Properties

Label 2912.2.a.u.1.6
Level $2912$
Weight $2$
Character 2912.1
Self dual yes
Analytic conductor $23.252$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,3,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.153499364.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 7x^{4} + 18x^{3} + 19x^{2} - 25x - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(3.05415\) of defining polynomial
Character \(\chi\) \(=\) 2912.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.27366 q^{3} +3.76699 q^{5} -1.00000 q^{7} +2.16955 q^{9} -1.00771 q^{11} -1.00000 q^{13} +8.56486 q^{15} +3.49200 q^{17} +1.76699 q^{19} -2.27366 q^{21} +6.56618 q^{23} +9.19018 q^{25} -1.88817 q^{27} +6.41665 q^{29} -9.86509 q^{31} -2.29119 q^{33} -3.76699 q^{35} +4.41797 q^{37} -2.27366 q^{39} -10.3507 q^{41} -4.31005 q^{43} +8.17265 q^{45} +0.877031 q^{47} +1.00000 q^{49} +7.93964 q^{51} +10.2723 q^{53} -3.79603 q^{55} +4.01753 q^{57} +11.9370 q^{59} -0.644016 q^{61} -2.16955 q^{63} -3.76699 q^{65} +7.22905 q^{67} +14.9293 q^{69} +0.348273 q^{71} -2.38892 q^{73} +20.8954 q^{75} +1.00771 q^{77} +6.05607 q^{79} -10.8017 q^{81} -6.63604 q^{83} +13.1543 q^{85} +14.5893 q^{87} +9.78878 q^{89} +1.00000 q^{91} -22.4299 q^{93} +6.65621 q^{95} -14.2748 q^{97} -2.18627 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 3 q^{5} - 6 q^{7} + 8 q^{9} - 8 q^{11} - 6 q^{13} + 2 q^{15} - 2 q^{17} - 9 q^{19} + 4 q^{21} + 11 q^{23} + 21 q^{25} - 22 q^{27} + 7 q^{29} - q^{31} + 18 q^{33} - 3 q^{35} + 16 q^{37}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.27366 1.31270 0.656350 0.754456i \(-0.272099\pi\)
0.656350 + 0.754456i \(0.272099\pi\)
\(4\) 0 0
\(5\) 3.76699 1.68465 0.842324 0.538972i \(-0.181187\pi\)
0.842324 + 0.538972i \(0.181187\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 2.16955 0.723182
\(10\) 0 0
\(11\) −1.00771 −0.303836 −0.151918 0.988393i \(-0.548545\pi\)
−0.151918 + 0.988393i \(0.548545\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 8.56486 2.21144
\(16\) 0 0
\(17\) 3.49200 0.846935 0.423467 0.905911i \(-0.360813\pi\)
0.423467 + 0.905911i \(0.360813\pi\)
\(18\) 0 0
\(19\) 1.76699 0.405374 0.202687 0.979244i \(-0.435033\pi\)
0.202687 + 0.979244i \(0.435033\pi\)
\(20\) 0 0
\(21\) −2.27366 −0.496154
\(22\) 0 0
\(23\) 6.56618 1.36914 0.684572 0.728946i \(-0.259989\pi\)
0.684572 + 0.728946i \(0.259989\pi\)
\(24\) 0 0
\(25\) 9.19018 1.83804
\(26\) 0 0
\(27\) −1.88817 −0.363379
\(28\) 0 0
\(29\) 6.41665 1.19154 0.595771 0.803155i \(-0.296847\pi\)
0.595771 + 0.803155i \(0.296847\pi\)
\(30\) 0 0
\(31\) −9.86509 −1.77182 −0.885911 0.463856i \(-0.846466\pi\)
−0.885911 + 0.463856i \(0.846466\pi\)
\(32\) 0 0
\(33\) −2.29119 −0.398846
\(34\) 0 0
\(35\) −3.76699 −0.636737
\(36\) 0 0
\(37\) 4.41797 0.726309 0.363155 0.931729i \(-0.381700\pi\)
0.363155 + 0.931729i \(0.381700\pi\)
\(38\) 0 0
\(39\) −2.27366 −0.364078
\(40\) 0 0
\(41\) −10.3507 −1.61651 −0.808254 0.588835i \(-0.799587\pi\)
−0.808254 + 0.588835i \(0.799587\pi\)
\(42\) 0 0
\(43\) −4.31005 −0.657276 −0.328638 0.944456i \(-0.606590\pi\)
