Properties

Label 2912.2.h.a.2575.5
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(2575,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.2575"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,-48,0,4,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.5
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.a.2575.44

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.89173i q^{3} -2.33723 q^{5} +(1.68858 + 2.03684i) q^{7} -5.36210 q^{9} -0.460555 q^{11} -1.00000 q^{13} +6.75863i q^{15} -5.97523i q^{17} -7.60833i q^{19} +(5.88998 - 4.88291i) q^{21} -4.22795i q^{23} +0.462642 q^{25} +6.83054i q^{27} +3.86435i q^{29} -5.75982 q^{31} +1.33180i q^{33} +(-3.94659 - 4.76056i) q^{35} -2.44158i q^{37} +2.89173i q^{39} +8.80574i q^{41} +5.08694 q^{43} +12.5325 q^{45} +2.29606 q^{47} +(-1.29742 + 6.87871i) q^{49} -17.2788 q^{51} +8.79106i q^{53} +1.07642 q^{55} -22.0012 q^{57} +7.52488i q^{59} -0.719026 q^{61} +(-9.05431 - 10.9217i) q^{63} +2.33723 q^{65} -14.3569 q^{67} -12.2261 q^{69} +12.9030i q^{71} -4.52589i q^{73} -1.33784i q^{75} +(-0.777683 - 0.938076i) q^{77} -10.7927i q^{79} +3.66579 q^{81} +5.97421i q^{83} +13.9655i q^{85} +11.1746 q^{87} -2.78912i q^{89} +(-1.68858 - 2.03684i) q^{91} +16.6558i q^{93} +17.7824i q^{95} +9.23618i q^{97} +2.46954 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} - 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} + 24 q^{45} + 40 q^{51} - 20 q^{63} + 4 q^{67} - 20 q^{77} + 64 q^{81} + 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.89173i 1.66954i −0.550598 0.834770i \(-0.685600\pi\)
0.550598 0.834770i \(-0.314400\pi\)
\(4\) 0 0
\(5\) −2.33723 −1.04524 −0.522620 0.852565i \(-0.675045\pi\)
−0.522620 + 0.852565i \(0.675045\pi\)
\(6\) 0 0
\(7\) 1.68858 + 2.03684i 0.638222 + 0.769852i
\(8\) 0 0
\(9\) −5.36210 −1.78737
\(10\) 0 0
\(11\) −0.460555 −0.138863 −0.0694313 0.997587i \(-0.522118\pi\)
−0.0694313 + 0.997587i \(0.522118\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 6.75863i 1.74507i
\(16\) 0 0
\(17\) 5.97523i 1.44921i −0.689166 0.724603i \(-0.742023\pi\)
0.689166 0.724603i \(-0.257977\pi\)
\(18\) 0 0
\(19\) 7.60833i 1.74547i −0.488195 0.872735i \(-0.662344\pi\)
0.488195 0.872735i \(-0.337656\pi\)
\(20\) 0 0
\(21\) 5.88998 4.88291i 1.28530 1.06554i
\(22\) 0 0
\(23\) 4.22795i 0.881589i −0.897608 0.440795i \(-0.854697\pi\)
0.897608 0.440795i \(-0.145303\pi\)
\(24\) 0 0
\(25\) 0.462642 0.0925284
\(26\) 0 0
\(27\) 6.83054i 1.31454i
\(28\) 0 0
\(29\) 3.86435i 0.717591i 0.933416 + 0.358795i \(0.116812\pi\)
−0.933416 + 0.358795i \(0.883188\pi\)
\(30\) 0 0
\(31\) −5.75982 −1.03449 −0.517247 0.855836i \(-0.673043\pi\)
−0.517247 + 0.855836i \(0.673043\pi\)
\(32\) 0 0
\(33\) 1.33180i 0.231837i
\(34\) 0 0
\(35\) −3.94659 4.76056i −0.667096 0.804681i
\(36\) 0 0
\(37\) 2.44158i 0.401394i −0.979653 0.200697i \(-0.935679\pi\)
0.979653 0.200697i \(-0.0643206\pi\)
\(38\) 0 0
\(39\) 2.89173i 0.463047i
\(40\) 0 0
\(41\) 8.80574i 1.37523i 0.726077 + 0.687613i \(0.241341\pi\)
−0.726077 + 0.687613i \(0.758659\pi\)
\(42\) 0 0
\(43\) 5.08694 0.775751 0.387875 0.921712i \(-0.373209\pi\)
0.387875 + 0.921712i \(0.373209\pi\)
\(44\) 0 0
\(45\) 12.5325 1.86823
\(46\) 0 0
\(47\) 2.29606 0.334914 0.167457 0.985879i \(-0.446444\pi\)
0.167457 + 0.985879i \(0.446444\pi\)
\(48\) 0 0
\(49\) −1.29742 + 6.87871i −0.185345 + 0.982673i
\(50\) 0 0
\(51\) −17.2788 −2.41951
\(52\) 0 0
\(53\) 8.79106i 1.20754i 0.797157 + 0.603772i \(0.206336\pi\)
−0.797157 + 0.603772i \(0.793664\pi\)
\(54\) 0 0
\(55\) 1.07642 0.145145
\(56\) 0 0
\(57\) −22.0012 −2.91413
\(58\) 0 0
\(59\) 7.52488i 0.979657i 0.871819 + 0.489828i \(0.162941\pi\)
−0.871819 + 0.489828i \(0.837059\pi\)
\(60\) 0 0
\(61\) −0.719026 −0.0920619 −0.0460310 0.998940i \(-0.514657\pi\)
−0.0460310 + 0.998940i \(0.514657\pi\)
\(62\) 0 0
\(63\) −9.05431 10.9217i −1.14074 1.37601i
\(64\) 0 0
\(65\) 2.33723 0.289898
\(66\) 0 0
\(67\) −14.3569 −1.75397 −0.876985 0.480518i \(-0.840449\pi\)
−0.876985 + 0.480518i \(0.840449\pi\)
\(68\) 0 0
\(69\) −12.2261 −1.47185
\(70\) 0 0
\(71\) 12.9030i 1.53131i 0.643253 + 0.765654i \(0.277584\pi\)
−0.643253 + 0.765654i \(0.722416\pi\)
\(72\) 0 0
\(73\) 4.52589i 0.529716i −0.964287 0.264858i \(-0.914675\pi\)
0.964287 0.264858i \(-0.0853250\pi\)
\(74\) 0 0
\(75\) 1.33784i 0.154480i
\(76\) 0 0
\(77\) −0.777683 0.938076i −0.0886252 0.106904i
\(78\) 0 0
