Defining parameters
| Level: | \( N \) | \(=\) | \( 2925 = 3^{2} \cdot 5^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2925.bi (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(420\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2925, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 28 | 16 | 12 |
| Cusp forms | 4 | 4 | 0 |
| Eisenstein series | 24 | 12 | 12 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2925, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 2925.1.bi.a | $2$ | $1.460$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | None | \(\Q(\sqrt{13}) \) | \(0\) | \(-2\) | \(0\) | \(0\) | \(q-q^{3}+\zeta_{6}q^{4}+q^{9}-\zeta_{6}q^{12}+\zeta_{6}q^{13}+\cdots\) |
| 2925.1.bi.b | $2$ | $1.460$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | None | \(\Q(\sqrt{13}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q+q^{3}+\zeta_{6}q^{4}+q^{9}+\zeta_{6}q^{12}-\zeta_{6}q^{13}+\cdots\) |