Properties

Label 2912.2.h.a.2575.6
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(2575,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.2575"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,-48,0,4,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.6
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.a.2575.43

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.65471i q^{3} -0.263032 q^{5} +(2.63919 + 0.186171i) q^{7} -4.04746 q^{9} +3.24934 q^{11} -1.00000 q^{13} +0.698273i q^{15} +1.08092i q^{17} -3.39215i q^{19} +(0.494230 - 7.00628i) q^{21} +0.355094i q^{23} -4.93081 q^{25} +2.78070i q^{27} +5.01796i q^{29} +8.52830 q^{31} -8.62605i q^{33} +(-0.694192 - 0.0489690i) q^{35} -7.16212i q^{37} +2.65471i q^{39} -10.7436i q^{41} -9.41079 q^{43} +1.06461 q^{45} +7.23645 q^{47} +(6.93068 + 0.982684i) q^{49} +2.86952 q^{51} -7.26724i q^{53} -0.854681 q^{55} -9.00515 q^{57} -2.37654i q^{59} +5.15481 q^{61} +(-10.6820 - 0.753521i) q^{63} +0.263032 q^{65} +0.139168 q^{67} +0.942669 q^{69} -13.0320i q^{71} +13.6589i q^{73} +13.0899i q^{75} +(8.57564 + 0.604934i) q^{77} -5.14057i q^{79} -4.76044 q^{81} -13.8310i q^{83} -0.284317i q^{85} +13.3212 q^{87} +1.56109i q^{89} +(-2.63919 - 0.186171i) q^{91} -22.6401i q^{93} +0.892243i q^{95} -4.36070i q^{97} -13.1516 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} - 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} + 24 q^{45} + 40 q^{51} - 20 q^{63} + 4 q^{67} - 20 q^{77} + 64 q^{81} + 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.65471i 1.53269i −0.642426 0.766347i \(-0.722072\pi\)
0.642426 0.766347i \(-0.277928\pi\)
\(4\) 0 0
\(5\) −0.263032 −0.117631 −0.0588157 0.998269i \(-0.518732\pi\)
−0.0588157 + 0.998269i \(0.518732\pi\)
\(6\) 0 0
\(7\) 2.63919 + 0.186171i 0.997521 + 0.0703661i
\(8\) 0 0
\(9\) −4.04746 −1.34915
\(10\) 0 0
\(11\) 3.24934 0.979714 0.489857 0.871803i \(-0.337049\pi\)
0.489857 + 0.871803i \(0.337049\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0.698273i 0.180293i
\(16\) 0 0
\(17\) 1.08092i 0.262162i 0.991372 + 0.131081i \(0.0418447\pi\)
−0.991372 + 0.131081i \(0.958155\pi\)
\(18\) 0 0
\(19\) 3.39215i 0.778212i −0.921193 0.389106i \(-0.872784\pi\)
0.921193 0.389106i \(-0.127216\pi\)
\(20\) 0 0
\(21\) 0.494230 7.00628i 0.107850 1.52890i
\(22\) 0 0
\(23\) 0.355094i 0.0740421i 0.999314 + 0.0370211i \(0.0117869\pi\)
−0.999314 + 0.0370211i \(0.988213\pi\)
\(24\) 0 0
\(25\) −4.93081 −0.986163
\(26\) 0 0
\(27\) 2.78070i 0.535146i
\(28\) 0 0
\(29\) 5.01796i 0.931811i 0.884834 + 0.465906i \(0.154271\pi\)
−0.884834 + 0.465906i \(0.845729\pi\)
\(30\) 0 0
\(31\) 8.52830 1.53173 0.765864 0.643002i \(-0.222311\pi\)
0.765864 + 0.643002i \(0.222311\pi\)
\(32\) 0 0
\(33\) 8.62605i 1.50160i
\(34\) 0 0
\(35\) −0.694192 0.0489690i −0.117340 0.00827727i
\(36\) 0 0
\(37\) 7.16212i 1.17745i −0.808335 0.588723i \(-0.799631\pi\)
0.808335 0.588723i \(-0.200369\pi\)
\(38\) 0 0
\(39\) 2.65471i 0.425093i
\(40\) 0 0
\(41\) 10.7436i 1.67787i −0.544232 0.838934i \(-0.683179\pi\)
0.544232 0.838934i \(-0.316821\pi\)
\(42\) 0 0
\(43\) −9.41079 −1.43513 −0.717566 0.696491i \(-0.754744\pi\)
−0.717566 + 0.696491i \(0.754744\pi\)
\(44\) 0 0
\(45\) 1.06461 0.158703
\(46\) 0 0
\(47\) 7.23645 1.05555 0.527773 0.849386i \(-0.323027\pi\)
0.527773 + 0.849386i \(0.323027\pi\)
\(48\) 0 0
\(49\) 6.93068 + 0.982684i 0.990097 + 0.140383i
\(50\) 0 0
\(51\) 2.86952 0.401814
\(52\) 0 0
\(53\) 7.26724i 0.998232i −0.866535 0.499116i \(-0.833658\pi\)
0.866535 0.499116i \(-0.166342\pi\)
\(54\) 0 0
\(55\) −0.854681 −0.115245
\(56\) 0 0
\(57\) −9.00515 −1.19276
\(58\) 0 0
\(59\) 2.37654i 0.309399i −0.987962 0.154699i \(-0.950559\pi\)
0.987962 0.154699i \(-0.0494409\pi\)
\(60\) 0 0
\(61\) 5.15481 0.660005 0.330003 0.943980i \(-0.392950\pi\)
0.330003 + 0.943980i \(0.392950\pi\)
\(62\) 0 0
\(63\) −10.6820 0.753521i −1.34581 0.0949347i
\(64\) 0 0
\(65\) 0.263032 0.0326251
\(66\) 0 0
\(67\) 0.139168 0.0170021 0.00850105 0.999964i \(-0.497294\pi\)
0.00850105 + 0.999964i \(0.497294\pi\)
\(68\) 0 0
\(69\) 0.942669 0.113484
\(70\) 0 0
\(71\) 13.0320i 1.54662i −0.634029 0.773309i \(-0.718600\pi\)
0.634029 0.773309i \(-0.281400\pi\)
\(72\) 0 0
\(73\) 13.6589i 1.59865i 0.600900 + 0.799324i \(0.294809\pi\)
−0.600900 + 0.799324i \(0.705191\pi\)
\(74\) 0 0
\(75\) 13.0899i 1.51149i
\(76\) 0 0
\(77\) 8.57564 + 0.604934i 0.977285 + 0.0689387i
\(78\) 0 0