\(79\) 10.7927i 1.21427i −0.794597 0.607137i \(-0.792318\pi\)
0.794597 0.607137i \(-0.207682\pi\)
\(80\) 0 0
\(81\) 3.66579 0.407310
\(82\) 0 0
\(83\) 5.97421i 0.655754i 0.944720 + 0.327877i \(0.106333\pi\)
−0.944720 + 0.327877i \(0.893667\pi\)
\(84\) 0 0
\(85\) 13.9655i 1.51477i
\(86\) 0 0
\(87\) 11.1746 1.19805
\(88\) 0 0
\(89\) 2.78912i 0.295646i −0.989014 0.147823i \(-0.952773\pi\)
0.989014 0.147823i \(-0.0472266\pi\)
\(90\) 0 0
\(91\) −1.68858 2.03684i −0.177011 0.213519i
\(92\) 0 0
\(93\) 16.6558i 1.72713i
\(94\) 0 0
\(95\) 17.7824i 1.82444i
\(96\) 0 0
\(97\) 9.23618i 0.937792i 0.883253 + 0.468896i \(0.155348\pi\)
−0.883253 + 0.468896i \(0.844652\pi\)
\(98\) 0 0
\(99\) 2.46954 0.248198
\(100\) 0 0
\(101\) 2.22913 0.221807 0.110903 0.993831i \(-0.464626\pi\)
0.110903 + 0.993831i \(0.464626\pi\)
\(102\) 0 0
\(103\) −4.08568 −0.402574 −0.201287 0.979532i \(-0.564512\pi\)
−0.201287 + 0.979532i \(0.564512\pi\)
\(104\) 0 0
\(105\) −13.7662 + 11.4125i −1.34345 + 1.11374i
\(106\) 0 0
\(107\) −5.04195 −0.487424 −0.243712 0.969848i \(-0.578365\pi\)
−0.243712 + 0.969848i \(0.578365\pi\)
\(108\) 0 0
\(109\) 9.75771i 0.934619i 0.884094 + 0.467310i \(0.154777\pi\)
−0.884094 + 0.467310i \(0.845223\pi\)
\(110\) 0 0
\(111\) −7.06039 −0.670143
\(112\) 0 0
\(113\) −13.8892 −1.30658 −0.653292 0.757106i \(-0.726613\pi\)
−0.653292 + 0.757106i \(0.726613\pi\)
\(114\) 0 0
\(115\) 9.88170i 0.921473i
\(116\) 0 0
\(117\) 5.36210 0.495726
\(118\) 0 0
\(119\) 12.1706 10.0896i 1.11568 0.924916i
\(120\) 0 0
\(121\) −10.7879 −0.980717
\(122\) 0 0
\(123\) 25.4638 2.29600
\(124\) 0 0
\(125\) 10.6048 0.948526
\(126\) 0 0
\(127\) 8.16487i 0.724515i −0.932078 0.362258i \(-0.882006\pi\)
0.932078 0.362258i \(-0.117994\pi\)
\(128\) 0 0
\(129\) 14.7100i 1.29515i
\(130\) 0 0
\(131\) 8.02619i 0.701251i 0.936516 + 0.350626i \(0.114031\pi\)
−0.936516 + 0.350626i \(0.885969\pi\)
\(132\) 0 0
\(133\) 15.4969 12.8472i 1.34375 1.11400i
\(134\) 0 0
\(135\) 15.9645i 1.37401i
\(136\) 0 0
\(137\) 19.9925 1.70807 0.854036 0.520213i \(-0.174147\pi\)
0.854036 + 0.520213i \(0.174147\pi\)
\(138\) 0 0
\(139\) 11.4025i 0.967151i −0.875303 0.483575i \(-0.839338\pi\)
0.875303 0.483575i \(-0.160662\pi\)
\(140\) 0 0
\(141\) 6.63957i 0.559153i
\(142\) 0 0
\(143\) 0.460555 0.0385136
\(144\) 0 0
\(145\) 9.03186i 0.750055i
\(146\) 0 0
\(147\) 19.8914 + 3.75178i 1.64061 + 0.309441i
\(148\) 0 0
\(149\) 18.0784i 1.48104i 0.672034 + 0.740520i \(0.265421\pi\)
−0.672034 + 0.740520i \(0.734579\pi\)
\(150\) 0 0
\(151\) 11.3424i 0.923034i −0.887131 0.461517i \(-0.847305\pi\)
0.887131 0.461517i \(-0.152695\pi\)
\(152\) 0 0
\(153\) 32.0398i 2.59026i
\(154\) 0 0
\(155\) 13.4620 1.08129
\(156\) 0 0
\(157\) −6.53188 −0.521300 −0.260650 0.965433i \(-0.583937\pi\)
−0.260650 + 0.965433i \(0.583937\pi\)
\(158\) 0 0
\(159\) 25.4214 2.01604
\(160\) 0 0
\(161\) 8.61165 7.13922i 0.678693 0.562650i
\(162\) 0 0
\(163\) −0.694265 −0.0543790 −0.0271895 0.999630i \(-0.508656\pi\)
−0.0271895 + 0.999630i \(0.508656\pi\)
\(164\) 0 0
\(165\) 3.11272i 0.242325i
\(166\) 0 0
\(167\) −24.4164 −1.88940 −0.944698 0.327943i \(-0.893645\pi\)
−0.944698 + 0.327943i \(0.893645\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 40.7966i 3.11979i
\(172\) 0 0
\(173\) −11.0202 −0.837854 −0.418927 0.908020i \(-0.637594\pi\)
−0.418927 + 0.908020i \(0.637594\pi\)
\(174\) 0 0
\(175\) 0.781207 + 0.942327i 0.0590537 + 0.0712332i
\(176\) 0 0
\(177\) 21.7599 1.63558
\(178\) 0 0
\(179\) −3.68730 −0.275602 −0.137801 0.990460i \(-0.544003\pi\)
−0.137801 + 0.990460i \(0.544003\pi\)
\(180\) 0 0
\(181\) −0.0892583 −0.00663452 −0.00331726 0.999994i \(-0.501056\pi\)
−0.00331726 + 0.999994i \(0.501056\pi\)
\(182\) 0 0
\(183\) 2.07923i 0.153701i
\(184\) 0 0
\(185\) 5.70654i 0.419553i
\(186\) 0 0
\(187\) 2.75192i 0.201241i
\(188\) 0 0
\(189\) −13.9127 + 11.5339i −1.01200 + 0.838967i
\(190\) 0 0
\(191\) 6.12726i 0.443353i 0.975120 + 0.221676i \(0.0711528\pi\)
−0.975120 + 0.221676i \(0.928847\pi\)
\(192\) 0 0
\(193\) 23.5775 1.69715 0.848573 0.529078i \(-0.177462\pi\)
0.848573 + 0.529078i \(0.177462\pi\)
\(194\) 0 0
\(195\) 6.75863i 0.483996i
\(196\) 0 0
\(197\) 19.7177i 1.40483i −0.711769 0.702414i \(-0.752106\pi\)
0.711769 0.702414i \(-0.247894\pi\)
\(198\) 0 0
\(199\) −11.4515 −0.811773 −0.405886 0.913924i \(-0.633037\pi\)
−0.405886 + 0.913924i \(0.633037\pi\)
\(200\) 0 0
\(201\) 41.5162i 2.92832i
\(202\) 0 0
