Defining parameters
Level: | \( N \) | \(=\) | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2925.dj (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 585 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(420\) | ||
Trace bound: | \(12\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2925, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 24 | 32 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 48 | 16 | 32 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 8 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2925.1.dj.a | $4$ | $1.460$ | \(\Q(\zeta_{12})\) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{12}^{3}q^{3}-\zeta_{12}^{5}q^{4}-q^{9}+(-\zeta_{12}+\cdots)q^{11}+\cdots\) |
2925.1.dj.b | $4$ | $1.460$ | \(\Q(\zeta_{12})\) | $S_{4}$ | None | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{12}^{3}q^{3}-\zeta_{12}^{5}q^{4}-q^{9}+(-\zeta_{12}+\cdots)q^{11}+\cdots\) |