\(79\) 5.14057i 0.578360i −0.957275 0.289180i \(-0.906617\pi\)
0.957275 0.289180i \(-0.0933826\pi\)
\(80\) 0 0
\(81\) −4.76044 −0.528938
\(82\) 0 0
\(83\) 13.8310i 1.51815i −0.651004 0.759075i \(-0.725652\pi\)
0.651004 0.759075i \(-0.274348\pi\)
\(84\) 0 0
\(85\) 0.284317i 0.0308385i
\(86\) 0 0
\(87\) 13.3212 1.42818
\(88\) 0 0
\(89\) 1.56109i 0.165476i 0.996571 + 0.0827378i \(0.0263664\pi\)
−0.996571 + 0.0827378i \(0.973634\pi\)
\(90\) 0 0
\(91\) −2.63919 0.186171i −0.276663 0.0195160i
\(92\) 0 0
\(93\) 22.6401i 2.34767i
\(94\) 0 0
\(95\) 0.892243i 0.0915422i
\(96\) 0 0
\(97\) 4.36070i 0.442762i −0.975187 0.221381i \(-0.928944\pi\)
0.975187 0.221381i \(-0.0710564\pi\)
\(98\) 0 0
\(99\) −13.1516 −1.32178
\(100\) 0 0
\(101\) 2.79503 0.278116 0.139058 0.990284i \(-0.455593\pi\)
0.139058 + 0.990284i \(0.455593\pi\)
\(102\) 0 0
\(103\) −1.26494 −0.124638 −0.0623191 0.998056i \(-0.519850\pi\)
−0.0623191 + 0.998056i \(0.519850\pi\)
\(104\) 0 0
\(105\) −0.129998 + 1.84288i −0.0126865 + 0.179846i
\(106\) 0 0
\(107\) −1.86660 −0.180451 −0.0902255 0.995921i \(-0.528759\pi\)
−0.0902255 + 0.995921i \(0.528759\pi\)
\(108\) 0 0
\(109\) 3.91026i 0.374535i −0.982309 0.187267i \(-0.940037\pi\)
0.982309 0.187267i \(-0.0599631\pi\)
\(110\) 0 0
\(111\) −19.0133 −1.80467
\(112\) 0 0
\(113\) 16.9264 1.59230 0.796152 0.605097i \(-0.206866\pi\)
0.796152 + 0.605097i \(0.206866\pi\)
\(114\) 0 0
\(115\) 0.0934010i 0.00870969i
\(116\) 0 0
\(117\) 4.04746 0.374188
\(118\) 0 0
\(119\) −0.201236 + 2.85276i −0.0184473 + 0.261512i
\(120\) 0 0
\(121\) −0.441770 −0.0401609
\(122\) 0 0
\(123\) −28.5211 −2.57166
\(124\) 0 0
\(125\) 2.61212 0.233635
\(126\) 0 0
\(127\) 2.54307i 0.225661i 0.993614 + 0.112831i \(0.0359918\pi\)
−0.993614 + 0.112831i \(0.964008\pi\)
\(128\) 0 0
\(129\) 24.9829i 2.19962i
\(130\) 0 0
\(131\) 3.23734i 0.282848i 0.989949 + 0.141424i \(0.0451681\pi\)
−0.989949 + 0.141424i \(0.954832\pi\)
\(132\) 0 0
\(133\) 0.631520 8.95253i 0.0547597 0.776283i
\(134\) 0 0
\(135\) 0.731413i 0.0629500i
\(136\) 0 0
\(137\) −16.6120 −1.41926 −0.709629 0.704576i \(-0.751137\pi\)
−0.709629 + 0.704576i \(0.751137\pi\)
\(138\) 0 0
\(139\) 6.87742i 0.583335i 0.956520 + 0.291668i \(0.0942101\pi\)
−0.956520 + 0.291668i \(0.905790\pi\)
\(140\) 0 0
\(141\) 19.2107i 1.61783i
\(142\) 0 0
\(143\) −3.24934 −0.271724
\(144\) 0 0
\(145\) 1.31988i 0.109610i
\(146\) 0 0
\(147\) 2.60874 18.3989i 0.215165 1.51752i
\(148\) 0 0
\(149\) 11.8102i 0.967528i 0.875198 + 0.483764i \(0.160731\pi\)
−0.875198 + 0.483764i \(0.839269\pi\)
\(150\) 0 0
\(151\) 16.2442i 1.32193i 0.750415 + 0.660967i \(0.229854\pi\)
−0.750415 + 0.660967i \(0.770146\pi\)
\(152\) 0 0
\(153\) 4.37498i 0.353696i
\(154\) 0 0
\(155\) −2.24322 −0.180180
\(156\) 0 0
\(157\) −7.03312 −0.561304 −0.280652 0.959810i \(-0.590551\pi\)
−0.280652 + 0.959810i \(0.590551\pi\)
\(158\) 0 0
\(159\) −19.2924 −1.52998
\(160\) 0 0
\(161\) −0.0661082 + 0.937161i −0.00521006 + 0.0738586i
\(162\) 0 0
\(163\) 21.2161 1.66177 0.830886 0.556443i \(-0.187834\pi\)
0.830886 + 0.556443i \(0.187834\pi\)
\(164\) 0 0
\(165\) 2.26893i 0.176636i
\(166\) 0 0
\(167\) 1.53534 0.118808 0.0594041 0.998234i \(-0.481080\pi\)
0.0594041 + 0.998234i \(0.481080\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 13.7296i 1.04993i
\(172\) 0 0
\(173\) −25.0144 −1.90181 −0.950907 0.309478i \(-0.899846\pi\)
−0.950907 + 0.309478i \(0.899846\pi\)
\(174\) 0 0
\(175\) −13.0134 0.917976i −0.983718 0.0693924i
\(176\) 0 0
\(177\) −6.30901 −0.474214
\(178\) 0 0
\(179\) −9.45764 −0.706897 −0.353449 0.935454i \(-0.614991\pi\)
−0.353449 + 0.935454i \(0.614991\pi\)
\(180\) 0 0
\(181\) −5.30571 −0.394371 −0.197185 0.980366i \(-0.563180\pi\)
−0.197185 + 0.980366i \(0.563180\pi\)
\(182\) 0 0
\(183\) 13.6845i 1.01159i
\(184\) 0 0
\(185\) 1.88387i 0.138505i
\(186\) 0 0
\(187\) 3.51228i 0.256843i
\(188\) 0 0
\(189\) −0.517686 + 7.33880i −0.0376561 + 0.533820i
\(190\) 0 0
\(191\) 15.8277i 1.14525i −0.819817 0.572625i \(-0.805925\pi\)
0.819817 0.572625i \(-0.194075\pi\)
\(192\) 0 0
\(193\) 1.78118 0.128212 0.0641062 0.997943i \(-0.479580\pi\)
0.0641062 + 0.997943i \(0.479580\pi\)
\(194\) 0 0
\(195\) 0.698273i 0.0500043i
\(196\) 0 0
\(197\) 11.6396i 0.829290i 0.909983 + 0.414645i \(0.136094\pi\)
−0.909983 + 0.414645i \(0.863906\pi\)
\(198\) 0 0
\(199\) 9.67647 0.685947 0.342973 0.939345i \(-0.388566\pi\)
0.342973 + 0.939345i \(0.388566\pi\)
\(200\) 0 0
