Properties

Label 2925.1.bi
Level $2925$
Weight $1$
Character orbit 2925.bi
Rep. character $\chi_{2925}(1676,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $420$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2925.bi (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(420\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2925, [\chi])\).

Total New Old
Modular forms 28 16 12
Cusp forms 4 4 0
Eisenstein series 24 12 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 2 q^{4} + 4 q^{9} - 2 q^{16} + 6 q^{29} + 2 q^{36} - 2 q^{39} - 2 q^{49} + 4 q^{61} - 4 q^{64} - 6 q^{69} - 2 q^{79} + 4 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2925.1.bi.a 2925.bi 117.n $2$ $1.460$ \(\Q(\sqrt{-3}) \) $D_{6}$ None \(\Q(\sqrt{13}) \) 2925.1.bi.a \(0\) \(-2\) \(0\) \(0\) \(q-q^{3}+\zeta_{6}q^{4}+q^{9}-\zeta_{6}q^{12}+\zeta_{6}q^{13}+\cdots\)
2925.1.bi.b 2925.bi 117.n $2$ $1.460$ \(\Q(\sqrt{-3}) \) $D_{6}$ None \(\Q(\sqrt{13}) \) 2925.1.bi.a \(0\) \(2\) \(0\) \(0\) \(q+q^{3}+\zeta_{6}q^{4}+q^{9}+\zeta_{6}q^{12}-\zeta_{6}q^{13}+\cdots\)