228\) −1.48663e10 −0.364330
\(229\) −3.94499e10 −0.947952 −0.473976 0.880538i \(-0.657182\pi\)
−0.473976 + 0.880538i \(0.657182\pi\)
\(230\) 1.96405e9 0.0462784
\(231\) 0 0
\(232\) −1.80605e10 −0.409292
\(233\) −8.37335e10 −1.86122 −0.930610 0.366012i \(-0.880723\pi\)
−0.930610 + 0.366012i \(0.880723\pi\)
\(234\) 4.99337e8 0.0108873
\(235\) −1.79943e10 −0.384883
\(236\) 1.37175e10 0.287854
\(237\) 4.46253e9 0.0918785
\(238\) 0 0
\(239\) −1.03880e9 −0.0205941 −0.0102970 0.999947i \(-0.503278\pi\)
−0.0102970 + 0.999947i \(0.503278\pi\)
\(240\) 2.50797e9 0.0487947
\(241\) 1.04164e11 1.98903 0.994515 0.104596i \(-0.0333548\pi\)
0.994515 + 0.104596i \(0.0333548\pi\)
\(242\) 3.23334e10 0.606013
\(243\) −3.48678e9 −0.0641500
\(244\) −1.57159e10 −0.283847
\(245\) 0 0
\(246\) 1.91708e10 0.333758
\(247\) −3.41020e9 −0.0582967
\(248\) 2.46780e10 0.414264
\(249\) −7.69056e9 −0.126783
\(250\) −2.78410e10 −0.450769
\(251\) 1.03278e11 1.64238 0.821192 0.570653i \(-0.193310\pi\)
0.821192 + 0.570653i \(0.193310\pi\)
\(252\) 0 0
\(253\) −4.77049e9 −0.0732016
\(254\) −2.92931e10 −0.441585
\(255\) −1.00563e10 −0.148938
\(256\) 4.29497e9 0.0625000
\(257\) 9.63771e9 0.137808 0.0689040 0.997623i \(-0.478050\pi\)
0.0689040 + 0.997623i \(0.478050\pi\)
\(258\) −2.77924e10 −0.390515
\(259\) 0 0
\(260\) 5.75309e8 0.00780767
\(261\) 2.89294e10 0.385884
\(262\) 4.82937e10 0.633191
\(263\) −1.46526e11 −1.88849 −0.944243 0.329249i \(-0.893204\pi\)
−0.944243 + 0.329249i \(0.893204\pi\)
\(264\) −6.09162e9 −0.0771818
\(265\) −1.49994e9 −0.0186839
\(266\) 0 0
\(267\) −5.65952e10 −0.681520
\(268\) 6.01927e10 0.712750
\(269\) −4.14925e10 −0.483153 −0.241576 0.970382i \(-0.577664\pi\)
−0.241576 + 0.970382i \(0.577664\pi\)
\(270\) −4.01729e9 −0.0460040
\(271\) −1.19541e11 −1.34634 −0.673170 0.739488i \(-0.735068\pi\)
−0.673170 + 0.739488i \(0.735068\pi\)
\(272\) −1.72216e10 −0.190771
\(273\) 0 0
\(274\) 3.81867e10 0.409294
\(275\) 3.17623e10 0.334900
\(276\) −5.38766e9 −0.0558869
\(277\) −6.18736e10 −0.631461 −0.315731 0.948849i \(-0.602250\pi\)
−0.315731 + 0.948849i \(0.602250\pi\)
\(278\) 4.10139e9 0.0411841
\(279\) −3.95293e10 −0.390572
\(280\) 0 0
\(281\) −1.12291e11 −1.07440 −0.537199 0.843456i \(-0.680518\pi\)
−0.537199 + 0.843456i \(0.680518\pi\)
\(282\) 4.93607e10 0.464794
\(283\) −1.19513e11 −1.10759 −0.553793 0.832655i \(-0.686820\pi\)
−0.553793 + 0.832655i \(0.686820\pi\)
\(284\) −7.02523e10 −0.640808
\(285\) 2.74359e10 0.246330
\(286\) −1.39737e9 −0.0123499
\(287\) 0 0
\(288\) −6.87971e9 −0.0589256
\(289\) −4.95343e10 −0.417701
\(290\) 3.33309e10 0.276730
\(291\) −1.23125e11 −1.00653
\(292\) 5.97510e10 0.480975
\(293\) 1.77567e11 1.40753 0.703765 0.710433i \(-0.251501\pi\)
0.703765 + 0.710433i \(0.251501\pi\)
\(294\) 0 0
\(295\) −2.53159e10 −0.194623
\(296\) 1.87138e10 0.141693
\(297\) 9.75759e9 0.0727677
\(298\) −8.47117e9 −0.0622258
\(299\) −1.23589e9 −0.00894249
\(300\) 3.58715e10 0.255684
\(301\) 0 0
\(302\) 5.55920e10 0.384575
\(303\) 2.14410e10 0.146135
\(304\) 4.69847e10 0.315519
\(305\) 2.90039e10 0.191914
\(306\) 2.75856e10 0.179861
\(307\) 1.52250e11 0.978218 0.489109 0.872223i \(-0.337322\pi\)
0.489109 + 0.872223i \(0.337322\pi\)
\(308\) 0 0
\(309\) 1.22932e11 0.767100
\(310\) −4.55436e10 −0.280091
\(311\) −1.52678e11 −0.925456 −0.462728 0.886500i \(-0.653129\pi\)
−0.462728 + 0.886500i \(0.653129\pi\)
\(312\) −1.57815e9 −0.00942872
\(313\) −2.49886e11 −1.47161 −0.735806 0.677192i \(-0.763196\pi\)
−0.735806 + 0.677192i \(0.763196\pi\)
\(314\) −8.80483e9 −0.0511137
\(315\) 0 0
\(316\) −1.41038e10 −0.0795691
\(317\) −1.23490e11 −0.686855 −0.343428 0.939179i \(-0.611588\pi\)
−0.343428 + 0.939179i \(0.611588\pi\)
\(318\) 4.11455e9 0.0225632
\(319\) −8.09575e10 −0.437722
\(320\) −7.92643e9 −0.0422574