\(201\) 0.369450i 0.0260590i
\(202\) 0 0
\(203\) −0.934199 + 13.2434i −0.0655679 + 0.929501i
\(204\) 0 0
\(205\) 2.82591i 0.197370i
\(206\) 0 0
\(207\) 1.43723i 0.0998942i
\(208\) 0 0
\(209\) 11.0222i 0.762425i
\(210\) 0 0
\(211\) −13.0610 −0.899156 −0.449578 0.893241i \(-0.648426\pi\)
−0.449578 + 0.893241i \(0.648426\pi\)
\(212\) 0 0
\(213\) −34.5962 −2.37049
\(214\) 0 0
\(215\) 2.47534 0.168817
\(216\) 0 0
\(217\) 22.5078 + 1.58772i 1.52793 + 0.107782i
\(218\) 0 0
\(219\) 36.2602 2.45024
\(220\) 0 0
\(221\) 1.08092i 0.0727105i
\(222\) 0 0
\(223\) 12.2491 0.820263 0.410132 0.912026i \(-0.365483\pi\)
0.410132 + 0.912026i \(0.365483\pi\)
\(224\) 0 0
\(225\) 19.9573 1.33049
\(226\) 0 0
\(227\) 4.34401i 0.288322i 0.989554 + 0.144161i \(0.0460483\pi\)
−0.989554 + 0.144161i \(0.953952\pi\)
\(228\) 0 0
\(229\) 18.3309 1.21134 0.605670 0.795716i \(-0.292905\pi\)
0.605670 + 0.795716i \(0.292905\pi\)
\(230\) 0 0
\(231\) 1.60592 22.7658i 0.105662 1.49788i
\(232\) 0 0
\(233\) −16.9908 −1.11310 −0.556552 0.830813i \(-0.687876\pi\)
−0.556552 + 0.830813i \(0.687876\pi\)
\(234\) 0 0
\(235\) −1.90342 −0.124165
\(236\) 0 0
\(237\) −13.6467 −0.886449
\(238\) 0 0
\(239\) 16.2246i 1.04948i 0.851261 + 0.524742i \(0.175838\pi\)
−0.851261 + 0.524742i \(0.824162\pi\)
\(240\) 0 0
\(241\) 28.1758i 1.81496i −0.420091 0.907482i \(-0.638002\pi\)
0.420091 0.907482i \(-0.361998\pi\)
\(242\) 0 0
\(243\) 20.9797i 1.34585i
\(244\) 0 0
\(245\) −1.82299 0.258477i −0.116467 0.0165135i
\(246\) 0 0
\(247\) 3.39215i 0.215837i
\(248\) 0 0
\(249\) −36.7172 −2.32686
\(250\) 0 0
\(251\) 1.48840i 0.0939468i 0.998896 + 0.0469734i \(0.0149576\pi\)
−0.998896 + 0.0469734i \(0.985042\pi\)
\(252\) 0 0
\(253\) 1.15382i 0.0725401i
\(254\) 0 0
\(255\) −0.754777 −0.0472659
\(256\) 0 0
\(257\) 2.71616i 0.169430i −0.996405 0.0847148i \(-0.973002\pi\)
0.996405 0.0847148i \(-0.0269979\pi\)
\(258\) 0 0
\(259\) 1.33338 18.9022i 0.0828523 1.17453i
\(260\) 0 0
\(261\) 20.3100i 1.25716i
\(262\) 0 0
\(263\) 4.95465i 0.305517i −0.988264 0.152758i \(-0.951184\pi\)
0.988264 0.152758i \(-0.0488156\pi\)
\(264\) 0 0
\(265\) 1.91152i 0.117423i
\(266\) 0 0
\(267\) 4.14424 0.253624
\(268\) 0 0
\(269\) 2.73612 0.166824 0.0834120 0.996515i \(-0.473418\pi\)
0.0834120 + 0.996515i \(0.473418\pi\)
\(270\) 0 0
\(271\) 9.90746 0.601835 0.300918 0.953650i \(-0.402707\pi\)
0.300918 + 0.953650i \(0.402707\pi\)
\(272\) 0 0
\(273\) −0.494230 + 7.00628i −0.0299121 + 0.424039i
\(274\) 0 0
\(275\) −16.0219 −0.966157
\(276\) 0 0
\(277\) 25.6730i 1.54254i 0.636506 + 0.771271i \(0.280379\pi\)
−0.636506 + 0.771271i \(0.719621\pi\)
\(278\) 0 0
\(279\) −34.5180 −2.06654
\(280\) 0 0
\(281\) −29.3364 −1.75007 −0.875033 0.484064i \(-0.839160\pi\)
−0.875033 + 0.484064i \(0.839160\pi\)
\(282\) 0 0
\(283\) 5.01662i 0.298207i 0.988822 + 0.149104i \(0.0476388\pi\)
−0.988822 + 0.149104i \(0.952361\pi\)
\(284\) 0 0
\(285\) 2.36864 0.140306
\(286\) 0 0
\(287\) 2.00015 28.3544i 0.118065 1.67371i
\(288\) 0 0
\(289\) 15.8316 0.931271
\(290\) 0 0
\(291\) −11.5764 −0.678619
\(292\) 0 0
\(293\) −24.7206 −1.44419 −0.722096 0.691793i \(-0.756821\pi\)
−0.722096 + 0.691793i \(0.756821\pi\)
\(294\) 0 0
\(295\) 0.625105i 0.0363950i
\(296\) 0 0
\(297\) 9.03545i 0.524290i
\(298\) 0 0
\(299\) 0.355094i 0.0205356i
\(300\) 0 0
\(301\) −24.8369 1.75202i −1.43157 0.100985i
\(302\) 0 0
\(303\) 7.41997i 0.426266i
\(304\) 0 0
\(305\) −1.35588 −0.0776374
\(306\) 0 0
\(307\) 25.8768i 1.47687i 0.674327 + 0.738433i \(0.264434\pi\)
−0.674327 + 0.738433i \(0.735566\pi\)
\(308\) 0 0
\(309\) 3.35804i 0.191032i
\(310\) 0 0
\(311\) 8.89137 0.504183 0.252092 0.967703i \(-0.418882\pi\)
0.252092 + 0.967703i \(0.418882\pi\)
\(312\) 0 0
\(313\) 19.3019i 1.09101i 0.838109 + 0.545503i \(0.183661\pi\)
−0.838109 + 0.545503i \(0.816339\pi\)
\(314\) 0 0
\(315\) 2.80972 + 0.198200i 0.158310 + 0.0111673i
\(316\) 0 0
\(317\) 7.58551i 0.426045i 0.977047 + 0.213022i \(0.0683307\pi\)
−0.977047 + 0.213022i \(0.931669\pi\)
\(318\) 0 0
\(319\) 16.3051i 0.912908i
\(320\) 0 0
\(321\) 4.95527i 0.276576i
\(322\) 0 0
\(323\) 3.66664 0.204017
\(324\) 0 0
\(325\) 4.93081 0.273512
\(326\) 0 0
\(327\) −10.3806 −0.574047
\(328\) 0 0
\(329\) 19.0984 + 1.34722i 1.05293 + 0.0742746i
\(330\) 0 0
\(331\) −27.4209 −1.50719 −0.753594 0.657341i \(-0.771681\pi\)
−0.753594 + 0.657341i \(0.771681\pi\)
\(332\) 0 0
\(333\) 28.9884i 1.58856i
\(334\) 0 0
\(335\) −0.0366057 −0.00199998