−0.328638 + 0.944456i \(0.606590\pi\)
\(44\) 0 0
\(45\) 8.17265 1.21831
\(46\) 0 0
\(47\) 0.877031 0.127928 0.0639640 0.997952i \(-0.479626\pi\)
0.0639640 + 0.997952i \(0.479626\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 7.93964 1.11177
\(52\) 0 0
\(53\) 10.2723 1.41101 0.705507 0.708703i \(-0.250719\pi\)
0.705507 + 0.708703i \(0.250719\pi\)
\(54\) 0 0
\(55\) −3.79603 −0.511857
\(56\) 0 0
\(57\) 4.01753 0.532135
\(58\) 0 0
\(59\) 11.9370 1.55406 0.777032 0.629461i \(-0.216724\pi\)
0.777032 + 0.629461i \(0.216724\pi\)
\(60\) 0 0
\(61\) −0.644016 −0.0824578 −0.0412289 0.999150i \(-0.513127\pi\)
−0.0412289 + 0.999150i \(0.513127\pi\)
\(62\) 0 0
\(63\) −2.16955 −0.273337
\(64\) 0 0
\(65\) −3.76699 −0.467237
\(66\) 0 0
\(67\) 7.22905 0.883169 0.441584 0.897220i \(-0.354417\pi\)
0.441584 + 0.897220i \(0.354417\pi\)
\(68\) 0 0
\(69\) 14.9293 1.79727
\(70\) 0 0
\(71\) 0.348273 0.0413324 0.0206662 0.999786i \(-0.493421\pi\)
0.0206662 + 0.999786i \(0.493421\pi\)
\(72\) 0 0
\(73\) −2.38892 −0.279602 −0.139801 0.990180i \(-0.544646\pi\)
−0.139801 + 0.990180i \(0.544646\pi\)
\(74\) 0 0
\(75\) 20.8954 2.41279
\(76\) 0 0
\(77\) 1.00771 0.114839
\(78\) 0 0
\(79\) 6.05607 0.681361 0.340681 0.940179i \(-0.389343\pi\)
0.340681 + 0.940179i \(0.389343\pi\)
\(80\) 0 0
\(81\) −10.8017 −1.20019
\(82\) 0 0
\(83\) −6.63604 −0.728400 −0.364200 0.931321i \(-0.618657\pi\)
−0.364200 + 0.931321i \(0.618657\pi\)
\(84\) 0 0
\(85\) 13.1543 1.42679
\(86\) 0 0
\(87\) 14.5893 1.56414
\(88\) 0 0
\(89\) 9.78878 1.03761 0.518804 0.854893i \(-0.326377\pi\)
0.518804 + 0.854893i \(0.326377\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −22.4299 −2.32587
\(94\) 0 0
\(95\) 6.65621 0.682913
\(96\) 0 0
\(97\) −14.2748 −1.44938 −0.724691 0.689074i \(-0.758018\pi\)
−0.724691 + 0.689074i \(0.758018\pi\)
\(98\) 0 0
\(99\) −2.18627 −0.219729
\(100\) 0 0
\(101\) 7.41073 0.737396 0.368698 0.929549i \(-0.379804\pi\)
0.368698 + 0.929549i \(0.379804\pi\)
\(102\) 0 0
\(103\) −15.3406 −1.51155 −0.755777 0.654829i \(-0.772741\pi\)
−0.755777 + 0.654829i \(0.772741\pi\)
\(104\) 0 0
\(105\) −8.56486 −0.835845
\(106\) 0 0
\(107\) −11.6510 −1.12635 −0.563174 0.826339i \(-0.690420\pi\)
−0.563174 + 0.826339i \(0.690420\pi\)
\(108\) 0 0
\(109\) −7.11483 −0.681477 −0.340738 0.940158i \(-0.610677\pi\)
−0.340738 + 0.940158i \(0.610677\pi\)
\(110\) 0 0
\(111\) 10.0450 0.953427
\(112\) 0 0
\(113\) 16.1712 1.52126 0.760630 0.649185i \(-0.224890\pi\)
0.760630 + 0.649185i \(0.224890\pi\)
\(114\) 0 0
\(115\) 24.7347 2.30652
\(116\) 0 0
\(117\) −2.16955 −0.200575
\(118\) 0 0
\(119\) −3.49200 −0.320111
\(120\) 0 0
\(121\) −9.98452 −0.907684
\(122\) 0 0
\(123\) −23.5340 −2.12199
\(124\) 0 0
\(125\) 15.7844 1.41180
\(126\) 0 0
\(127\) 2.72216 0.241553 0.120776 0.992680i \(-0.461462\pi\)
0.120776 + 0.992680i \(0.461462\pi\)
\(128\) 0 0
\(129\) −9.79960 −0.862806
\(130\) 0 0
\(131\) −13.9152 −1.21578 −0.607888 0.794023i \(-0.707983\pi\)
−0.607888 + 0.794023i \(0.707983\pi\)
\(132\) 0 0
\(133\) −1.76699 −0.153217
\(134\) 0 0
\(135\) −7.11272 −0.612165
\(136\) 0 0