\(321\) −1.81882e11 −0.956128
\(322\) 0 0
\(323\) −1.88395e11 −0.963072
\(324\) 1.10200e10 0.0555556
\(325\) 8.22864e9 0.0409122
\(326\) 9.85783e9 0.0483395
\(327\) −7.81843e10 −0.378142
\(328\) −6.05892e10 −0.289043
\(329\) 0 0
\(330\) 1.12422e10 0.0521841
\(331\) 4.13629e10 0.189402 0.0947011 0.995506i \(-0.469810\pi\)
0.0947011 + 0.995506i \(0.469810\pi\)
\(332\) 2.43060e10 0.109797
\(333\) −2.99759e10 −0.133590
\(334\) −2.57884e11 −1.13388
\(335\) −1.11087e11 −0.481903
\(336\) 0 0
\(337\) −3.30223e11 −1.39468 −0.697338 0.716743i \(-0.745632\pi\)
−0.697338 + 0.716743i \(0.745632\pi\)
\(338\) 1.69310e11 0.705598
\(339\) −1.48071e11 −0.608934
\(340\) 3.17827e10 0.128984
\(341\) 1.10621e11 0.443039
\(342\) −7.52605e10 −0.297474
\(343\) 0 0
\(344\) 8.78377e10 0.338195
\(345\) 9.94303e9 0.0377861
\(346\) 5.72958e10 0.214922
\(347\) 5.33493e11 1.97536 0.987679 0.156491i \(-0.0500182\pi\)
0.987679 + 0.156491i \(0.0500182\pi\)
\(348\) −9.14312e10 −0.334186
\(349\) −8.45986e10 −0.305245 −0.152623 0.988285i \(-0.548772\pi\)
−0.152623 + 0.988285i \(0.548772\pi\)
\(350\) 0 0
\(351\) 2.52789e9 0.00888948
\(352\) 1.92525e10 0.0668414
\(353\) 1.67815e11 0.575233 0.287616 0.957746i \(-0.407137\pi\)
0.287616 + 0.957746i \(0.407137\pi\)
\(354\) 6.94450e10 0.235032
\(355\) 1.29652e11 0.433262
\(356\) 1.78869e11 0.590214
\(357\) 0 0
\(358\) 4.05056e11 1.30329
\(359\) 7.66901e10 0.243677 0.121838 0.992550i \(-0.461121\pi\)
0.121838 + 0.992550i \(0.461121\pi\)
\(360\) 1.26966e10 0.0398407
\(361\) 1.91301e11 0.592837
\(362\) 1.40675e11 0.430555
\(363\) 1.63688e11 0.494807
\(364\) 0 0
\(365\) −1.10272e11 −0.325196
\(366\) −7.95615e10 −0.231760
\(367\) −2.67084e11 −0.768511 −0.384255 0.923227i \(-0.625542\pi\)
−0.384255 + 0.923227i \(0.625542\pi\)
\(368\) 1.70277e10 0.0483994
\(369\) 9.70521e10 0.272512
\(370\) −3.45366e10 −0.0958014
\(371\) 0 0
\(372\) 1.24932e11 0.338245
\(373\) 5.70594e11 1.52629 0.763146 0.646226i \(-0.223654\pi\)
0.763146 + 0.646226i \(0.223654\pi\)
\(374\) −7.71971e10 −0.204023
\(375\) −1.40945e11 −0.368051
\(376\) −1.56004e11 −0.402523
\(377\) −2.09736e10 −0.0534733
\(378\) 0 0
\(379\) 1.64654e10 0.0409918 0.0204959 0.999790i \(-0.493476\pi\)
0.0204959 + 0.999790i \(0.493476\pi\)
\(380\) −8.67111e10 −0.213328
\(381\) −1.48297e11 −0.360553
\(382\) 3.59305e10 0.0863332
\(383\) 2.76757e11 0.657209 0.328605 0.944468i \(-0.393422\pi\)
0.328605 + 0.944468i \(0.393422\pi\)
\(384\) 2.17433e10 0.0510310
\(385\) 0 0
\(386\) 4.09620e11 0.939158
\(387\) −1.40699e11 −0.318854
\(388\) 3.89135e11 0.871681
\(389\) 3.84246e11 0.850817 0.425409 0.905001i \(-0.360130\pi\)
0.425409 + 0.905001i \(0.360130\pi\)
\(390\) 2.91250e9 0.00637493
\(391\) −6.82761e10 −0.147732
\(392\) 0 0
\(393\) 2.44487e11 0.516998
\(394\) 5.08423e11 1.06290
\(395\) 2.60288e10 0.0537982
\(396\) −3.08388e10 −0.0630187
\(397\) 3.53752e11 0.714730 0.357365 0.933965i \(-0.383675\pi\)
0.357365 + 0.933965i \(0.383675\pi\)
\(398\) 3.95450e11 0.789983
\(399\) 0 0
\(400\) −1.13372e11 −0.221429
\(401\) −3.49189e11 −0.674389 −0.337195 0.941435i \(-0.609478\pi\)
−0.337195 + 0.941435i \(0.609478\pi\)
\(402\) 3.04725e11 0.581958
\(403\) 2.86585e10 0.0541228
\(404\) −6.77643e10 −0.126557
\(405\) −2.03375e10 −0.0375621
\(406\) 0 0
\(407\) 8.38860e10 0.151536
\(408\) −8.71843e10 −0.155764
\(409\) −1.01214e12 −1.78848 −0.894240 0.447588i \(-0.852283\pi\)
−0.894240 + 0.447588i \(0.852283\pi\)
\(410\) 1.11818e11 0.195427
\(411\) 1.93320e11 0.334187
\(412\) −3.88526e11 −0.664328
\(413\) 0 0
\(414\) −2.72751e10 −0.0456314
\(415\) −4.48571e10 −0.0742360
\(416\) 4.98773e9 0.00816551
\(417\) 2.07633e10 0.0336267
\(418\) 2.10613e11 0.337436
\(419\) 5.26641e11 0.834741 0.417371 0.908736i \(-0.362952\pi\)
0.417371 + 0.908736i \(0.362952\pi\)