\(336\) 0 0
\(337\) −27.7623 −1.51231 −0.756155 0.654393i \(-0.772924\pi\)
−0.756155 + 0.654393i \(0.772924\pi\)
\(338\) 0 0
\(339\) 44.9347i 2.44052i
\(340\) 0 0
\(341\) 27.7114 1.50066
\(342\) 0 0
\(343\) 18.1085 + 3.88379i 0.977765 + 0.209705i
\(344\) 0 0
\(345\) −0.247952 −0.0133493
\(346\) 0 0
\(347\) 22.5651 1.21136 0.605680 0.795709i \(-0.292901\pi\)
0.605680 + 0.795709i \(0.292901\pi\)
\(348\) 0 0
\(349\) 28.7568 1.53931 0.769657 0.638458i \(-0.220427\pi\)
0.769657 + 0.638458i \(0.220427\pi\)
\(350\) 0 0
\(351\) 2.78070i 0.148423i
\(352\) 0 0
\(353\) 17.5497i 0.934075i 0.884238 + 0.467037i \(0.154679\pi\)
−0.884238 + 0.467037i \(0.845321\pi\)
\(354\) 0 0
\(355\) 3.42784i 0.181931i
\(356\) 0 0
\(357\) 7.57323 + 0.534223i 0.400818 + 0.0282741i
\(358\) 0 0
\(359\) 23.7594i 1.25397i −0.779031 0.626986i \(-0.784288\pi\)
0.779031 0.626986i \(-0.215712\pi\)
\(360\) 0 0
\(361\) 7.49334 0.394386
\(362\) 0 0
\(363\) 1.17277i 0.0615544i
\(364\) 0 0
\(365\) 3.59272i 0.188051i
\(366\) 0 0
\(367\) 19.1414 0.999174 0.499587 0.866264i \(-0.333485\pi\)
0.499587 + 0.866264i \(0.333485\pi\)
\(368\) 0 0
\(369\) 43.4843i 2.26370i
\(370\) 0 0
\(371\) 1.35295 19.1796i 0.0702417 0.995757i
\(372\) 0 0
\(373\) 12.7692i 0.661162i −0.943778 0.330581i \(-0.892755\pi\)
0.943778 0.330581i \(-0.107245\pi\)
\(374\) 0 0
\(375\) 6.93441i 0.358092i
\(376\) 0 0
\(377\) 5.01796i 0.258438i
\(378\) 0 0
\(379\) 13.5309 0.695035 0.347517 0.937674i \(-0.387025\pi\)
0.347517 + 0.937674i \(0.387025\pi\)
\(380\) 0 0
\(381\) 6.75111 0.345870
\(382\) 0 0
\(383\) 15.2577 0.779631 0.389816 0.920893i \(-0.372539\pi\)
0.389816 + 0.920893i \(0.372539\pi\)
\(384\) 0 0
\(385\) −2.25567 0.159117i −0.114960 0.00810936i
\(386\) 0 0
\(387\) 38.0898 1.93621
\(388\) 0 0
\(389\) 37.0967i 1.88088i 0.339961 + 0.940440i \(0.389586\pi\)
−0.339961 + 0.940440i \(0.610414\pi\)
\(390\) 0 0
\(391\) −0.383828 −0.0194110
\(392\) 0 0
\(393\) 8.59419 0.433519
\(394\) 0 0
\(395\) 1.35214i 0.0680333i
\(396\) 0 0
\(397\) 20.1506 1.01133 0.505665 0.862730i \(-0.331247\pi\)
0.505665 + 0.862730i \(0.331247\pi\)
\(398\) 0 0
\(399\) −23.7663 1.67650i −1.18980 0.0839300i
\(400\) 0 0
\(401\) 10.7530 0.536978 0.268489 0.963283i \(-0.413476\pi\)
0.268489 + 0.963283i \(0.413476\pi\)
\(402\) 0 0
\(403\) −8.52830 −0.424825
\(404\) 0 0
\(405\) 1.25215 0.0622198
\(406\) 0 0
\(407\) 23.2722i 1.15356i
\(408\) 0 0
\(409\) 26.9923i 1.33468i −0.744751 0.667342i \(-0.767432\pi\)
0.744751 0.667342i \(-0.232568\pi\)
\(410\) 0 0
\(411\) 44.0999i 2.17529i
\(412\) 0 0
\(413\) 0.442443 6.27214i 0.0217712 0.308632i
\(414\) 0 0
\(415\) 3.63800i 0.178582i
\(416\) 0 0
\(417\) 18.2575 0.894075
\(418\) 0 0
\(419\) 30.1369i 1.47228i −0.676827 0.736142i \(-0.736645\pi\)
0.676827 0.736142i \(-0.263355\pi\)
\(420\) 0 0
\(421\) 4.56828i 0.222644i −0.993784 0.111322i \(-0.964491\pi\)
0.993784 0.111322i \(-0.0355086\pi\)
\(422\) 0 0
\(423\) −29.2893 −1.42409
\(424\) 0 0
\(425\) 5.32981i 0.258534i
\(426\) 0 0
\(427\) 13.6045 + 0.959677i 0.658369 + 0.0464420i
\(428\) 0 0
\(429\) 8.62605i 0.416470i
\(430\) 0 0
\(431\) 40.7375i 1.96225i −0.193362 0.981127i \(-0.561939\pi\)
0.193362 0.981127i \(-0.438061\pi\)
\(432\) 0 0
\(433\) 30.2376i 1.45313i −0.687099 0.726564i \(-0.741116\pi\)
0.687099 0.726564i \(-0.258884\pi\)
\(434\) 0 0
\(435\) −3.50390 −0.167999
\(436\) 0 0
\(437\) 1.20453 0.0576205
\(438\) 0 0
\(439\) 21.0215 1.00330 0.501650 0.865071i \(-0.332727\pi\)
0.501650 + 0.865071i \(0.332727\pi\)
\(440\) 0 0
\(441\) −28.0517 3.97737i −1.33579 0.189399i
\(442\) 0 0
\(443\) 18.9078 0.898337 0.449168 0.893447i \(-0.351720\pi\)
0.449168 + 0.893447i \(0.351720\pi\)
\(444\) 0 0
\(445\) 0.410618i 0.0194651i
\(446\) 0 0
\(447\) 31.3526 1.48293
\(448\) 0 0
\(449\) −17.0089 −0.802699 −0.401349 0.915925i \(-0.631459\pi\)
−0.401349 + 0.915925i \(0.631459\pi\)
\(450\) 0 0
\(451\) 34.9097i 1.64383i
\(452\) 0 0
\(453\) 43.1236 2.02612
\(454\) 0 0
\(455\) 0.694192 + 0.0489690i 0.0325442 + 0.00229570i
\(456\) 0 0
\(457\) 36.5321 1.70890 0.854449 0.519535i \(-0.173895\pi\)
0.854449 + 0.519535i \(0.173895\pi\)
\(458\) 0 0
\(459\) −3.00571 −0.140295
\(460\) 0 0
\(461\) 14.3221 0.667045 0.333523 0.942742i \(-0.391763\pi\)
0.333523 + 0.942742i \(0.391763\pi\)
\(462\) 0 0
\(463\) 24.6893i 1.14741i 0.819062 + 0.573706i \(0.194495\pi\)
−0.819062 + 0.573706i \(0.805505\pi\)
\(464\) 0 0
\(465\) 5.95508i 0.276160i
\(466\) 0 0
