Defining parameters
| Level: | \( N \) | \(=\) | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2925.cf (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 325 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Sturm bound: | \(840\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2925, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1712 | 712 | 1000 |
| Cusp forms | 1648 | 696 | 952 |
| Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2925, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2925, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(975, [\chi])\)\(^{\oplus 2}\)