\(203\) −7.87104 + 6.52524i −0.552439 + 0.457982i
\(204\) 0 0
\(205\) 20.5810i 1.43744i
\(206\) 0 0
\(207\) 22.6707i 1.57572i
\(208\) 0 0
\(209\) 3.50405i 0.242380i
\(210\) 0 0
\(211\) −17.9521 −1.23588 −0.617938 0.786227i \(-0.712032\pi\)
−0.617938 + 0.786227i \(0.712032\pi\)
\(212\) 0 0
\(213\) 37.3120 2.55658
\(214\) 0 0
\(215\) −11.8893 −0.810846
\(216\) 0 0
\(217\) −9.72589 11.7318i −0.660236 0.796407i
\(218\) 0 0
\(219\) −13.0877 −0.884382
\(220\) 0 0
\(221\) 5.97523i 0.401938i
\(222\) 0 0
\(223\) −9.20542 −0.616440 −0.308220 0.951315i \(-0.599733\pi\)
−0.308220 + 0.951315i \(0.599733\pi\)
\(224\) 0 0
\(225\) −2.48073 −0.165382
\(226\) 0 0
\(227\) 21.3197i 1.41504i −0.706694 0.707520i \(-0.749814\pi\)
0.706694 0.707520i \(-0.250186\pi\)
\(228\) 0 0
\(229\) 18.3650 1.21359 0.606796 0.794858i \(-0.292455\pi\)
0.606796 + 0.794858i \(0.292455\pi\)
\(230\) 0 0
\(231\) −2.71266 + 2.24885i −0.178480 + 0.147963i
\(232\) 0 0
\(233\) −5.80479 −0.380284 −0.190142 0.981757i \(-0.560895\pi\)
−0.190142 + 0.981757i \(0.560895\pi\)
\(234\) 0 0
\(235\) −5.36641 −0.350066
\(236\) 0 0
\(237\) −31.2096 −2.02728
\(238\) 0 0
\(239\) 22.3151i 1.44344i 0.692184 + 0.721721i \(0.256649\pi\)
−0.692184 + 0.721721i \(0.743351\pi\)
\(240\) 0 0
\(241\) 2.48560i 0.160112i −0.996790 0.0800558i \(-0.974490\pi\)
0.996790 0.0800558i \(-0.0255098\pi\)
\(242\) 0 0
\(243\) 9.89116i 0.634518i
\(244\) 0 0
\(245\) 3.03236 16.0771i 0.193730 1.02713i
\(246\) 0 0
\(247\) 7.60833i 0.484106i
\(248\) 0 0
\(249\) 17.2758 1.09481
\(250\) 0 0
\(251\) 6.05862i 0.382417i 0.981549 + 0.191208i \(0.0612406\pi\)
−0.981549 + 0.191208i \(0.938759\pi\)
\(252\) 0 0
\(253\) 1.94721i 0.122420i
\(254\) 0 0
\(255\) 40.3844 2.52897
\(256\) 0 0
\(257\) 13.5211i 0.843423i −0.906730 0.421712i \(-0.861429\pi\)
0.906730 0.421712i \(-0.138571\pi\)
\(258\) 0 0
\(259\) 4.97311 4.12280i 0.309014 0.256178i
\(260\) 0 0
\(261\) 20.7210i 1.28260i
\(262\) 0 0
\(263\) 17.7537i 1.09474i 0.836891 + 0.547369i \(0.184371\pi\)
−0.836891 + 0.547369i \(0.815629\pi\)
\(264\) 0 0
\(265\) 20.5467i 1.26218i
\(266\) 0 0
\(267\) −8.06537 −0.493593
\(268\) 0 0
\(269\) −19.6335 −1.19708 −0.598539 0.801093i \(-0.704252\pi\)
−0.598539 + 0.801093i \(0.704252\pi\)
\(270\) 0 0
\(271\) 20.4513 1.24233 0.621164 0.783681i \(-0.286660\pi\)
0.621164 + 0.783681i \(0.286660\pi\)
\(272\) 0 0
\(273\) −5.88998 + 4.88291i −0.356478 + 0.295527i
\(274\) 0 0
\(275\) −0.213072 −0.0128487
\(276\) 0 0
\(277\) 8.40932i 0.505267i −0.967562 0.252633i \(-0.918703\pi\)
0.967562 0.252633i \(-0.0812967\pi\)
\(278\) 0 0
\(279\) 30.8847 1.84902
\(280\) 0 0
\(281\) −3.68325 −0.219724 −0.109862 0.993947i \(-0.535041\pi\)
−0.109862 + 0.993947i \(0.535041\pi\)
\(282\) 0 0
\(283\) 18.7946i 1.11723i −0.829428 0.558613i \(-0.811334\pi\)
0.829428 0.558613i \(-0.188666\pi\)
\(284\) 0 0
\(285\) 51.4219 3.04597
\(286\) 0 0
\(287\) −17.9359 + 14.8692i −1.05872 + 0.877700i
\(288\) 0 0
\(289\) −18.7034 −1.10020
\(290\) 0 0
\(291\) 26.7085 1.56568
\(292\) 0 0
\(293\) −1.11257 −0.0649972 −0.0324986 0.999472i \(-0.510346\pi\)
−0.0324986 + 0.999472i \(0.510346\pi\)
\(294\) 0 0
\(295\) 17.5874i 1.02398i
\(296\) 0 0
\(297\) 3.14584i 0.182540i
\(298\) 0 0
\(299\) 4.22795i 0.244509i
\(300\) 0 0
\(301\) 8.58969 + 10.3613i 0.495101 + 0.597214i
\(302\) 0 0
\(303\) 6.44604i 0.370315i
\(304\) 0 0
\(305\) 1.68053 0.0962269
\(306\) 0 0
\(307\) 22.3431i 1.27519i −0.770373 0.637594i \(-0.779930\pi\)
0.770373 0.637594i \(-0.220070\pi\)
\(308\) 0 0
\(309\) 11.8147i 0.672113i
\(310\) 0 0
\(311\) 22.2225 1.26012 0.630060 0.776546i \(-0.283030\pi\)
0.630060 + 0.776546i \(0.283030\pi\)
\(312\) 0 0
\(313\) 31.2412i 1.76586i 0.469507 + 0.882929i \(0.344432\pi\)
−0.469507 + 0.882929i \(0.655568\pi\)
\(314\) 0 0
\(315\) 21.1620 + 25.5266i 1.19234 + 1.43826i
\(316\) 0 0
\(317\) 26.9162i 1.51177i −0.654706 0.755883i \(-0.727208\pi\)
0.654706 0.755883i \(-0.272792\pi\)
\(318\) 0 0
\(319\) 1.77974i 0.0996465i
\(320\) 0 0
\(321\) 14.5800i 0.813774i
\(322\) 0 0
\(323\) −45.4615 −2.52955
\(324\) 0 0
\(325\) −0.462642 −0.0256628
\(326\) 0 0
\(327\) 28.2167 1.56038
\(328\) 0 0
\(329\) 3.87707 + 4.67669i 0.213750 + 0.257834i
\(330\) 0 0
\(331\) −9.05091 −0.497483 −0.248741 0.968570i \(-0.580017\pi\)
−0.248741 + 0.968570i \(0.580017\pi\)
\(332\) 0 0
\(333\) 13.0920i 0.717437i
\(334\) 0 0
\(335\) 33.5553 1.83332
\(336\) 0 0