\(467\) 7.78833i 0.360401i −0.983630 0.180201i \(-0.942325\pi\)
0.983630 0.180201i \(-0.0576747\pi\)
\(468\) 0 0
\(469\) 0.367292 + 0.0259091i 0.0169599 + 0.00119637i
\(470\) 0 0
\(471\) 18.6709i 0.860308i
\(472\) 0 0
\(473\) −30.5789 −1.40602
\(474\) 0 0
\(475\) 16.7260i 0.767444i
\(476\) 0 0
\(477\) 29.4139i 1.34677i
\(478\) 0 0
\(479\) −21.9355 −1.00226 −0.501129 0.865373i \(-0.667082\pi\)
−0.501129 + 0.865373i \(0.667082\pi\)
\(480\) 0 0
\(481\) 7.16212i 0.326565i
\(482\) 0 0
\(483\) 2.48789 + 0.175498i 0.113203 + 0.00798543i
\(484\) 0 0
\(485\) 1.14700i 0.0520827i
\(486\) 0 0
\(487\) 31.5345i 1.42896i 0.699654 + 0.714482i \(0.253338\pi\)
−0.699654 + 0.714482i \(0.746662\pi\)
\(488\) 0 0
\(489\) 56.3225i 2.54699i
\(490\) 0 0
\(491\) 4.14288 0.186965 0.0934827 0.995621i \(-0.470200\pi\)
0.0934827 + 0.995621i \(0.470200\pi\)
\(492\) 0 0
\(493\) −5.42401 −0.244285
\(494\) 0 0
\(495\) 3.45929 0.155483
\(496\) 0 0
\(497\) 2.42619 34.3941i 0.108830 1.54278i
\(498\) 0 0
\(499\) −5.12089 −0.229243 −0.114621 0.993409i \(-0.536565\pi\)
−0.114621 + 0.993409i \(0.536565\pi\)
\(500\) 0 0
\(501\) 4.07588i 0.182097i
\(502\) 0 0
\(503\) −9.23511 −0.411773 −0.205887 0.978576i \(-0.566008\pi\)
−0.205887 + 0.978576i \(0.566008\pi\)
\(504\) 0 0
\(505\) −0.735182 −0.0327152
\(506\) 0 0
\(507\) 2.65471i 0.117900i
\(508\) 0 0
\(509\) 32.7554 1.45186 0.725928 0.687770i \(-0.241410\pi\)
0.725928 + 0.687770i \(0.241410\pi\)
\(510\) 0 0
\(511\) −2.54289 + 36.0483i −0.112491 + 1.59469i
\(512\) 0 0
\(513\) 9.43254 0.416457
\(514\) 0 0
\(515\) 0.332720 0.0146614
\(516\) 0 0
\(517\) 23.5137 1.03413
\(518\) 0 0
\(519\) 66.4060i 2.91490i
\(520\) 0 0
\(521\) 9.14797i 0.400780i 0.979716 + 0.200390i \(0.0642209\pi\)
−0.979716 + 0.200390i \(0.935779\pi\)
\(522\) 0 0
\(523\) 4.07725i 0.178286i −0.996019 0.0891428i \(-0.971587\pi\)
0.996019 0.0891428i \(-0.0284128\pi\)
\(524\) 0 0
\(525\) −2.43696 + 34.5467i −0.106357 + 1.50774i
\(526\) 0 0
\(527\) 9.21841i 0.401560i
\(528\) 0 0
\(529\) 22.8739 0.994518
\(530\) 0 0
\(531\) 9.61894i 0.417426i
\(532\) 0 0
\(533\) 10.7436i 0.465357i
\(534\) 0 0
\(535\) 0.490976 0.0212267
\(536\) 0 0
\(537\) 25.1073i 1.08346i
\(538\) 0 0
\(539\) 22.5202 + 3.19308i 0.970012 + 0.137536i
\(540\) 0 0
\(541\) 23.1946i 0.997213i 0.866828 + 0.498606i \(0.166155\pi\)
−0.866828 + 0.498606i \(0.833845\pi\)
\(542\) 0 0
\(543\) 14.0851i 0.604450i
\(544\) 0 0
\(545\) 1.02852i 0.0440571i
\(546\) 0 0
\(547\) 29.3397 1.25447 0.627237 0.778829i \(-0.284186\pi\)
0.627237 + 0.778829i \(0.284186\pi\)
\(548\) 0 0
\(549\) −20.8639 −0.890449
\(550\) 0 0
\(551\) 17.0216 0.725147
\(552\) 0 0
\(553\) 0.957027 13.5670i 0.0406969 0.576926i
\(554\) 0 0
\(555\) 5.00111 0.212285
\(556\) 0 0
\(557\) 8.05913i 0.341476i −0.985316 0.170738i \(-0.945385\pi\)
0.985316 0.170738i \(-0.0546152\pi\)
\(558\) 0 0
\(559\) 9.41079 0.398034
\(560\) 0 0
\(561\) 9.32407 0.393662
\(562\) 0 0
\(563\) 19.8374i 0.836045i −0.908437 0.418023i \(-0.862723\pi\)
0.908437 0.418023i \(-0.137277\pi\)
\(564\) 0 0
\(565\) −4.45219 −0.187305
\(566\) 0 0
\(567\) −12.5637 0.886258i −0.527627 0.0372193i
\(568\) 0 0
\(569\) 12.1101 0.507681 0.253840 0.967246i \(-0.418306\pi\)
0.253840 + 0.967246i \(0.418306\pi\)
\(570\) 0 0
\(571\) −5.92712 −0.248042 −0.124021 0.992280i \(-0.539579\pi\)
−0.124021 + 0.992280i \(0.539579\pi\)
\(572\) 0 0
\(573\) −42.0178 −1.75532
\(574\) 0 0
\(575\) 1.75090i 0.0730176i
\(576\) 0 0
\(577\) 24.2713i 1.01043i 0.862994 + 0.505215i \(0.168587\pi\)
−0.862994 + 0.505215i \(0.831413\pi\)
\(578\) 0 0
\(579\) 4.72852i 0.196510i
\(580\) 0 0
\(581\) 2.57493 36.5027i 0.106826 1.51439i
\(582\) 0 0
\(583\) 23.6137i 0.977981i
\(584\) 0 0
\(585\) −1.06461 −0.0440163
\(586\) 0 0
\(587\) 24.6913i 1.01912i 0.860436 + 0.509559i \(0.170191\pi\)
−0.860436 + 0.509559i \(0.829809\pi\)
\(588\) 0 0
\(589\) 28.9293i 1.19201i
\(590\) 0 0
\(591\) 30.8998 1.27105
\(592\) 0 0
\(593\) 27.5409i 1.13097i −0.824759 0.565484i \(-0.808689\pi\)
0.824759 0.565484i \(-0.191311\pi\)
\(594\) 0 0
\(595\) 0.0529316 0.750366i 0.00216998 0.0307620i
\(596\) 0 0
\(597\) 25.6882i 1.05135i
\(598\) 0 0
\(599\) 18.1990i 0.743592i 0.928315 + 0.371796i \(0.121258\pi\)
−0.928315 + 0.371796i \(0.878742\pi\)
\(600\) 0 0
\(601\) 7.13002i 0.290840i 0.989370 + 0.145420i \(0.0464533\pi\)
−0.989370 + 0.145420i \(0.953547\pi\)
\(602\) 0 0
\(603\) −0.563277 −0.0229384
\(604\) 0 0
\(605\) 0.116200 0.00472419