\(420\) 0 0
\(421\) −4.25683e10 −0.0660414 −0.0330207 0.999455i \(-0.510513\pi\)
−0.0330207 + 0.999455i \(0.510513\pi\)
\(422\) 5.58071e11 0.856611
\(423\) 2.49889e11 0.379503
\(424\) −1.30040e10 −0.0195403
\(425\) 4.54588e11 0.675877
\(426\) −3.55652e11 −0.523217
\(427\) 0 0
\(428\) 5.74836e11 0.828031
\(429\) −7.07418e9 −0.0100837
\(430\) −1.62106e11 −0.228660
\(431\) 2.81899e11 0.393501 0.196751 0.980454i \(-0.436961\pi\)
0.196751 + 0.980454i \(0.436961\pi\)
\(432\) −3.48285e10 −0.0481125
\(433\) 5.58015e10 0.0762870 0.0381435 0.999272i \(-0.487856\pi\)
0.0381435 + 0.999272i \(0.487856\pi\)
\(434\) 0 0
\(435\) 1.68738e11 0.225949
\(436\) 2.47101e11 0.327481
\(437\) 1.86274e11 0.244335
\(438\) 3.02490e11 0.392715
\(439\) 7.59167e11 0.975544 0.487772 0.872971i \(-0.337810\pi\)
0.487772 + 0.872971i \(0.337810\pi\)
\(440\) −3.55308e10 −0.0451927
\(441\) 0 0
\(442\) −1.99994e10 −0.0249239
\(443\) −1.45876e12 −1.79957 −0.899783 0.436338i \(-0.856275\pi\)
−0.899783 + 0.436338i \(0.856275\pi\)
\(444\) 9.47385e10 0.115692
\(445\) −3.30105e11 −0.399055
\(446\) 2.22555e10 0.0266336
\(447\) −4.28853e10 −0.0508071
\(448\) 0 0
\(449\) 9.76798e11 1.13422 0.567109 0.823643i \(-0.308062\pi\)
0.567109 + 0.823643i \(0.308062\pi\)
\(450\) 1.81599e11 0.208765
\(451\) −2.71595e11 −0.309121
\(452\) 4.67976e11 0.527352
\(453\) 2.81434e11 0.314004
\(454\) −5.01362e11 −0.553860
\(455\) 0 0
\(456\) 2.37860e11 0.257620
\(457\) −4.92561e9 −0.00528247 −0.00264123 0.999997i \(-0.500841\pi\)
−0.00264123 + 0.999997i \(0.500841\pi\)
\(458\) 6.31198e11 0.670303
\(459\) 1.39652e11 0.146856
\(460\) −3.14249e10 −0.0327238
\(461\) 1.45140e11 0.149670 0.0748348 0.997196i \(-0.476157\pi\)
0.0748348 + 0.997196i \(0.476157\pi\)
\(462\) 0 0
\(463\) −1.06638e12 −1.07844 −0.539221 0.842164i \(-0.681281\pi\)
−0.539221 + 0.842164i \(0.681281\pi\)
\(464\) 2.88968e11 0.289413
\(465\) −2.30565e11 −0.228694
\(466\) 1.33974e12 1.31608
\(467\) 1.42939e12 1.39068 0.695338 0.718683i \(-0.255255\pi\)
0.695338 + 0.718683i \(0.255255\pi\)
\(468\) −7.98939e9 −0.00769852
\(469\) 0 0
\(470\) 2.87909e11 0.272154
\(471\) −4.45744e10 −0.0417342
\(472\) −2.19481e11 −0.203543
\(473\) 3.93739e11 0.361687
\(474\) −7.14005e10 −0.0649679
\(475\) −1.24023e12 −1.11784
\(476\) 0 0
\(477\) 2.08299e10 0.0184227
\(478\) 1.66208e10 0.0145622
\(479\) 3.78834e10 0.0328806 0.0164403 0.999865i \(-0.494767\pi\)
0.0164403 + 0.999865i \(0.494767\pi\)
\(480\) −4.01276e10 −0.0345030
\(481\) 2.17323e10 0.0185120
\(482\) −1.66663e12 −1.40646
\(483\) 0 0
\(484\) −5.17334e11 −0.428516
\(485\) −7.18155e11 −0.589360
\(486\) 5.57886e10 0.0453609
\(487\) 2.41311e12 1.94400 0.972002 0.234971i \(-0.0754994\pi\)
0.972002 + 0.234971i \(0.0754994\pi\)
\(488\) 2.51454e11 0.200710
\(489\) 4.99053e10 0.0394690
\(490\) 0 0
\(491\) −8.41135e11 −0.653129 −0.326564 0.945175i \(-0.605891\pi\)
−0.326564 + 0.945175i \(0.605891\pi\)
\(492\) −3.06733e11 −0.236003
\(493\) −1.15868e12 −0.883387
\(494\) 5.45633e10 0.0412220
\(495\) 5.69135e10 0.0426081
\(496\) −3.94848e11 −0.292929
\(497\) 0 0
\(498\) 1.23049e11 0.0896491
\(499\) −1.38372e12 −0.999072 −0.499536 0.866293i \(-0.666496\pi\)
−0.499536 + 0.866293i \(0.666496\pi\)
\(500\) 4.45455e11 0.318742
\(501\) −1.30554e12 −0.925805
\(502\) −1.65244e12 −1.16134
\(503\) −2.11862e11 −0.147570 −0.0737850 0.997274i \(-0.523508\pi\)
−0.0737850 + 0.997274i \(0.523508\pi\)
\(504\) 0 0
\(505\) 1.25060e11 0.0855673
\(506\) 7.63279e10 0.0517614
\(507\) 8.57132e11 0.576118
\(508\) 4.68690e11 0.312248
\(509\) 1.43085e12 0.944849 0.472425 0.881371i \(-0.343379\pi\)
0.472425 + 0.881371i \(0.343379\pi\)
\(510\) 1.60900e11 0.105315
\(511\) 0 0
\(512\) −6.87195e10 −0.0441942
\(513\) −3.81006e11 −0.242887
\(514\) −1.54203e11 −0.0974450