\(337\) 23.7041 1.29124 0.645622 0.763658i \(-0.276598\pi\)
0.645622 + 0.763658i \(0.276598\pi\)
\(338\) 0 0
\(339\) 40.1638i 2.18140i
\(340\) 0 0
\(341\) 2.65271 0.143652
\(342\) 0 0
\(343\) −16.2016 + 8.97261i −0.874805 + 0.484476i
\(344\) 0 0
\(345\) 28.5752 1.53844
\(346\) 0 0
\(347\) 2.91046 0.156242 0.0781209 0.996944i \(-0.475108\pi\)
0.0781209 + 0.996944i \(0.475108\pi\)
\(348\) 0 0
\(349\) −6.80639 −0.364338 −0.182169 0.983267i \(-0.558312\pi\)
−0.182169 + 0.983267i \(0.558312\pi\)
\(350\) 0 0
\(351\) 6.83054i 0.364587i
\(352\) 0 0
\(353\) 9.08139i 0.483354i 0.970357 + 0.241677i \(0.0776974\pi\)
−0.970357 + 0.241677i \(0.922303\pi\)
\(354\) 0 0
\(355\) 30.1573i 1.60058i
\(356\) 0 0
\(357\) −29.1765 35.1940i −1.54418 1.86266i
\(358\) 0 0
\(359\) 16.2976i 0.860157i −0.902792 0.430078i \(-0.858486\pi\)
0.902792 0.430078i \(-0.141514\pi\)
\(360\) 0 0
\(361\) −38.8866 −2.04666
\(362\) 0 0
\(363\) 31.1957i 1.63735i
\(364\) 0 0
\(365\) 10.5780i 0.553680i
\(366\) 0 0
\(367\) −33.9970 −1.77463 −0.887314 0.461166i \(-0.847431\pi\)
−0.887314 + 0.461166i \(0.847431\pi\)
\(368\) 0 0
\(369\) 47.2172i 2.45803i
\(370\) 0 0
\(371\) −17.9060 + 14.8444i −0.929631 + 0.770682i
\(372\) 0 0
\(373\) 25.0611i 1.29762i −0.760953 0.648808i \(-0.775268\pi\)
0.760953 0.648808i \(-0.224732\pi\)
\(374\) 0 0
\(375\) 30.6663i 1.58360i
\(376\) 0 0
\(377\) 3.86435i 0.199024i
\(378\) 0 0
\(379\) 29.6588 1.52347 0.761736 0.647887i \(-0.224347\pi\)
0.761736 + 0.647887i \(0.224347\pi\)
\(380\) 0 0
\(381\) −23.6106 −1.20961
\(382\) 0 0
\(383\) 20.0478 1.02439 0.512197 0.858868i \(-0.328832\pi\)
0.512197 + 0.858868i \(0.328832\pi\)
\(384\) 0 0
\(385\) 1.81762 + 2.19250i 0.0926347 + 0.111740i
\(386\) 0 0
\(387\) −27.2767 −1.38655
\(388\) 0 0
\(389\) 18.6383i 0.944999i 0.881331 + 0.472500i \(0.156648\pi\)
−0.881331 + 0.472500i \(0.843352\pi\)
\(390\) 0 0
\(391\) −25.2630 −1.27760
\(392\) 0 0
\(393\) 23.2096 1.17077
\(394\) 0 0
\(395\) 25.2250i 1.26921i
\(396\) 0 0
\(397\) −11.1794 −0.561079 −0.280539 0.959842i \(-0.590513\pi\)
−0.280539 + 0.959842i \(0.590513\pi\)
\(398\) 0 0
\(399\) −37.1507 44.8129i −1.85986 2.24345i
\(400\) 0 0
\(401\) −15.4601 −0.772041 −0.386020 0.922490i \(-0.626151\pi\)
−0.386020 + 0.922490i \(0.626151\pi\)
\(402\) 0 0
\(403\) 5.75982 0.286917
\(404\) 0 0
\(405\) −8.56779 −0.425737
\(406\) 0 0
\(407\) 1.12448i 0.0557385i
\(408\) 0 0
\(409\) 36.8136i 1.82032i −0.414262 0.910158i \(-0.635960\pi\)
0.414262 0.910158i \(-0.364040\pi\)
\(410\) 0 0
\(411\) 57.8128i 2.85170i
\(412\) 0 0
\(413\) −15.3270 + 12.7063i −0.754191 + 0.625238i
\(414\) 0 0
\(415\) 13.9631i 0.685421i
\(416\) 0 0
\(417\) −32.9731 −1.61470
\(418\) 0 0
\(419\) 27.2989i 1.33364i −0.745220 0.666819i \(-0.767656\pi\)
0.745220 0.666819i \(-0.232344\pi\)
\(420\) 0 0
\(421\) 30.8692i 1.50447i 0.658893 + 0.752237i \(0.271025\pi\)
−0.658893 + 0.752237i \(0.728975\pi\)
\(422\) 0 0
\(423\) −12.3117 −0.598614
\(424\) 0 0
\(425\) 2.76439i 0.134093i
\(426\) 0 0
\(427\) −1.21413 1.46454i −0.0587559 0.0708741i
\(428\) 0 0
\(429\) 1.33180i 0.0642999i
\(430\) 0 0
\(431\) 33.7399i 1.62519i 0.582827 + 0.812596i \(0.301946\pi\)
−0.582827 + 0.812596i \(0.698054\pi\)
\(432\) 0 0
\(433\) 9.29375i 0.446629i −0.974746 0.223315i \(-0.928312\pi\)
0.974746 0.223315i \(-0.0716877\pi\)
\(434\) 0 0
\(435\) −26.1177 −1.25225
\(436\) 0 0
\(437\) −32.1676 −1.53879
\(438\) 0 0
\(439\) −19.5689 −0.933975 −0.466987 0.884264i \(-0.654661\pi\)
−0.466987 + 0.884264i \(0.654661\pi\)
\(440\) 0 0
\(441\) 6.95687 36.8843i 0.331279 1.75640i
\(442\) 0 0
\(443\) 11.3511 0.539305 0.269653 0.962958i \(-0.413091\pi\)
0.269653 + 0.962958i \(0.413091\pi\)
\(444\) 0 0
\(445\) 6.51881i 0.309021i
\(446\) 0 0
\(447\) 52.2779 2.47266
\(448\) 0 0
\(449\) −4.08652 −0.192855 −0.0964273 0.995340i \(-0.530742\pi\)
−0.0964273 + 0.995340i \(0.530742\pi\)
\(450\) 0 0
\(451\) 4.05553i 0.190967i
\(452\) 0 0
\(453\) −32.7992 −1.54104
\(454\) 0 0
\(455\) 3.94659 + 4.76056i 0.185019 + 0.223178i
\(456\) 0 0
\(457\) −22.4429 −1.04984 −0.524918 0.851153i \(-0.675904\pi\)
−0.524918 + 0.851153i \(0.675904\pi\)
\(458\) 0 0
\(459\) 40.8141 1.90504
\(460\) 0 0
\(461\) −20.7512 −0.966480 −0.483240 0.875488i \(-0.660540\pi\)
−0.483240 + 0.875488i \(0.660540\pi\)
\(462\) 0 0
\(463\) 27.6171i 1.28347i 0.766925 + 0.641737i \(0.221786\pi\)
−0.766925 + 0.641737i \(0.778214\pi\)
\(464\) 0 0
\(465\) 38.9285i 1.80527i