\(606\) 0 0
\(607\) 1.48689 0.0603509 0.0301754 0.999545i \(-0.490393\pi\)
0.0301754 + 0.999545i \(0.490393\pi\)
\(608\) 0 0
\(609\) 35.1572 + 2.48002i 1.42464 + 0.100496i
\(610\) 0 0
\(611\) −7.23645 −0.292756
\(612\) 0 0
\(613\) 26.8238i 1.08340i 0.840571 + 0.541701i \(0.182220\pi\)
−0.840571 + 0.541701i \(0.817780\pi\)
\(614\) 0 0
\(615\) 7.50196 0.302508
\(616\) 0 0
\(617\) −29.6648 −1.19426 −0.597131 0.802144i \(-0.703693\pi\)
−0.597131 + 0.802144i \(0.703693\pi\)
\(618\) 0 0
\(619\) 37.5289i 1.50841i −0.656637 0.754207i \(-0.728022\pi\)
0.656637 0.754207i \(-0.271978\pi\)
\(620\) 0 0
\(621\) −0.987409 −0.0396234
\(622\) 0 0
\(623\) −0.290631 + 4.12003i −0.0116439 + 0.165065i
\(624\) 0 0
\(625\) 23.9670 0.958680
\(626\) 0 0
\(627\) −29.2608 −1.16856
\(628\) 0 0
\(629\) 7.74168 0.308681
\(630\) 0 0
\(631\) 31.6865i 1.26142i 0.776019 + 0.630709i \(0.217236\pi\)
−0.776019 + 0.630709i \(0.782764\pi\)
\(632\) 0 0
\(633\) 34.6731i 1.37813i
\(634\) 0 0
\(635\) 0.668910i 0.0265449i
\(636\) 0 0
\(637\) −6.93068 0.982684i −0.274604 0.0389353i
\(638\) 0 0
\(639\) 52.7467i 2.08663i
\(640\) 0 0
\(641\) −3.11018 −0.122845 −0.0614223 0.998112i \(-0.519564\pi\)
−0.0614223 + 0.998112i \(0.519564\pi\)
\(642\) 0 0
\(643\) 2.89312i 0.114094i 0.998372 + 0.0570468i \(0.0181684\pi\)
−0.998372 + 0.0570468i \(0.981832\pi\)
\(644\) 0 0
\(645\) 6.57130i 0.258745i
\(646\) 0 0
\(647\) 34.2196 1.34531 0.672656 0.739956i \(-0.265154\pi\)
0.672656 + 0.739956i \(0.265154\pi\)
\(648\) 0 0
\(649\) 7.72218i 0.303122i
\(650\) 0 0
\(651\) 4.21494 59.7517i 0.165197 2.34185i
\(652\) 0 0
\(653\) 15.8437i 0.620011i 0.950735 + 0.310006i \(0.100331\pi\)
−0.950735 + 0.310006i \(0.899669\pi\)
\(654\) 0 0
\(655\) 0.851525i 0.0332718i
\(656\) 0 0
\(657\) 55.2837i 2.15682i
\(658\) 0 0
\(659\) 4.94866 0.192773 0.0963863 0.995344i \(-0.469272\pi\)
0.0963863 + 0.995344i \(0.469272\pi\)
\(660\) 0 0
\(661\) −28.6115 −1.11286 −0.556430 0.830895i \(-0.687829\pi\)
−0.556430 + 0.830895i \(0.687829\pi\)
\(662\) 0 0
\(663\) −2.86952 −0.111443
\(664\) 0 0
\(665\) −0.166110 + 2.35480i −0.00644147 + 0.0913153i
\(666\) 0 0
\(667\) −1.78184 −0.0689933
\(668\) 0 0
\(669\) 32.5179i 1.25721i
\(670\) 0 0
\(671\) 16.7497 0.646616
\(672\) 0 0
\(673\) 40.1335 1.54703 0.773516 0.633777i \(-0.218496\pi\)
0.773516 + 0.633777i \(0.218496\pi\)
\(674\) 0 0
\(675\) 13.7111i 0.527741i
\(676\) 0 0
\(677\) −26.6691 −1.02498 −0.512489 0.858694i \(-0.671276\pi\)
−0.512489 + 0.858694i \(0.671276\pi\)
\(678\) 0 0
\(679\) 0.811837 11.5087i 0.0311554 0.441664i
\(680\) 0 0
\(681\) 11.5321 0.441910
\(682\) 0 0
\(683\) −22.2590 −0.851715 −0.425858 0.904790i \(-0.640028\pi\)
−0.425858 + 0.904790i \(0.640028\pi\)
\(684\) 0 0
\(685\) 4.36948 0.166949
\(686\) 0 0
\(687\) 48.6632i 1.85662i
\(688\) 0 0
\(689\) 7.26724i 0.276860i
\(690\) 0 0
\(691\) 4.33250i 0.164816i −0.996599 0.0824080i \(-0.973739\pi\)
0.996599 0.0824080i \(-0.0262611\pi\)
\(692\) 0 0
\(693\) −34.7096 2.44845i −1.31851 0.0930088i
\(694\) 0 0
\(695\) 1.80898i 0.0686186i
\(696\) 0 0
\(697\) 11.6130 0.439873
\(698\) 0 0
\(699\) 45.1055i 1.70605i
\(700\) 0 0
\(701\) 3.32697i 0.125658i 0.998024 + 0.0628289i \(0.0200122\pi\)
−0.998024 + 0.0628289i \(0.979988\pi\)
\(702\) 0 0
\(703\) −24.2950 −0.916302
\(704\) 0 0
\(705\) 5.05302i 0.190308i
\(706\) 0 0
\(707\) 7.37662 + 0.520354i 0.277426 + 0.0195699i
\(708\) 0 0
\(709\) 17.0704i 0.641093i 0.947233 + 0.320546i \(0.103866\pi\)
−0.947233 + 0.320546i \(0.896134\pi\)
\(710\) 0 0
\(711\) 20.8063i 0.780296i
\(712\) 0 0
\(713\) 3.02835i 0.113412i
\(714\) 0 0
\(715\) 0.854681 0.0319633
\(716\) 0 0
\(717\) 43.0716 1.60854
\(718\) 0 0
\(719\) 7.05544 0.263124 0.131562 0.991308i \(-0.458001\pi\)
0.131562 + 0.991308i \(0.458001\pi\)
\(720\) 0 0
\(721\) −3.33842 0.235495i −0.124329 0.00877031i
\(722\) 0 0
\(723\) −74.7985 −2.78179
\(724\) 0 0
\(725\) 24.7426i 0.918918i
\(726\) 0 0
\(727\) −40.2279 −1.49197 −0.745986 0.665962i \(-0.768021\pi\)
−0.745986 + 0.665962i \(0.768021\pi\)
\(728\) 0 0
\(729\) 41.4135 1.53383
\(730\) 0 0
\(731\) 10.1723i 0.376236i
\(732\) 0 0
\(733\) 2.65544 0.0980807 0.0490404 0.998797i \(-0.484384\pi\)
0.0490404 + 0.998797i \(0.484384\pi\)
\(734\) 0 0
\(735\) −0.686181 + 4.83950i −0.0253102 + 0.178508i
\(736\) 0 0
\(737\) 0.452205 0.0166572
\(738\) 0 0
\(739\) 39.2616 1.44426 0.722130 0.691757i \(-0.243163\pi\)
0.722130 + 0.691757i \(0.243163\pi\)
\(740\) 0 0