\(515\) 7.17031e11 0.449165
\(516\) 4.44678e11 0.276135
\(517\) −6.99301e11 −0.430484
\(518\) 0 0
\(519\) 2.90060e11 0.175483
\(520\) −9.20495e9 −0.00552085
\(521\) −1.69681e12 −1.00894 −0.504469 0.863430i \(-0.668312\pi\)
−0.504469 + 0.863430i \(0.668312\pi\)
\(522\) −4.62870e11 −0.272861
\(523\) −2.75371e12 −1.60939 −0.804694 0.593690i \(-0.797670\pi\)
−0.804694 + 0.593690i \(0.797670\pi\)
\(524\) −7.72700e11 −0.447734
\(525\) 0 0
\(526\) 2.34442e12 1.33536
\(527\) 1.58323e12 0.894118
\(528\) 9.74659e10 0.0545758
\(529\) −1.73365e12 −0.962520
\(530\) 2.39991e10 0.0132115
\(531\) 3.51565e11 0.191903
\(532\) 0 0
\(533\) −7.03620e10 −0.0377630
\(534\) 9.05523e11 0.481907
\(535\) −1.06087e12 −0.559847
\(536\) −9.63083e11 −0.503990
\(537\) 2.05060e12 1.06413
\(538\) 6.63880e11 0.341641
\(539\) 0 0
\(540\) 6.42766e10 0.0325298
\(541\) −1.25714e12 −0.630954 −0.315477 0.948933i \(-0.602164\pi\)
−0.315477 + 0.948933i \(0.602164\pi\)
\(542\) 1.91265e12 0.952006
\(543\) 7.12167e11 0.351546
\(544\) 2.75545e11 0.134896
\(545\) −4.56029e11 −0.221416
\(546\) 0 0
\(547\) −8.97132e11 −0.428463 −0.214231 0.976783i \(-0.568725\pi\)
−0.214231 + 0.976783i \(0.568725\pi\)
\(548\) −6.10988e11 −0.289414
\(549\) −4.02780e11 −0.189231
\(550\) −5.08197e11 −0.236810
\(551\) 3.16116e12 1.46105
\(552\) 8.62026e10 0.0395180
\(553\) 0 0
\(554\) 9.89978e11 0.446511
\(555\) −1.74842e11 −0.0782215
\(556\) −6.56223e10 −0.0291216
\(557\) −4.13377e12 −1.81969 −0.909846 0.414947i \(-0.863800\pi\)
−0.909846 + 0.414947i \(0.863800\pi\)
\(558\) 6.32469e11 0.276176
\(559\) 1.02006e11 0.0441846
\(560\) 0 0
\(561\) −3.90810e11 −0.166584
\(562\) 1.79665e12 0.759714
\(563\) −2.83409e11 −0.118885 −0.0594424 0.998232i \(-0.518932\pi\)
−0.0594424 + 0.998232i \(0.518932\pi\)
\(564\) −7.89772e11 −0.328659
\(565\) −8.63658e11 −0.356553
\(566\) 1.91221e12 0.783181
\(567\) 0 0
\(568\) 1.12404e12 0.453120
\(569\) 1.97500e12 0.789881 0.394940 0.918707i \(-0.370765\pi\)
0.394940 + 0.918707i \(0.370765\pi\)
\(570\) −4.38975e11 −0.174182
\(571\) 2.67328e12 1.05240 0.526200 0.850361i \(-0.323616\pi\)
0.526200 + 0.850361i \(0.323616\pi\)
\(572\) 2.23579e10 0.00873271
\(573\) 1.81898e11 0.0704908
\(574\) 0 0
\(575\) −4.49469e11 −0.171473
\(576\) 1.10075e11 0.0416667
\(577\) −1.15919e12 −0.435377 −0.217688 0.976018i \(-0.569852\pi\)
−0.217688 + 0.976018i \(0.569852\pi\)
\(578\) 7.92549e11 0.295359
\(579\) 2.07370e12 0.766819
\(580\) −5.33295e11 −0.195678
\(581\) 0 0
\(582\) 1.97000e12 0.711725
\(583\) −5.82914e10 −0.0208976
\(584\) −9.56017e11 −0.340101
\(585\) 1.47445e10 0.00520511
\(586\) −2.84107e12 −0.995274
\(587\) 8.46356e10 0.0294226 0.0147113 0.999892i \(-0.495317\pi\)
0.0147113 + 0.999892i \(0.495317\pi\)
\(588\) 0 0
\(589\) −4.31943e12 −1.47879
\(590\) 4.05055e11 0.137620
\(591\) 2.57389e12 0.867854
\(592\) −2.99421e11 −0.100192
\(593\) −2.25259e12 −0.748058 −0.374029 0.927417i \(-0.622024\pi\)
−0.374029 + 0.927417i \(0.622024\pi\)
\(594\) −1.56121e11 −0.0514545
\(595\) 0 0
\(596\) 1.35539e11 0.0440003
\(597\) 2.00196e12 0.645018
\(598\) 1.97742e10 0.00632330
\(599\) −4.00748e12 −1.27189 −0.635947 0.771733i \(-0.719390\pi\)
−0.635947 + 0.771733i \(0.719390\pi\)
\(600\) −5.73944e11 −0.180796
\(601\) −4.08150e11 −0.127610 −0.0638050 0.997962i \(-0.520324\pi\)
−0.0638050 + 0.997962i \(0.520324\pi\)
\(602\) 0 0
\(603\) 1.54267e12 0.475166
\(604\) −8.89472e11 −0.271935
\(605\) 9.54748e11 0.289727
\(606\) −3.43057e11 −0.103333
\(607\) −4.96845e12 −1.48550 −0.742749 0.669570i \(-0.766478\pi\)
−0.742749 + 0.669570i \(0.766478\pi\)
\(608\) −7.51756e11 −0.223106
\(609\) 0 0
\(610\) −4.64062e11 −0.135704
\(611\) −1.81167e11 −0.0525890
\(612\) −4.41370e11 −0.127181
\(613\) 3.04885e12 0.872094 0.436047 0.899924i \(-0.356378\pi\)