\(466\) 0 0
\(467\) 2.28693i 0.105827i 0.998599 + 0.0529133i \(0.0168507\pi\)
−0.998599 + 0.0529133i \(0.983149\pi\)
\(468\) 0 0
\(469\) −24.2427 29.2426i −1.11942 1.35030i
\(470\) 0 0
\(471\) 18.8884i 0.870332i
\(472\) 0 0
\(473\) −2.34282 −0.107723
\(474\) 0 0
\(475\) 3.51993i 0.161506i
\(476\) 0 0
\(477\) 47.1385i 2.15832i
\(478\) 0 0
\(479\) −37.3165 −1.70503 −0.852517 0.522699i \(-0.824925\pi\)
−0.852517 + 0.522699i \(0.824925\pi\)
\(480\) 0 0
\(481\) 2.44158i 0.111327i
\(482\) 0 0
\(483\) −20.6447 24.9026i −0.939366 1.13311i
\(484\) 0 0
\(485\) 21.5871i 0.980219i
\(486\) 0 0
\(487\) 0.772784i 0.0350182i −0.999847 0.0175091i \(-0.994426\pi\)
0.999847 0.0175091i \(-0.00557360\pi\)
\(488\) 0 0
\(489\) 2.00763i 0.0907880i
\(490\) 0 0
\(491\) −10.9597 −0.494603 −0.247302 0.968939i \(-0.579544\pi\)
−0.247302 + 0.968939i \(0.579544\pi\)
\(492\) 0 0
\(493\) 23.0904 1.03994
\(494\) 0 0
\(495\) −5.77188 −0.259427
\(496\) 0 0
\(497\) −26.2814 + 21.7877i −1.17888 + 0.977314i
\(498\) 0 0
\(499\) 2.70238 0.120975 0.0604876 0.998169i \(-0.480734\pi\)
0.0604876 + 0.998169i \(0.480734\pi\)
\(500\) 0 0
\(501\) 70.6055i 3.15442i
\(502\) 0 0
\(503\) −9.31407 −0.415294 −0.207647 0.978204i \(-0.566581\pi\)
−0.207647 + 0.978204i \(0.566581\pi\)
\(504\) 0 0
\(505\) −5.20999 −0.231841
\(506\) 0 0
\(507\) 2.89173i 0.128426i
\(508\) 0 0
\(509\) −15.2303 −0.675069 −0.337535 0.941313i \(-0.609593\pi\)
−0.337535 + 0.941313i \(0.609593\pi\)
\(510\) 0 0
\(511\) 9.21851 7.64232i 0.407803 0.338076i
\(512\) 0 0
\(513\) 51.9690 2.29449
\(514\) 0 0
\(515\) 9.54917 0.420787
\(516\) 0 0
\(517\) −1.05746 −0.0465070
\(518\) 0 0
\(519\) 31.8676i 1.39883i
\(520\) 0 0
\(521\) 20.8460i 0.913281i −0.889651 0.456640i \(-0.849053\pi\)
0.889651 0.456640i \(-0.150947\pi\)
\(522\) 0 0
\(523\) 13.6269i 0.595861i 0.954588 + 0.297931i \(0.0962964\pi\)
−0.954588 + 0.297931i \(0.903704\pi\)
\(524\) 0 0
\(525\) 2.72495 2.25904i 0.118927 0.0985925i
\(526\) 0 0
\(527\) 34.4162i 1.49919i
\(528\) 0 0
\(529\) 5.12442 0.222801
\(530\) 0 0
\(531\) 40.3492i 1.75100i
\(532\) 0 0
\(533\) 8.80574i 0.381419i
\(534\) 0 0
\(535\) 11.7842 0.509475
\(536\) 0 0
\(537\) 10.6627i 0.460129i
\(538\) 0 0
\(539\) 0.597532 3.16803i 0.0257375 0.136457i
\(540\) 0 0
\(541\) 23.8219i 1.02418i 0.858931 + 0.512092i \(0.171129\pi\)
−0.858931 + 0.512092i \(0.828871\pi\)
\(542\) 0 0
\(543\) 0.258111i 0.0110766i
\(544\) 0 0
\(545\) 22.8060i 0.976902i
\(546\) 0 0
\(547\) 44.7381 1.91286 0.956432 0.291956i \(-0.0943061\pi\)
0.956432 + 0.291956i \(0.0943061\pi\)
\(548\) 0 0
\(549\) 3.85549 0.164548
\(550\) 0 0
\(551\) 29.4012 1.25253
\(552\) 0 0
\(553\) 21.9830 18.2243i 0.934811 0.774976i
\(554\) 0 0
\(555\) 16.5018 0.700461
\(556\) 0 0
\(557\) 29.8939i 1.26665i −0.773888 0.633323i \(-0.781691\pi\)
0.773888 0.633323i \(-0.218309\pi\)
\(558\) 0 0
\(559\) −5.08694 −0.215155
\(560\) 0 0
\(561\) 7.95782 0.335979
\(562\) 0 0
\(563\) 17.2575i 0.727318i −0.931532 0.363659i \(-0.881527\pi\)
0.931532 0.363659i \(-0.118473\pi\)
\(564\) 0 0
\(565\) 32.4622 1.36570
\(566\) 0 0
\(567\) 6.18996 + 7.46661i 0.259954 + 0.313568i
\(568\) 0 0
\(569\) −3.10404 −0.130128 −0.0650641 0.997881i \(-0.520725\pi\)
−0.0650641 + 0.997881i \(0.520725\pi\)
\(570\) 0 0
\(571\) −5.07780 −0.212499 −0.106250 0.994339i \(-0.533884\pi\)
−0.106250 + 0.994339i \(0.533884\pi\)
\(572\) 0 0
\(573\) 17.7184 0.740195
\(574\) 0 0
\(575\) 1.95603i 0.0815720i
\(576\) 0 0
\(577\) 12.0624i 0.502166i −0.967966 0.251083i \(-0.919213\pi\)
0.967966 0.251083i \(-0.0807867\pi\)
\(578\) 0 0
\(579\) 68.1798i 2.83345i
\(580\) 0 0
\(581\) −12.1685 + 10.0879i −0.504834 + 0.418517i
\(582\) 0 0
\(583\) 4.04877i 0.167683i
\(584\) 0 0
\(585\) −12.5325 −0.518153
\(586\) 0 0
\(587\) 14.4899i 0.598063i −0.954243 0.299032i \(-0.903336\pi\)
0.954243 0.299032i \(-0.0966636\pi\)
\(588\) 0 0
\(589\) 43.8225i 1.80568i
\(590\) 0 0
\(591\) −57.0182 −2.34542
\(592\) 0 0
\(593\) 30.7710i 1.26361i −0.775126 0.631807i \(-0.782314\pi\)
0.775126 0.631807i \(-0.217686\pi\)
\(594\) 0 0
\(595\) −28.4454 + 23.5818i −1.16615 + 0.966760i
\(596\) 0 0
\(597\) 33.1145i 1.35529i
\(598\) 0 0
\(599\) 14.9116i 0.609271i −0.952469 0.304635i \(-0.901465\pi\)
0.952469 0.304635i \(-0.0985346\pi\)
\(600\) 0 0
\(601\) 8.78840i 0.358486i 0.983805 + 0.179243i \(0.0573649\pi\)
−0.983805 + 0.179243i \(0.942635\pi\)
\(602\) 0 0
\(603\) 76.9829 3.13499
\(604\) 0 0