\(741\) 9.00515 0.330812
\(742\) 0 0
\(743\) 17.2808i 0.633973i −0.948430 0.316986i \(-0.897329\pi\)
0.948430 0.316986i \(-0.102671\pi\)
\(744\) 0 0
\(745\) 3.10646i 0.113812i
\(746\) 0 0
\(747\) 55.9804i 2.04822i
\(748\) 0 0
\(749\) −4.92632 0.347507i −0.180004 0.0126976i
\(750\) 0 0
\(751\) 20.6714i 0.754311i 0.926150 + 0.377156i \(0.123098\pi\)
−0.926150 + 0.377156i \(0.876902\pi\)
\(752\) 0 0
\(753\) 3.95126 0.143992
\(754\) 0 0
\(755\) 4.27275i 0.155501i
\(756\) 0 0
\(757\) 30.7999i 1.11944i 0.828681 + 0.559721i \(0.189092\pi\)
−0.828681 + 0.559721i \(0.810908\pi\)
\(758\) 0 0
\(759\) 3.06305 0.111182
\(760\) 0 0
\(761\) 0.263604i 0.00955563i −0.999989 0.00477781i \(-0.998479\pi\)
0.999989 0.00477781i \(-0.00152083\pi\)
\(762\) 0 0
\(763\) 0.727977 10.3199i 0.0263546 0.373606i
\(764\) 0 0
\(765\) 1.15076i 0.0416058i
\(766\) 0 0
\(767\) 2.37654i 0.0858118i
\(768\) 0 0
\(769\) 15.8573i 0.571827i −0.958255 0.285914i \(-0.907703\pi\)
0.958255 0.285914i \(-0.0922971\pi\)
\(770\) 0 0
\(771\) −7.21061 −0.259684
\(772\) 0 0
\(773\) 42.5274 1.52961 0.764803 0.644264i \(-0.222836\pi\)
0.764803 + 0.644264i \(0.222836\pi\)
\(774\) 0 0
\(775\) −42.0515 −1.51053
\(776\) 0 0
\(777\) −50.1798 3.53973i −1.80019 0.126987i
\(778\) 0 0
\(779\) −36.4439 −1.30574
\(780\) 0 0
\(781\) 42.3456i 1.51524i
\(782\) 0 0
\(783\) −13.9534 −0.498655
\(784\) 0 0
\(785\) 1.84994 0.0660271
\(786\) 0 0
\(787\) 31.7124i 1.13042i 0.824946 + 0.565212i \(0.191206\pi\)
−0.824946 + 0.565212i \(0.808794\pi\)
\(788\) 0 0
\(789\) −13.1531 −0.468264
\(790\) 0 0
\(791\) 44.6721 + 3.15121i 1.58836 + 0.112044i
\(792\) 0 0
\(793\) −5.15481 −0.183053
\(794\) 0 0
\(795\) 5.07451 0.179974
\(796\) 0 0
\(797\) −29.4187 −1.04206 −0.521032 0.853537i \(-0.674453\pi\)
−0.521032 + 0.853537i \(0.674453\pi\)
\(798\) 0 0
\(799\) 7.82203i 0.276723i
\(800\) 0 0
\(801\) 6.31846i 0.223252i
\(802\) 0 0
\(803\) 44.3823i 1.56622i
\(804\) 0 0
\(805\) 0.0173886 0.246503i 0.000612867 0.00868810i
\(806\) 0 0
\(807\) 7.26359i 0.255690i
\(808\) 0 0
\(809\) 15.9671 0.561372 0.280686 0.959800i \(-0.409438\pi\)
0.280686 + 0.959800i \(0.409438\pi\)
\(810\) 0 0
\(811\) 34.9759i 1.22817i −0.789240 0.614085i \(-0.789525\pi\)
0.789240 0.614085i \(-0.210475\pi\)
\(812\) 0 0
\(813\) 26.3014i 0.922430i
\(814\) 0 0
\(815\) −5.58051 −0.195477
\(816\) 0 0
\(817\) 31.9228i 1.11684i
\(818\) 0 0
\(819\) 10.6820 + 0.753521i 0.373260 + 0.0263301i
\(820\) 0 0
\(821\) 15.2396i 0.531866i 0.963992 + 0.265933i \(0.0856800\pi\)
−0.963992 + 0.265933i \(0.914320\pi\)
\(822\) 0 0
\(823\) 3.15705i 0.110048i −0.998485 0.0550240i \(-0.982476\pi\)
0.998485 0.0550240i \(-0.0175235\pi\)
\(824\) 0 0
\(825\) 42.5334i 1.48082i
\(826\) 0 0
\(827\) 7.84543 0.272812 0.136406 0.990653i \(-0.456445\pi\)
0.136406 + 0.990653i \(0.456445\pi\)
\(828\) 0 0
\(829\) −17.3837 −0.603759 −0.301880 0.953346i \(-0.597614\pi\)
−0.301880 + 0.953346i \(0.597614\pi\)
\(830\) 0 0
\(831\) 68.1543 2.36425
\(832\) 0 0
\(833\) −1.06220 + 7.49151i −0.0368031 + 0.259565i
\(834\) 0 0
\(835\) −0.403844 −0.0139756
\(836\) 0 0
\(837\) 23.7147i 0.819698i
\(838\) 0 0
\(839\) −29.8626 −1.03097 −0.515485 0.856899i \(-0.672388\pi\)
−0.515485 + 0.856899i \(0.672388\pi\)
\(840\) 0 0
\(841\) 3.82011 0.131728
\(842\) 0 0
\(843\) 77.8796i 2.68232i
\(844\) 0 0
\(845\) −0.263032 −0.00904858
\(846\) 0 0
\(847\) −1.16592 0.0822449i −0.0400614 0.00282597i
\(848\) 0 0
\(849\) 13.3177 0.457061
\(850\) 0 0
\(851\) 2.54322 0.0871806
\(852\) 0 0
\(853\) −43.9029 −1.50321 −0.751603 0.659616i \(-0.770719\pi\)
−0.751603 + 0.659616i \(0.770719\pi\)
\(854\) 0 0
\(855\) 3.61132i 0.123505i
\(856\) 0 0
\(857\) 46.9619i 1.60419i 0.597198 + 0.802093i \(0.296280\pi\)
−0.597198 + 0.802093i \(0.703720\pi\)
\(858\) 0 0
\(859\) 10.5370i 0.359519i 0.983711 + 0.179759i \(0.0575319\pi\)
−0.983711 + 0.179759i \(0.942468\pi\)
\(860\) 0 0
\(861\) −75.2727 5.30981i −2.56529 0.180958i
\(862\) 0 0
\(863\) 36.1116i 1.22925i −0.788818 0.614627i \(-0.789307\pi\)
0.788818 0.614627i \(-0.210693\pi\)
\(864\) 0 0
\(865\) 6.57960 0.223713
\(866\) 0 0
\(867\) 42.0283i 1.42735i
\(868\) 0 0
\(869\) 16.7035i 0.566627i
\(870\) 0 0
\(871\) −0.139168 −0.00471553
\(872\) 0 0
\(873\) 17.6498i 0.597354i
\(874\) 0 0
\(875\) 6.89389 + 0.486302i 0.233056 + 0.0164400i
\(876\) 0 0
\(877\) 46.3298i 1.56445i 0.622999 + 0.782223i \(0.285914\pi\)
−0.622999 + 0.782223i \(0.714086\pi\)
\(878\) 0 0