0.436047 + 0.899924i \(0.356378\pi\)
\(614\) −2.43601e12 −0.691705
\(615\) 5.66080e11 0.159566
\(616\) 0 0
\(617\) 4.69271e12 1.30359 0.651794 0.758396i \(-0.274017\pi\)
0.651794 + 0.758396i \(0.274017\pi\)
\(618\) −1.96691e12 −0.542422
\(619\) 1.02865e12 0.281616 0.140808 0.990037i \(-0.455030\pi\)
0.140808 + 0.990037i \(0.455030\pi\)
\(620\) 7.28698e11 0.198055
\(621\) −1.38080e11 −0.0372579
\(622\) 2.44285e12 0.654396
\(623\) 0 0
\(624\) 2.52504e10 0.00666711
\(625\) 2.55664e12 0.670209
\(626\) 3.99818e12 1.04059
\(627\) 1.06623e12 0.275515
\(628\) 1.40877e11 0.0361429
\(629\) 1.20059e12 0.305821
\(630\) 0 0
\(631\) −5.01733e12 −1.25991 −0.629956 0.776631i \(-0.716927\pi\)
−0.629956 + 0.776631i \(0.716927\pi\)
\(632\) 2.25661e11 0.0562639
\(633\) 2.82524e12 0.699420
\(634\) 1.97584e12 0.485680
\(635\) −8.64976e11 −0.211117
\(636\) −6.58327e10 −0.0159546
\(637\) 0 0
\(638\) 1.29532e12 0.309516
\(639\) −1.80049e12 −0.427205
\(640\) 1.26823e11 0.0298805
\(641\) 2.42403e12 0.567122 0.283561 0.958954i \(-0.408484\pi\)
0.283561 + 0.958954i \(0.408484\pi\)
\(642\) 2.91010e12 0.676085
\(643\) 4.20461e12 0.970011 0.485006 0.874511i \(-0.338818\pi\)
0.485006 + 0.874511i \(0.338818\pi\)
\(644\) 0 0
\(645\) −8.20661e11 −0.186700
\(646\) 3.01432e12 0.680994
\(647\) −5.50408e12 −1.23485 −0.617427 0.786628i \(-0.711825\pi\)
−0.617427 + 0.786628i \(0.711825\pi\)
\(648\) −1.76319e11 −0.0392837
\(649\) −9.83838e11 −0.217682
\(650\) −1.31658e11 −0.0289293
\(651\) 0 0
\(652\) −1.57725e11 −0.0341812
\(653\) −6.17678e12 −1.32939 −0.664696 0.747114i \(-0.731439\pi\)
−0.664696 + 0.747114i \(0.731439\pi\)
\(654\) 1.25095e12 0.267387
\(655\) 1.42603e12 0.302721
\(656\) 9.69426e11 0.204384
\(657\) 1.53135e12 0.320650
\(658\) 0 0
\(659\) −4.17021e12 −0.861338 −0.430669 0.902510i \(-0.641722\pi\)
−0.430669 + 0.902510i \(0.641722\pi\)
\(660\) −1.79875e11 −0.0368997
\(661\) −3.73958e12 −0.761932 −0.380966 0.924589i \(-0.624408\pi\)
−0.380966 + 0.924589i \(0.624408\pi\)
\(662\) −6.61807e11 −0.133928
\(663\) −1.01247e11 −0.0203503
\(664\) −3.88896e11 −0.0776384
\(665\) 0 0
\(666\) 4.79614e11 0.0944621
\(667\) 1.14563e12 0.224119
\(668\) 4.12614e12 0.801771
\(669\) 1.12668e11 0.0217462
\(670\) 1.77738e12 0.340757
\(671\) 1.12716e12 0.214652
\(672\) 0 0
\(673\) −8.78180e12 −1.65012 −0.825060 0.565044i \(-0.808859\pi\)
−0.825060 + 0.565044i \(0.808859\pi\)
\(674\) 5.28357e12 0.986184
\(675\) 9.19347e11 0.170456
\(676\) −2.70896e12 −0.498933
\(677\) −1.07791e13 −1.97212 −0.986060 0.166392i \(-0.946788\pi\)
−0.986060 + 0.166392i \(0.946788\pi\)
\(678\) 2.36913e12 0.430581
\(679\) 0 0
\(680\) −5.08524e11 −0.0912055
\(681\) −2.53815e12 −0.452225
\(682\) −1.76993e12 −0.313276
\(683\) −5.91946e12 −1.04085 −0.520426 0.853907i \(-0.674227\pi\)
−0.520426 + 0.853907i \(0.674227\pi\)
\(684\) 1.20417e12 0.210346
\(685\) 1.12759e12 0.195678
\(686\) 0 0
\(687\) 3.19544e12 0.547300
\(688\) −1.40540e12 −0.239140
\(689\) −1.51015e10 −0.00255290
\(690\) −1.59088e11 −0.0267188
\(691\) −7.43466e12 −1.24054 −0.620268 0.784390i \(-0.712976\pi\)
−0.620268 + 0.784390i \(0.712976\pi\)
\(692\) −9.16732e11 −0.151973
\(693\) 0 0
\(694\) −8.53589e12 −1.39679
\(695\) 1.21107e11 0.0196896
\(696\) 1.46290e12 0.236305
\(697\) −3.88712e12 −0.623851
\(698\) 1.35358e12 0.215841
\(699\) 6.78242e12 1.07458
\(700\) 0 0
\(701\) 3.36697e12 0.526634 0.263317 0.964709i \(-0.415184\pi\)
0.263317 + 0.964709i \(0.415184\pi\)
\(702\) −4.04463e10 −0.00628581
\(703\) −3.27551e12 −0.505801
\(704\) −3.08040e11 −0.0472640
\(705\) 1.45754e12 0.222213
\(706\) −2.68503e12 −0.406751
\(707\) 0 0
\(708\) −1.11112e12 −0.166192
\(709\) 1.17165e13 1.74136 0.870682 0.491846i \(-0.163678\pi\)
0.870682 + 0.491846i \(0.163678\pi\)
\(710\) −2.07443e12 −0.306363