\(605\) 25.2138 1.02509
\(606\) 0 0
\(607\) −33.8093 −1.37228 −0.686140 0.727470i \(-0.740696\pi\)
−0.686140 + 0.727470i \(0.740696\pi\)
\(608\) 0 0
\(609\) 18.8692 + 22.7609i 0.764620 + 0.922319i
\(610\) 0 0
\(611\) −2.29606 −0.0928884
\(612\) 0 0
\(613\) 19.9650i 0.806380i −0.915116 0.403190i \(-0.867901\pi\)
0.915116 0.403190i \(-0.132099\pi\)
\(614\) 0 0
\(615\) −59.5148 −2.39987
\(616\) 0 0
\(617\) −0.222709 −0.00896592 −0.00448296 0.999990i \(-0.501427\pi\)
−0.00448296 + 0.999990i \(0.501427\pi\)
\(618\) 0 0
\(619\) 13.1069i 0.526809i −0.964685 0.263405i \(-0.915155\pi\)
0.964685 0.263405i \(-0.0848454\pi\)
\(620\) 0 0
\(621\) 28.8792 1.15888
\(622\) 0 0
\(623\) 5.68098 4.70964i 0.227604 0.188688i
\(624\) 0 0
\(625\) −27.0992 −1.08397
\(626\) 0 0
\(627\) 10.1328 0.404664
\(628\) 0 0
\(629\) −14.5890 −0.581702
\(630\) 0 0
\(631\) 0.405159i 0.0161291i 0.999967 + 0.00806457i \(0.00256706\pi\)
−0.999967 + 0.00806457i \(0.997433\pi\)
\(632\) 0 0
\(633\) 51.9127i 2.06335i
\(634\) 0 0
\(635\) 19.0832i 0.757293i
\(636\) 0 0
\(637\) 1.29742 6.87871i 0.0514055 0.272545i
\(638\) 0 0
\(639\) 69.1873i 2.73701i
\(640\) 0 0
\(641\) 30.4895 1.20426 0.602131 0.798397i \(-0.294318\pi\)
0.602131 + 0.798397i \(0.294318\pi\)
\(642\) 0 0
\(643\) 10.3645i 0.408735i 0.978894 + 0.204367i \(0.0655137\pi\)
−0.978894 + 0.204367i \(0.934486\pi\)
\(644\) 0 0
\(645\) 34.3808i 1.35374i
\(646\) 0 0
\(647\) 3.23095 0.127022 0.0635108 0.997981i \(-0.479770\pi\)
0.0635108 + 0.997981i \(0.479770\pi\)
\(648\) 0 0
\(649\) 3.46562i 0.136038i
\(650\) 0 0
\(651\) −33.9252 + 28.1246i −1.32963 + 1.10229i
\(652\) 0 0
\(653\) 18.0625i 0.706841i 0.935465 + 0.353420i \(0.114982\pi\)
−0.935465 + 0.353420i \(0.885018\pi\)
\(654\) 0 0
\(655\) 18.7590i 0.732976i
\(656\) 0 0
\(657\) 24.2683i 0.946795i
\(658\) 0 0
\(659\) −20.1619 −0.785394 −0.392697 0.919668i \(-0.628458\pi\)
−0.392697 + 0.919668i \(0.628458\pi\)
\(660\) 0 0
\(661\) −4.75414 −0.184915 −0.0924573 0.995717i \(-0.529472\pi\)
−0.0924573 + 0.995717i \(0.529472\pi\)
\(662\) 0 0
\(663\) 17.2788 0.671051
\(664\) 0 0
\(665\) −36.2199 + 30.0270i −1.40455 + 1.16440i
\(666\) 0 0
\(667\) 16.3383 0.632620
\(668\) 0 0
\(669\) 26.6196i 1.02917i
\(670\) 0 0
\(671\) 0.331151 0.0127840
\(672\) 0 0
\(673\) 36.7876 1.41806 0.709029 0.705180i \(-0.249134\pi\)
0.709029 + 0.705180i \(0.249134\pi\)
\(674\) 0 0
\(675\) 3.16010i 0.121632i
\(676\) 0 0
\(677\) −12.4785 −0.479586 −0.239793 0.970824i \(-0.577080\pi\)
−0.239793 + 0.970824i \(0.577080\pi\)
\(678\) 0 0
\(679\) −18.8126 + 15.5960i −0.721961 + 0.598520i
\(680\) 0 0
\(681\) −61.6508 −2.36247
\(682\) 0 0
\(683\) −9.99053 −0.382277 −0.191138 0.981563i \(-0.561218\pi\)
−0.191138 + 0.981563i \(0.561218\pi\)
\(684\) 0 0
\(685\) −46.7270 −1.78535
\(686\) 0 0
\(687\) 53.1065i 2.02614i
\(688\) 0 0
\(689\) 8.79106i 0.334913i
\(690\) 0 0
\(691\) 46.3271i 1.76236i −0.472777 0.881182i \(-0.656748\pi\)
0.472777 0.881182i \(-0.343252\pi\)
\(692\) 0 0
\(693\) 4.17001 + 5.03005i 0.158406 + 0.191076i
\(694\) 0 0
\(695\) 26.6504i 1.01091i
\(696\) 0 0
\(697\) 52.6164 1.99299
\(698\) 0 0
\(699\) 16.7859i 0.634900i
\(700\) 0 0
\(701\) 13.7321i 0.518654i −0.965790 0.259327i \(-0.916499\pi\)
0.965790 0.259327i \(-0.0835007\pi\)
\(702\) 0 0
\(703\) −18.5763 −0.700620
\(704\) 0 0
\(705\) 15.5182i 0.584449i
\(706\) 0 0
\(707\) 3.76406 + 4.54038i 0.141562 + 0.170758i
\(708\) 0 0
\(709\) 3.41445i 0.128232i −0.997942 0.0641162i \(-0.979577\pi\)
0.997942 0.0641162i \(-0.0204228\pi\)
\(710\) 0 0
\(711\) 57.8715i 2.17035i
\(712\) 0 0
\(713\) 24.3522i 0.911998i
\(714\) 0 0
\(715\) −1.07642 −0.0402559
\(716\) 0 0
\(717\) 64.5291 2.40988
\(718\) 0 0
\(719\) 30.3286 1.13107 0.565534 0.824725i \(-0.308670\pi\)
0.565534 + 0.824725i \(0.308670\pi\)
\(720\) 0 0
\(721\) −6.89898 8.32187i −0.256932 0.309922i
\(722\) 0 0
\(723\) −7.18768 −0.267313
\(724\) 0 0
\(725\) 1.78781i 0.0663976i
\(726\) 0 0
\(727\) 6.20103 0.229983 0.114992 0.993366i \(-0.463316\pi\)
0.114992 + 0.993366i \(0.463316\pi\)
\(728\) 0 0
\(729\) 39.5999 1.46666
\(730\) 0 0
\(731\) 30.3956i 1.12422i
\(732\) 0 0
\(733\) 27.5049 1.01592 0.507958 0.861382i \(-0.330401\pi\)
0.507958 + 0.861382i \(0.330401\pi\)
\(734\) 0 0
\(735\) −46.4907 8.76876i −1.71484 0.323441i
\(736\) 0 0
\(737\) 6.61213 0.243561
\(738\) 0 0
\(739\) 14.2957 0.525877 0.262939 0.964813i \(-0.415308\pi\)
0.262939 + 0.964813i \(0.415308\pi\)
