Properties

Label 294.10.a.f
Level 294294
Weight 1010
Character orbit 294.a
Self dual yes
Analytic conductor 151.421151.421
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [294,10,Mod(1,294)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(294, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("294.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 10 10
Character orbit: [χ][\chi] == 294.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-16,81,256,76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 151.420535832151.420535832
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q16q2+81q3+256q4+76q51296q64096q8+6561q91216q10+38386q11+20736q1298298q13+6156q15+65536q16104524q17104976q18++251850546q99+O(q100) q - 16 q^{2} + 81 q^{3} + 256 q^{4} + 76 q^{5} - 1296 q^{6} - 4096 q^{8} + 6561 q^{9} - 1216 q^{10} + 38386 q^{11} + 20736 q^{12} - 98298 q^{13} + 6156 q^{15} + 65536 q^{16} - 104524 q^{17} - 104976 q^{18}+ \cdots + 251850546 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−16.0000 81.0000 256.000 76.0000 −1296.00 0 −4096.00 6561.00 −1216.00
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.10.a.f 1
7.b odd 2 1 42.10.a.a 1
21.c even 2 1 126.10.a.f 1
28.d even 2 1 336.10.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.10.a.a 1 7.b odd 2 1
126.10.a.f 1 21.c even 2 1
294.10.a.f 1 1.a even 1 1 trivial
336.10.a.f 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T576 T_{5} - 76 acting on S10new(Γ0(294))S_{10}^{\mathrm{new}}(\Gamma_0(294)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+16 T + 16 Copy content Toggle raw display
33 T81 T - 81 Copy content Toggle raw display
55 T76 T - 76 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T38386 T - 38386 Copy content Toggle raw display
1313 T+98298 T + 98298 Copy content Toggle raw display
1717 T+104524 T + 104524 Copy content Toggle raw display
1919 T420580 T - 420580 Copy content Toggle raw display
2323 T+139118 T + 139118 Copy content Toggle raw display
2929 T+1916290 T + 1916290 Copy content Toggle raw display
3131 T6379488 T - 6379488 Copy content Toggle raw display
3737 T+6629278 T + 6629278 Copy content Toggle raw display
4141 T6692112 T - 6692112 Copy content Toggle raw display
4343 T+23269732 T + 23269732 Copy content Toggle raw display
4747 T22000596 T - 22000596 Copy content Toggle raw display
5353 T18919770 T - 18919770 Copy content Toggle raw display
5959 T+179035544 T + 179035544 Copy content Toggle raw display
6161 T19797786 T - 19797786 Copy content Toggle raw display
6767 T+263015240 T + 263015240 Copy content Toggle raw display
7171 T22447678 T - 22447678 Copy content Toggle raw display
7373 T+11023774 T + 11023774 Copy content Toggle raw display
7979 T+284917908 T + 284917908 Copy content Toggle raw display
8383 T226865924 T - 226865924 Copy content Toggle raw display
8989 T191377296 T - 191377296 Copy content Toggle raw display
9797 T1162236578 T - 1162236578 Copy content Toggle raw display
show more
show less