\(879\) 65.6259i 2.21351i
\(880\) 0 0
\(881\) 13.7892i 0.464572i −0.972648 0.232286i \(-0.925380\pi\)
0.972648 0.232286i \(-0.0746205\pi\)
\(882\) 0 0
\(883\) −2.51811 −0.0847410 −0.0423705 0.999102i \(-0.513491\pi\)
−0.0423705 + 0.999102i \(0.513491\pi\)
\(884\) 0 0
\(885\) 1.65947 0.0557825
\(886\) 0 0
\(887\) −44.1632 −1.48286 −0.741428 0.671032i \(-0.765851\pi\)
−0.741428 + 0.671032i \(0.765851\pi\)
\(888\) 0 0
\(889\) −0.473447 + 6.71166i −0.0158789 + 0.225102i
\(890\) 0 0
\(891\) −15.4683 −0.518208
\(892\) 0 0
\(893\) 24.5471i 0.821438i
\(894\) 0 0
\(895\) 2.48766 0.0831534
\(896\) 0 0
\(897\) −0.942669 −0.0314748
\(898\) 0 0
\(899\) 42.7947i 1.42728i
\(900\) 0 0
\(901\) 7.85530 0.261698
\(902\) 0 0
\(903\) −4.65109 + 65.9346i −0.154779 + 2.19417i
\(904\) 0 0
\(905\) 1.39557 0.0463904
\(906\) 0 0
\(907\) 6.25761 0.207781 0.103890 0.994589i \(-0.466871\pi\)
0.103890 + 0.994589i \(0.466871\pi\)
\(908\) 0 0
\(909\) −11.3128 −0.375221
\(910\) 0 0
\(911\) 38.5455i 1.27707i 0.769593 + 0.638535i \(0.220459\pi\)
−0.769593 + 0.638535i \(0.779541\pi\)
\(912\) 0 0
\(913\) 44.9417i 1.48735i
\(914\) 0 0
\(915\) 3.59946i 0.118994i
\(916\) 0 0
\(917\) −0.602700 + 8.54397i −0.0199029 + 0.282147i
\(918\) 0 0
\(919\) 8.55676i 0.282262i 0.989991 + 0.141131i \(0.0450738\pi\)
−0.989991 + 0.141131i \(0.954926\pi\)
\(920\) 0 0
\(921\) 68.6952 2.26358
\(922\) 0 0
\(923\) 13.0320i 0.428955i
\(924\) 0 0
\(925\) 35.3151i 1.16115i
\(926\) 0 0
\(927\) 5.11979 0.168156
\(928\) 0 0
\(929\) 38.4316i 1.26090i 0.776230 + 0.630449i \(0.217129\pi\)
−0.776230 + 0.630449i \(0.782871\pi\)
\(930\) 0 0
\(931\) 3.33341 23.5099i 0.109248 0.770505i
\(932\) 0 0
\(933\) 23.6040i 0.772759i
\(934\) 0 0
\(935\) 0.923842i 0.0302129i
\(936\) 0 0
\(937\) 42.8173i 1.39878i −0.714740 0.699390i \(-0.753455\pi\)
0.714740 0.699390i \(-0.246545\pi\)
\(938\) 0 0
\(939\) 51.2408 1.67218
\(940\) 0 0
\(941\) 53.0715 1.73008 0.865040 0.501702i \(-0.167293\pi\)
0.865040 + 0.501702i \(0.167293\pi\)
\(942\) 0 0
\(943\) 3.81498 0.124233
\(944\) 0 0
\(945\) 0.136168 1.93034i 0.00442955 0.0627940i
\(946\) 0 0
\(947\) 21.3987 0.695365 0.347682 0.937612i \(-0.386969\pi\)
0.347682 + 0.937612i \(0.386969\pi\)
\(948\) 0 0
\(949\) 13.6589i 0.443385i
\(950\) 0 0
\(951\) 20.1373 0.652997
\(952\) 0 0
\(953\) −54.3274 −1.75984 −0.879919 0.475124i \(-0.842403\pi\)
−0.879919 + 0.475124i \(0.842403\pi\)
\(954\) 0 0
\(955\) 4.16319i 0.134718i
\(956\) 0 0
\(957\) 43.2851 1.39921
\(958\) 0 0
\(959\) −43.8422 3.09267i −1.41574 0.0998677i
\(960\) 0 0
\(961\) 41.7320 1.34619
\(962\) 0 0
\(963\) 7.55499 0.243456
\(964\) 0 0
\(965\) −0.468508 −0.0150818
\(966\) 0 0
\(967\) 46.1350i 1.48360i 0.670620 + 0.741801i \(0.266028\pi\)
−0.670620 + 0.741801i \(0.733972\pi\)
\(968\) 0 0
\(969\) 9.73385i 0.312696i
\(970\) 0 0
\(971\) 26.8761i 0.862496i −0.902233 0.431248i \(-0.858073\pi\)
0.902233 0.431248i \(-0.141927\pi\)
\(972\) 0 0
\(973\) −1.28038 + 18.1508i −0.0410470 + 0.581889i
\(974\) 0 0
\(975\) 13.0899i 0.419211i
\(976\) 0 0
\(977\) 4.48165 0.143381 0.0716903 0.997427i \(-0.477161\pi\)
0.0716903 + 0.997427i \(0.477161\pi\)
\(978\) 0 0
\(979\) 5.07253i 0.162119i
\(980\) 0 0
\(981\) 15.8266i 0.505305i
\(982\) 0 0
\(983\) −14.8553 −0.473809 −0.236905 0.971533i \(-0.576133\pi\)
−0.236905 + 0.971533i \(0.576133\pi\)
\(984\) 0 0
\(985\) 3.06160i 0.0975506i
\(986\) 0 0
\(987\) 3.57647 50.7006i 0.113840 1.61382i
\(988\) 0 0
\(989\) 3.34171i 0.106260i
\(990\) 0 0
\(991\) 0.597856i 0.0189915i −0.999955 0.00949576i \(-0.996977\pi\)
0.999955 0.00949576i \(-0.00302264\pi\)
\(992\) 0 0
\(993\) 72.7943i 2.31006i
\(994\) 0 0
\(995\) −2.54522 −0.0806890
\(996\) 0 0
\(997\) 26.8353 0.849884 0.424942 0.905221i \(-0.360294\pi\)
0.424942 + 0.905221i \(0.360294\pi\)
\(998\) 0 0
\(999\) 19.9157 0.630105
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.a.2575.6 48
4.3 odd 2 728.2.h.a.27.33 48
7.6 odd 2 2912.2.h.b.2575.43 48
8.3 odd 2 2912.2.h.b.2575.6 48
8.5 even 2 728.2.h.b.27.34 yes 48
28.27 even 2 728.2.h.b.27.33 yes 48
56.13 odd 2 728.2.h.a.27.34 yes 48
56.27 even 2 inner 2912.2.h.a.2575.43 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.33 48 4.3 odd 2
728.2.h.a.27.34 yes 48 56.13 odd 2
728.2.h.b.27.33 yes 48 28.27 even 2
728.2.h.b.27.34 yes 48 8.5 even 2
2912.2.h.a.2575.6 48 1.1 even 1 trivial
2912.2.h.a.2575.43 48 56.27 even 2 inner
2912.2.h.b.2575.6 48 8.3 odd 2
2912.2.h.b.2575.43 48 7.6 odd 2