\(740\) 0 0
\(741\) 22.0012 0.808235
\(742\) 0 0
\(743\) 4.77889i 0.175320i −0.996150 0.0876602i \(-0.972061\pi\)
0.996150 0.0876602i \(-0.0279390\pi\)
\(744\) 0 0
\(745\) 42.2534i 1.54804i
\(746\) 0 0
\(747\) 32.0343i 1.17207i
\(748\) 0 0
\(749\) −8.51372 10.2696i −0.311085 0.375244i
\(750\) 0 0
\(751\) 37.9486i 1.38476i −0.721531 0.692382i \(-0.756561\pi\)
0.721531 0.692382i \(-0.243439\pi\)
\(752\) 0 0
\(753\) 17.5199 0.638460
\(754\) 0 0
\(755\) 26.5099i 0.964793i
\(756\) 0 0
\(757\) 20.1135i 0.731038i 0.930804 + 0.365519i \(0.119108\pi\)
−0.930804 + 0.365519i \(0.880892\pi\)
\(758\) 0 0
\(759\) 5.63079 0.204385
\(760\) 0 0
\(761\) 9.87284i 0.357890i −0.983859 0.178945i \(-0.942732\pi\)
0.983859 0.178945i \(-0.0572685\pi\)
\(762\) 0 0
\(763\) −19.8749 + 16.4766i −0.719519 + 0.596495i
\(764\) 0 0
\(765\) 74.8843i 2.70745i
\(766\) 0 0
\(767\) 7.52488i 0.271708i
\(768\) 0 0
\(769\) 25.4391i 0.917358i 0.888602 + 0.458679i \(0.151677\pi\)
−0.888602 + 0.458679i \(0.848323\pi\)
\(770\) 0 0
\(771\) −39.0994 −1.40813
\(772\) 0 0
\(773\) 46.2125 1.66215 0.831073 0.556163i \(-0.187727\pi\)
0.831073 + 0.556163i \(0.187727\pi\)
\(774\) 0 0
\(775\) −2.66473 −0.0957200
\(776\) 0 0
\(777\) −11.9220 14.3809i −0.427700 0.515911i
\(778\) 0 0
\(779\) 66.9970 2.40042
\(780\) 0 0
\(781\) 5.94255i 0.212641i
\(782\) 0 0
\(783\) −26.3956 −0.943301
\(784\) 0 0
\(785\) 15.2665 0.544884
\(786\) 0 0
\(787\) 16.0367i 0.571647i 0.958282 + 0.285823i \(0.0922671\pi\)
−0.958282 + 0.285823i \(0.907733\pi\)
\(788\) 0 0
\(789\) 51.3388 1.82771
\(790\) 0 0
\(791\) −23.4530 28.2900i −0.833891 1.00588i
\(792\) 0 0
\(793\) 0.719026 0.0255334
\(794\) 0 0
\(795\) −59.4156 −2.10725
\(796\) 0 0
\(797\) 12.9270 0.457896 0.228948 0.973439i \(-0.426471\pi\)
0.228948 + 0.973439i \(0.426471\pi\)
\(798\) 0 0
\(799\) 13.7195i 0.485360i
\(800\) 0 0
\(801\) 14.9555i 0.528427i
\(802\) 0 0
\(803\) 2.08442i 0.0735577i
\(804\) 0 0
\(805\) −20.1274 + 16.6860i −0.709398 + 0.588104i
\(806\) 0 0
\(807\) 56.7749i 1.99857i
\(808\) 0 0
\(809\) −16.2943 −0.572876 −0.286438 0.958099i \(-0.592471\pi\)
−0.286438 + 0.958099i \(0.592471\pi\)
\(810\) 0 0
\(811\) 30.8923i 1.08477i −0.840129 0.542387i \(-0.817521\pi\)
0.840129 0.542387i \(-0.182479\pi\)
\(812\) 0 0
\(813\) 59.1396i 2.07412i
\(814\) 0 0
\(815\) 1.62266 0.0568392
\(816\) 0 0
\(817\) 38.7031i 1.35405i
\(818\) 0 0
\(819\) 9.05431 + 10.9217i 0.316383 + 0.381636i
\(820\) 0 0
\(821\) 7.06460i 0.246556i −0.992372 0.123278i \(-0.960659\pi\)
0.992372 0.123278i \(-0.0393407\pi\)
\(822\) 0 0
\(823\) 17.2933i 0.602806i −0.953497 0.301403i \(-0.902545\pi\)
0.953497 0.301403i \(-0.0974549\pi\)
\(824\) 0 0
\(825\) 0.616147i 0.0214515i
\(826\) 0 0
\(827\) −46.0931 −1.60282 −0.801408 0.598119i \(-0.795915\pi\)
−0.801408 + 0.598119i \(0.795915\pi\)
\(828\) 0 0
\(829\) −54.7609 −1.90192 −0.950962 0.309307i \(-0.899903\pi\)
−0.950962 + 0.309307i \(0.899903\pi\)
\(830\) 0 0
\(831\) −24.3175 −0.843564
\(832\) 0 0
\(833\) 41.1019 + 7.75236i 1.42410 + 0.268603i
\(834\) 0 0
\(835\) 57.0667 1.97487
\(836\) 0 0
\(837\) 39.3427i 1.35988i
\(838\) 0 0
\(839\) 28.0831 0.969538 0.484769 0.874642i \(-0.338904\pi\)
0.484769 + 0.874642i \(0.338904\pi\)
\(840\) 0 0
\(841\) 14.0668 0.485063
\(842\) 0 0
\(843\) 10.6510i 0.366838i
\(844\) 0 0
\(845\) −2.33723 −0.0804031
\(846\) 0 0
\(847\) −18.2162 21.9732i −0.625915 0.755007i
\(848\) 0 0
\(849\) −54.3490 −1.86525
\(850\) 0 0
\(851\) −10.3229 −0.353864
\(852\) 0 0
\(853\) 16.1139 0.551730 0.275865 0.961196i \(-0.411036\pi\)
0.275865 + 0.961196i \(0.411036\pi\)
\(854\) 0 0
\(855\) 95.3510i 3.26093i
\(856\) 0 0
\(857\) 9.70825i 0.331628i 0.986157 + 0.165814i \(0.0530251\pi\)
−0.986157 + 0.165814i \(0.946975\pi\)
\(858\) 0 0
\(859\) 21.0569i 0.718452i −0.933251 0.359226i \(-0.883041\pi\)
0.933251 0.359226i \(-0.116959\pi\)
\(860\) 0 0
\(861\) 42.9976 + 51.8657i 1.46536 + 1.76758i
\(862\) 0 0
\(863\) 8.82880i 0.300536i −0.988645 0.150268i \(-0.951986\pi\)
0.988645 0.150268i \(-0.0480136\pi\)
\(864\) 0 0
\(865\) 25.7568 0.875759
\(866\) 0 0
\(867\) 54.0852i 1.83683i
\(868\) 0 0
\(869\) 4.97063i 0.168617i
\(870\) 0 0
\(871\) 14.3569 0.486464
\(872\) 0 0
\(873\) 49.5253i 1.67618i
\(874\) 0 0
\(875\) 17.9071 + 21.6004i 0.605370 + 0.730225i
\(876\) 0 0
\(877\) 47.6620i 1.60943i 0.593659 + 0.804716i \(0.297683\pi\)
−0.593659 + 0.804716i \(0.702317\pi\)
\(878\) 0 0