\(711\) −3.61465e11 −0.0530461
\(712\) −2.86190e12 −0.417344
\(713\) −1.56540e12 −0.226841
\(714\) 0 0
\(715\) −4.12619e10 −0.00590435
\(716\) −6.48089e12 −0.921566
\(717\) 8.41430e10 0.0118900
\(718\) −1.22704e12 −0.172305
\(719\) 1.28507e13 1.79328 0.896639 0.442763i \(-0.146002\pi\)
0.896639 + 0.442763i \(0.146002\pi\)
\(720\) −2.03146e11 −0.0281716
\(721\) 0 0
\(722\) −3.06082e12 −0.419199
\(723\) −8.43729e12 −1.14837
\(724\) −2.25080e12 −0.304448
\(725\) −7.62770e12 −1.02535
\(726\) −2.61900e12 −0.349882
\(727\) 1.03159e13 1.36963 0.684817 0.728715i \(-0.259882\pi\)
0.684817 + 0.728715i \(0.259882\pi\)
\(728\) 0 0
\(729\) 2.82430e11 0.0370370
\(730\) 1.76434e12 0.229949
\(731\) 5.63526e12 0.729938
\(732\) 1.27298e12 0.163879
\(733\) −1.05772e13 −1.35333 −0.676666 0.736290i \(-0.736576\pi\)
−0.676666 + 0.736290i \(0.736576\pi\)
\(734\) 4.27334e12 0.543419
\(735\) 0 0
\(736\) −2.72443e11 −0.0342236
\(737\) −4.31709e12 −0.538998
\(738\) −1.55283e12 −0.192695
\(739\) −7.25690e12 −0.895058 −0.447529 0.894269i \(-0.647696\pi\)
−0.447529 + 0.894269i \(0.647696\pi\)
\(740\) 5.52586e11 0.0677418
\(741\) 2.76226e11 0.0336576
\(742\) 0 0
\(743\) 7.60678e12 0.915696 0.457848 0.889031i \(-0.348620\pi\)
0.457848 + 0.889031i \(0.348620\pi\)
\(744\) −1.99892e12 −0.239175
\(745\) −2.50139e11 −0.0297494
\(746\) −9.12951e12 −1.07925
\(747\) 6.22935e11 0.0731982
\(748\) 1.23515e12 0.144266
\(749\) 0 0
\(750\) 2.25512e12 0.260252
\(751\) −3.30167e11 −0.0378751 −0.0189375 0.999821i \(-0.506028\pi\)
−0.0189375 + 0.999821i \(0.506028\pi\)
\(752\) 2.49607e12 0.284627
\(753\) −8.36549e12 −0.948230
\(754\) 3.35577e11 0.0378113
\(755\) 1.64153e12 0.183861
\(756\) 0 0
\(757\) −9.46308e12 −1.04737 −0.523686 0.851911i \(-0.675443\pi\)
−0.523686 + 0.851911i \(0.675443\pi\)
\(758\) −2.63447e11 −0.0289856
\(759\) 3.86410e11 0.0422630
\(760\) 1.38738e12 0.150846
\(761\) −1.04314e13 −1.12748 −0.563742 0.825951i \(-0.690639\pi\)
−0.563742 + 0.825951i \(0.690639\pi\)
\(762\) 2.37274e12 0.254949
\(763\) 0 0
\(764\) −5.74888e11 −0.0610468
\(765\) 8.14556e11 0.0859893
\(766\) −4.42811e12 −0.464717
\(767\) −2.54882e11 −0.0265926
\(768\) −3.47892e11 −0.0360844
\(769\) −5.48400e12 −0.565496 −0.282748 0.959194i \(-0.591246\pi\)
−0.282748 + 0.959194i \(0.591246\pi\)
\(770\) 0 0
\(771\) −7.80654e11 −0.0795635
\(772\) −6.55392e12 −0.664085
\(773\) 1.34594e13 1.35587 0.677935 0.735122i \(-0.262875\pi\)
0.677935 + 0.735122i \(0.262875\pi\)
\(774\) 2.25118e12 0.225464
\(775\) 1.04226e13 1.03781
\(776\) −6.22616e12 −0.616372
\(777\) 0 0
\(778\) −6.14794e12 −0.601619
\(779\) 1.06050e13 1.03179
\(780\) −4.66001e10 −0.00450776
\(781\) 5.03858e12 0.484594
\(782\) 1.09242e12 0.104462
\(783\) −2.34328e12 −0.222790
\(784\) 0 0
\(785\) −2.59991e11 −0.0244369
\(786\) −3.91179e12 −0.365573
\(787\) 4.95097e12 0.460049 0.230025 0.973185i \(-0.426119\pi\)
0.230025 + 0.973185i \(0.426119\pi\)
\(788\) −8.13477e12 −0.751583
\(789\) 1.18686e13 1.09032
\(790\) −4.16461e11 −0.0380410
\(791\) 0 0
\(792\) 4.93421e11 0.0445609
\(793\) 2.92013e11 0.0262224
\(794\) −5.66004e12 −0.505391
\(795\) 1.21495e11 0.0107872
\(796\) −6.32720e12 −0.558602
\(797\) −1.45639e13 −1.27854 −0.639269 0.768983i \(-0.720763\pi\)
−0.639269 + 0.768983i \(0.720763\pi\)
\(798\) 0 0
\(799\) −1.00085e13 −0.868779
\(800\) 1.81395e12 0.156574
\(801\) 4.58421e12 0.393476
\(802\) 5.58702e12 0.476865
\(803\) −4.28542e12 −0.363725
\(804\) −4.87561e12 −0.411506
\(805\) 0 0
\(806\) −4.58535e11 −0.0382706
\(807\) 3.36089e12 0.278948
\(808\) 1.08423e12 0.0894890
\(809\) −4.00456e12 −0.328690 −0.164345 0.986403i \(-0.552551\pi\)
−0.164345 + 0.986403i \(0.552551\pi\)
\(810\) 3.25400e11 0.0265604
\(811\) −1.23992e13 −1.00646 −0.503232 0.864151i \(-0.667856\pi\)
