gp: [N,k,chi] = [294,10,Mod(1,294)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(294, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 10, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("294.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Newform invariants
sage: traces = [1,-16,81,256,76]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 5 − 76 T_{5} - 76 T 5 − 7 6
T5 - 76
acting on S 10 n e w ( Γ 0 ( 294 ) ) S_{10}^{\mathrm{new}}(\Gamma_0(294)) S 1 0 n e w ( Γ 0 ( 2 9 4 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 16 T + 16 T + 1 6
T + 16
3 3 3
T − 81 T - 81 T − 8 1
T - 81
5 5 5
T − 76 T - 76 T − 7 6
T - 76
7 7 7
T T T
T
11 11 1 1
T − 38386 T - 38386 T − 3 8 3 8 6
T - 38386
13 13 1 3
T + 98298 T + 98298 T + 9 8 2 9 8
T + 98298
17 17 1 7
T + 104524 T + 104524 T + 1 0 4 5 2 4
T + 104524
19 19 1 9
T − 420580 T - 420580 T − 4 2 0 5 8 0
T - 420580
23 23 2 3
T + 139118 T + 139118 T + 1 3 9 1 1 8
T + 139118
29 29 2 9
T + 1916290 T + 1916290 T + 1 9 1 6 2 9 0
T + 1916290
31 31 3 1
T − 6379488 T - 6379488 T − 6 3 7 9 4 8 8
T - 6379488
37 37 3 7
T + 6629278 T + 6629278 T + 6 6 2 9 2 7 8
T + 6629278
41 41 4 1
T − 6692112 T - 6692112 T − 6 6 9 2 1 1 2
T - 6692112
43 43 4 3
T + 23269732 T + 23269732 T + 2 3 2 6 9 7 3 2
T + 23269732
47 47 4 7
T − 22000596 T - 22000596 T − 2 2 0 0 0 5 9 6
T - 22000596
53 53 5 3
T − 18919770 T - 18919770 T − 1 8 9 1 9 7 7 0
T - 18919770
59 59 5 9
T + 179035544 T + 179035544 T + 1 7 9 0 3 5 5 4 4
T + 179035544
61 61 6 1
T − 19797786 T - 19797786 T − 1 9 7 9 7 7 8 6
T - 19797786
67 67 6 7
T + 263015240 T + 263015240 T + 2 6 3 0 1 5 2 4 0
T + 263015240
71 71 7 1
T − 22447678 T - 22447678 T − 2 2 4 4 7 6 7 8
T - 22447678
73 73 7 3
T + 11023774 T + 11023774 T + 1 1 0 2 3 7 7 4
T + 11023774
79 79 7 9
T + 284917908 T + 284917908 T + 2 8 4 9 1 7 9 0 8
T + 284917908
83 83 8 3
T − 226865924 T - 226865924 T − 2 2 6 8 6 5 9 2 4
T - 226865924
89 89 8 9
T − 191377296 T - 191377296 T − 1 9 1 3 7 7 2 9 6
T - 191377296
97 97 9 7
T − 1162236578 T - 1162236578 T − 1 1 6 2 2 3 6 5 7 8
T - 1162236578
show more
show less