\(879\) 3.21726i 0.108516i
\(880\) 0 0
\(881\) 9.48773i 0.319650i 0.987145 + 0.159825i \(0.0510929\pi\)
−0.987145 + 0.159825i \(0.948907\pi\)
\(882\) 0 0
\(883\) 41.1681 1.38542 0.692709 0.721217i \(-0.256417\pi\)
0.692709 + 0.721217i \(0.256417\pi\)
\(884\) 0 0
\(885\) −50.8579 −1.70957
\(886\) 0 0
\(887\) −16.6945 −0.560545 −0.280273 0.959920i \(-0.590425\pi\)
−0.280273 + 0.959920i \(0.590425\pi\)
\(888\) 0 0
\(889\) 16.6305 13.7870i 0.557770 0.462402i
\(890\) 0 0
\(891\) −1.68830 −0.0565601
\(892\) 0 0
\(893\) 17.4691i 0.584582i
\(894\) 0 0
\(895\) 8.61808 0.288070
\(896\) 0 0
\(897\) 12.2261 0.408217
\(898\) 0 0
\(899\) 22.2579i 0.742343i
\(900\) 0 0
\(901\) 52.5286 1.74998
\(902\) 0 0
\(903\) 29.9620 24.8390i 0.997072 0.826592i
\(904\) 0 0
\(905\) 0.208617 0.00693467
\(906\) 0 0
\(907\) −36.0835 −1.19813 −0.599066 0.800700i \(-0.704461\pi\)
−0.599066 + 0.800700i \(0.704461\pi\)
\(908\) 0 0
\(909\) −11.9528 −0.396450
\(910\) 0 0
\(911\) 29.0669i 0.963031i −0.876438 0.481515i \(-0.840087\pi\)
0.876438 0.481515i \(-0.159913\pi\)
\(912\) 0 0
\(913\) 2.75145i 0.0910598i
\(914\) 0 0
\(915\) 4.85964i 0.160655i
\(916\) 0 0
\(917\) −16.3480 + 13.5528i −0.539860 + 0.447554i
\(918\) 0 0
\(919\) 33.6118i 1.10875i 0.832266 + 0.554376i \(0.187043\pi\)
−0.832266 + 0.554376i \(0.812957\pi\)
\(920\) 0 0
\(921\) −64.6102 −2.12898
\(922\) 0 0
\(923\) 12.9030i 0.424708i
\(924\) 0 0
\(925\) 1.12958i 0.0371403i
\(926\) 0 0
\(927\) 21.9078 0.719547
\(928\) 0 0
\(929\) 23.6764i 0.776796i −0.921492 0.388398i \(-0.873029\pi\)
0.921492 0.388398i \(-0.126971\pi\)
\(930\) 0 0
\(931\) 52.3355 + 9.87116i 1.71523 + 0.323514i
\(932\) 0 0
\(933\) 64.2613i 2.10382i
\(934\) 0 0
\(935\) 6.43188i 0.210345i
\(936\) 0 0
\(937\) 22.0243i 0.719503i −0.933048 0.359751i \(-0.882862\pi\)
0.933048 0.359751i \(-0.117138\pi\)
\(938\) 0 0
\(939\) 90.3411 2.94817
\(940\) 0 0
\(941\) 33.6076 1.09558 0.547788 0.836617i \(-0.315470\pi\)
0.547788 + 0.836617i \(0.315470\pi\)
\(942\) 0 0
\(943\) 37.2303 1.21238
\(944\) 0 0
\(945\) 32.5172 26.9574i 1.05778 0.876923i
\(946\) 0 0
\(947\) 25.3497 0.823755 0.411877 0.911239i \(-0.364873\pi\)
0.411877 + 0.911239i \(0.364873\pi\)
\(948\) 0 0
\(949\) 4.52589i 0.146917i
\(950\) 0 0
\(951\) −77.8345 −2.52396
\(952\) 0 0
\(953\) −39.7485 −1.28758 −0.643790 0.765203i \(-0.722639\pi\)
−0.643790 + 0.765203i \(0.722639\pi\)
\(954\) 0 0
\(955\) 14.3208i 0.463410i
\(956\) 0 0
\(957\) −5.14654 −0.166364
\(958\) 0 0
\(959\) 33.7588 + 40.7214i 1.09013 + 1.31496i
\(960\) 0 0
\(961\) 2.17547 0.0701764
\(962\) 0 0
\(963\) 27.0354 0.871204
\(964\) 0 0
\(965\) −55.1060 −1.77393
\(966\) 0 0
\(967\) 6.79608i 0.218547i −0.994012 0.109274i \(-0.965148\pi\)
0.994012 0.109274i \(-0.0348525\pi\)
\(968\) 0 0
\(969\) 131.462i 4.22318i
\(970\) 0 0
\(971\) 15.5617i 0.499399i 0.968323 + 0.249699i \(0.0803318\pi\)
−0.968323 + 0.249699i \(0.919668\pi\)
\(972\) 0 0
\(973\) 23.2251 19.2541i 0.744563 0.617257i
\(974\) 0 0
\(975\) 1.33784i 0.0428450i
\(976\) 0 0
\(977\) −33.7979 −1.08129 −0.540645 0.841251i \(-0.681820\pi\)
−0.540645 + 0.841251i \(0.681820\pi\)
\(978\) 0 0
\(979\) 1.28454i 0.0410542i
\(980\) 0 0
\(981\) 52.3218i 1.67051i
\(982\) 0 0
\(983\) 20.6785 0.659543 0.329771 0.944061i \(-0.393028\pi\)
0.329771 + 0.944061i \(0.393028\pi\)
\(984\) 0 0
\(985\) 46.0848i 1.46838i
\(986\) 0 0
\(987\) 13.5237 11.2114i 0.430465 0.356864i
\(988\) 0 0
\(989\) 21.5073i 0.683894i
\(990\) 0 0
\(991\) 18.6250i 0.591642i 0.955243 + 0.295821i \(0.0955933\pi\)
−0.955243 + 0.295821i \(0.904407\pi\)
\(992\) 0 0
\(993\) 26.1728i 0.830568i
\(994\) 0 0
\(995\) 26.7647 0.848498
\(996\) 0 0
\(997\) 6.17692 0.195625 0.0978125 0.995205i \(-0.468815\pi\)
0.0978125 + 0.995205i \(0.468815\pi\)
\(998\) 0 0
\(999\) 16.6773 0.527647
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.a.2575.5 48
4.3 odd 2 728.2.h.a.27.40 yes 48
7.6 odd 2 2912.2.h.b.2575.44 48
8.3 odd 2 2912.2.h.b.2575.5 48
8.5 even 2 728.2.h.b.27.39 yes 48
28.27 even 2 728.2.h.b.27.40 yes 48
56.13 odd 2 728.2.h.a.27.39 48
56.27 even 2 inner 2912.2.h.a.2575.44 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.39 48 56.13 odd 2
728.2.h.a.27.40 yes 48 4.3 odd 2
728.2.h.b.27.39 yes 48 8.5 even 2
728.2.h.b.27.40 yes 48 28.27 even 2
2912.2.h.a.2575.5 48 1.1 even 1 trivial
2912.2.h.a.2575.44 48 56.27 even 2 inner
2912.2.h.b.2575.5 48 8.3 odd 2
2912.2.h.b.2575.44 48 7.6 odd 2