−0.503232 + 0.864151i \(0.667856\pi\)
\(812\) 0 0
\(813\) 9.68281e12 0.777309
\(814\) −1.34218e12 −0.107152
\(815\) 2.91085e11 0.0231105
\(816\) 1.39495e12 0.110142
\(817\) −1.53744e13 −1.20725
\(818\) 1.61942e13 1.26465
\(819\) 0 0
\(820\) −1.78909e12 −0.138188
\(821\) −1.78994e13 −1.37497 −0.687486 0.726198i \(-0.741286\pi\)
−0.687486 + 0.726198i \(0.741286\pi\)
\(822\) −3.09313e12 −0.236306
\(823\) 7.20978e12 0.547801 0.273900 0.961758i \(-0.411686\pi\)
0.273900 + 0.961758i \(0.411686\pi\)
\(824\) 6.21642e12 0.469751
\(825\) −2.57275e12 −0.193355
\(826\) 0 0
\(827\) 1.78205e13 1.32478 0.662391 0.749159i \(-0.269542\pi\)
0.662391 + 0.749159i \(0.269542\pi\)
\(828\) 4.36401e11 0.0322663
\(829\) 2.01652e12 0.148288 0.0741442 0.997248i \(-0.476377\pi\)
0.0741442 + 0.997248i \(0.476377\pi\)
\(830\) 7.17713e11 0.0524928
\(831\) 5.01177e12 0.364574
\(832\) −7.98038e10 −0.00577389
\(833\) 0 0
\(834\) −3.32213e11 −0.0237777
\(835\) −7.61487e12 −0.542092
\(836\) −3.36980e12 −0.238603
\(837\) 3.20188e12 0.225497
\(838\) −8.42626e12 −0.590251
\(839\) −2.75875e13 −1.92214 −0.961068 0.276312i \(-0.910888\pi\)
−0.961068 + 0.276312i \(0.910888\pi\)
\(840\) 0 0
\(841\) 4.93474e12 0.340159
\(842\) 6.81092e11 0.0466983
\(843\) 9.09554e12 0.620304
\(844\) −8.92914e12 −0.605715
\(845\) 4.99943e12 0.337338
\(846\) −3.99822e12 −0.268349
\(847\) 0 0
\(848\) 2.08064e11 0.0138171
\(849\) 9.68057e12 0.639465
\(850\) −7.27340e12 −0.477917
\(851\) −1.18707e12 −0.0775879
\(852\) 5.69043e12 0.369971
\(853\) −7.06363e12 −0.456833 −0.228416 0.973564i \(-0.573355\pi\)
−0.228416 + 0.973564i \(0.573355\pi\)
\(854\) 0 0
\(855\) −2.22231e12 −0.142219
\(856\) −9.19737e12 −0.585506
\(857\) 2.82446e13 1.78863 0.894317 0.447435i \(-0.147662\pi\)
0.894317 + 0.447435i \(0.147662\pi\)
\(858\) 1.13187e11 0.00713023
\(859\) −2.30014e13 −1.44140 −0.720702 0.693245i \(-0.756180\pi\)
−0.720702 + 0.693245i \(0.756180\pi\)
\(860\) 2.59369e12 0.161687
\(861\) 0 0
\(862\) −4.51039e12 −0.278247
\(863\) 6.34466e12 0.389367 0.194684 0.980866i \(-0.437632\pi\)
0.194684 + 0.980866i \(0.437632\pi\)
\(864\) 5.57256e11 0.0340207
\(865\) 1.69184e12 0.102751
\(866\) −8.92825e11 −0.0539431
\(867\) 4.01228e12 0.241160
\(868\) 0 0
\(869\) 1.01154e12 0.0601721
\(870\) −2.69980e12 −0.159770
\(871\) −1.11843e12 −0.0658454
\(872\) −3.95362e12 −0.231564
\(873\) 9.97311e12 0.581121
\(874\) −2.98039e12 −0.172771
\(875\) 0 0
\(876\) −4.83983e12 −0.277691
\(877\) 2.72979e12 0.155823 0.0779113 0.996960i \(-0.475175\pi\)
0.0779113 + 0.996960i \(0.475175\pi\)
\(878\) −1.21467e13 −0.689814
\(879\) −1.43829e13 −0.812638
\(880\) 5.68493e11 0.0319561
\(881\) 1.05136e13 0.587974 0.293987 0.955809i \(-0.405018\pi\)
0.293987 + 0.955809i \(0.405018\pi\)
\(882\) 0 0
\(883\) 2.11154e13 1.16890 0.584448 0.811431i \(-0.301311\pi\)
0.584448 + 0.811431i \(0.301311\pi\)
\(884\) 3.19990e11 0.0176239
\(885\) 2.05059e12 0.112366
\(886\) 2.33402e13 1.27249
\(887\) 2.73751e13 1.48491 0.742453 0.669898i \(-0.233662\pi\)
0.742453 + 0.669898i \(0.233662\pi\)
\(888\) −1.51582e12 −0.0818066
\(889\) 0 0
\(890\) 5.28168e12 0.282174
\(891\) −7.90365e11 −0.0420125
\(892\) −3.56088e11 −0.0188328
\(893\) 2.73057e13 1.43688
\(894\) 6.86165e11 0.0359261
\(895\) 1.19606e13 0.623088
\(896\) 0 0
\(897\) 1.00107e11 0.00516295
\(898\) −1.56288e13 −0.802013
\(899\) −2.65655e13 −1.35644
\(900\) −2.90559e12 −0.147619
\(901\) −8.34276e11 −0.0421744
\(902\) 4.34553e12 0.218581
\(903\) 0 0
\(904\) −7.48762e12 −0.372894
\(905\) 4.15389e12 0.205843
\(906\) −4.50295e12 −0.222034
\(907\) 1.48687e13 0.729526 0.364763 0.931100i \(-0.381150\pi\)
0.364763 + 0.931100i \(0.381150\pi\)
\(908\) 8.02179e12 0.391638
\(909\) −1.73672e12 −0.0843710
\(910\) 0 0
\(911\) 3.26369e12 0.156992 0.0784958 0.996914i \(-0.474988\pi\)
0.0784958 + 0.996914i \(0.474988\pi\)
\(912\) −3.80576e12 −0.182165
\(913\) −1.74325e12 −0.0830314
\(914\) 7.88097e10 0.00373527
\(915\) −2.34931e12 −0.110802
\(916\) −1.00992e13 −0.473976
\(917\) 0 0
\(918\) −2.23444e12 −0.103843
\(919\) 3.86599e13 1.78789 0.893944 0.448178i \(-0.147927\pi\)
0.893944 + 0.448178i \(0.147927\pi\)
\(920\) 5.02798e11 0.0231392
\(921\) −1.23323e13 −0.564774
\(922\) −2.32224e12 −0.105832
\(923\) 1.30534e12 0.0591992
\(924\) 0 0
\(925\) 7.90362e12 0.354967
\(926\) 1.70620e13 0.762573
\(927\) −9.95750e12 −0.442885
\(928\) −4.62348e12 −0.204646
\(929\) 1.32204e13 0.582337 0.291169 0.956672i \(-0.405956\pi\)
0.291169 + 0.956672i \(0.405956\pi\)
\(930\) 3.68903e12 0.161711
\(931\) 0 0
\(932\) −2.14358e13 −0.930610
\(933\) 1.23670e13 0.534312
\(934\) −2.28703e13 −0.983356
\(935\) −2.27950e12 −0.0975408
\(936\) 1.27830e11 0.00544367
\(937\) 4.49241e12 0.190393 0.0951966 0.995458i \(-0.469652\pi\)
0.0951966 + 0.995458i \(0.469652\pi\)
\(938\) 0 0
\(939\) 2.02408e13 0.849635
\(940\) −4.60654e12 −0.192442
\(941\) −2.52572e13 −1.05010 −0.525052 0.851070i \(-0.675954\pi\)
−0.525052 + 0.851070i \(0.675954\pi\)
\(942\) 7.13191e11 0.0295105
\(943\) 3.84336e12 0.158273
\(944\) 3.51169e12 0.143927
\(945\) 0 0
\(946\) −6.29982e12 −0.255752
\(947\) −2.28345e13 −0.922605 −0.461303 0.887243i \(-0.652618\pi\)
−0.461303 + 0.887243i \(0.652618\pi\)
\(948\) 1.14241e12 0.0459392
\(949\) −1.11022e12 −0.0444336
\(950\) 1.98436e13 0.790433
\(951\) 1.00027e13 0.396556
\(952\) 0 0
\(953\) 2.31698e13 0.909923 0.454961 0.890511i \(-0.349653\pi\)
0.454961 + 0.890511i \(0.349653\pi\)
\(954\) −3.33278e11 −0.0130268
\(955\) 1.06097e12 0.0412749
\(956\) −2.65934e11 −0.0102970
\(957\) 6.55755e12 0.252719
\(958\) −6.06135e11 −0.0232501
\(959\) 0 0
\(960\) 6.42041e11 0.0243973
\(961\) 9.85974e12 0.372915
\(962\) −3.47716e11 −0.0130899
\(963\) 1.47324e13 0.552021
\(964\) 2.66660e13 0.994515
\(965\) 1.20954e13 0.449000
\(966\) 0 0
\(967\) 3.31795e13 1.22026 0.610128 0.792303i \(-0.291118\pi\)
0.610128 + 0.792303i \(0.291118\pi\)
\(968\) 8.27734e12 0.303006
\(969\) 1.52600e13 0.556030
\(970\) 1.14905e13 0.416740
\(971\) 1.08978e13 0.393415 0.196707 0.980462i \(-0.436975\pi\)
0.196707 + 0.980462i \(0.436975\pi\)
\(972\) −8.92617e11 −0.0320750
\(973\) 0 0
\(974\) −3.86098e13 −1.37462
\(975\) −6.66520e11 −0.0236207
\(976\) −4.02326e12 −0.141923
\(977\) 5.33310e13 1.87264 0.936320 0.351149i \(-0.114209\pi\)
0.936320 + 0.351149i \(0.114209\pi\)
\(978\) −7.98484e11 −0.0279088
\(979\) −1.28287e13 −0.446334
\(980\) 0 0
\(981\) 6.33293e12 0.218320
\(982\) 1.34582e13 0.461832
\(983\) 2.91131e13 0.994484 0.497242 0.867612i \(-0.334346\pi\)
0.497242 + 0.867612i \(0.334346\pi\)
\(984\) 4.90772e12 0.166879
\(985\) 1.50128e13 0.508159
\(986\) 1.85388e13 0.624649
\(987\) 0 0
\(988\) −8.73012e11 −0.0291484
\(989\) −5.57181e12 −0.185188
\(990\) −9.10617e11 −0.0301285
\(991\) 3.38220e13 1.11396 0.556978 0.830527i \(-0.311961\pi\)
0.556978 + 0.830527i \(0.311961\pi\)
\(992\) 6.31756e12 0.207132
\(993\) −3.35040e12 −0.109351
\(994\) 0 0
\(995\) 1.16769e13 0.377681
\(996\) −1.96878e12 −0.0633915
\(997\) −2.18098e13 −0.699074 −0.349537 0.936923i \(-0.613661\pi\)
−0.349537 + 0.936923i \(0.613661\pi\)
\(998\) 2.21396e13 0.706451
\(999\) 2.42804e12 0.0771280
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.10.a.r.1.2 3
7.2 even 3 42.10.e.d.25.2 6
7.4 even 3 42.10.e.d.37.2 yes 6
7.6 odd 2 294.10.a.u.1.2 3
21.2 odd 6 126.10.g.d.109.2 6
21.11 odd 6 126.10.g.d.37.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.10.e.d.25.2 6 7.2 even 3
42.10.e.d.37.2 yes 6 7.4 even 3
126.10.g.d.37.2 6 21.11 odd 6
126.10.g.d.109.2 6 21.2 odd 6
294.10.a.r.1.2 3 1.1 even 1 trivial
294.10.a.u.1.2 3 7.6 odd 2