\(137\) −14.7814 −1.26286 −0.631432 0.775431i \(-0.717533\pi\)
−0.631432 + 0.775431i \(0.717533\pi\)
\(138\) 0 0
\(139\) −20.2431 −1.71700 −0.858500 0.512813i \(-0.828603\pi\)
−0.858500 + 0.512813i \(0.828603\pi\)
\(140\) 0 0
\(141\) 1.99407 0.167931
\(142\) 0 0
\(143\) 1.00771 0.0842690
\(144\) 0 0
\(145\) 24.1714 2.00733
\(146\) 0 0
\(147\) 2.27366 0.187529
\(148\) 0 0
\(149\) 16.2484 1.33112 0.665559 0.746345i \(-0.268193\pi\)
0.665559 + 0.746345i \(0.268193\pi\)
\(150\) 0 0
\(151\) −0.268436 −0.0218450 −0.0109225 0.999940i \(-0.503477\pi\)
−0.0109225 + 0.999940i \(0.503477\pi\)
\(152\) 0 0
\(153\) 7.57606 0.612488
\(154\) 0 0
\(155\) −37.1616 −2.98489
\(156\) 0 0
\(157\) −10.4787 −0.836289 −0.418145 0.908380i \(-0.637320\pi\)
−0.418145 + 0.908380i \(0.637320\pi\)
\(158\) 0 0
\(159\) 23.3559 1.85224
\(160\) 0 0
\(161\) −6.56618 −0.517487
\(162\) 0 0
\(163\) −9.56068 −0.748850 −0.374425 0.927257i \(-0.622160\pi\)
−0.374425 + 0.927257i \(0.622160\pi\)
\(164\) 0 0
\(165\) −8.63090 −0.671915
\(166\) 0 0
\(167\) −5.51608 −0.426847 −0.213424 0.976960i \(-0.568461\pi\)
−0.213424 + 0.976960i \(0.568461\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 3.83356 0.293159
\(172\) 0 0
\(173\) 19.8347 1.50800 0.754001 0.656874i \(-0.228122\pi\)
0.754001 + 0.656874i \(0.228122\pi\)
\(174\) 0 0
\(175\) −9.19018 −0.694712
\(176\) 0 0
\(177\) 27.1407 2.04002
\(178\) 0 0
\(179\) −1.93589 −0.144695 −0.0723477 0.997379i \(-0.523049\pi\)
−0.0723477 + 0.997379i \(0.523049\pi\)
\(180\) 0 0
\(181\) 7.69934 0.572288 0.286144 0.958187i \(-0.407626\pi\)
0.286144 + 0.958187i \(0.407626\pi\)
\(182\) 0 0
\(183\) −1.46428 −0.108242
\(184\) 0 0
\(185\) 16.6424 1.22358
\(186\) 0 0
\(187\) −3.51893 −0.257329
\(188\) 0 0
\(189\) 1.88817 0.137344
\(190\) 0 0
\(191\) 19.3098 1.39721 0.698605 0.715507i \(-0.253804\pi\)
0.698605 + 0.715507i \(0.253804\pi\)
\(192\) 0 0
\(193\) −3.42540 −0.246565 −0.123283 0.992372i \(-0.539342\pi\)
−0.123283 + 0.992372i \(0.539342\pi\)
\(194\) 0 0
\(195\) −8.56486 −0.613342
\(196\) 0 0
\(197\) −20.6521 −1.47140 −0.735700 0.677307i \(-0.763147\pi\)
−0.735700 + 0.677307i \(0.763147\pi\)
\(198\) 0 0
\(199\) −2.23478 −0.158420 −0.0792098 0.996858i \(-0.525240\pi\)
−0.0792098 + 0.996858i \(0.525240\pi\)
\(200\) 0 0
\(201\) 16.4364 1.15934
\(202\) 0 0
\(203\) −6.41665 −0.450360
\(204\) 0 0
\(205\) −38.9909 −2.72324
\(206\) 0 0
\(207\) 14.2456 0.990140
\(208\) 0 0
\(209\) −1.78061 −0.123167
\(210\) 0 0
\(211\) −7.62695 −0.525061 −0.262530 0.964924i \(-0.584557\pi\)
−0.262530 + 0.964924i \(0.584557\pi\)
\(212\) 0 0
\(213\) 0.791856 0.0542571
\(214\) 0 0
\(215\) −16.2359 −1.10728
\(216\) 0 0
\(217\) 9.86509 0.669686
\(218\) 0 0
\(219\) −5.43161 −0.367034
\(220\) 0 0
\(221\) −3.49200 −0.234897
\(222\) 0 0
\(223\) −23.1439 −1.54983 −0.774915 0.632065i \(-0.782207\pi\)
−0.774915 + 0.632065i \(0.782207\pi\)
\(224\) 0 0
\(225\) 19.9385 1.32924
\(226\) 0 0
\(227\) 0.775768 0.0514895 0.0257448 0.999669i \(-0.491804\pi\)
0.0257448 + 0.999669i \(0.491804\pi\)
\(228\) 0 0
\(229\) 18.2298 1.20466 0.602330 0.798247i \(-0.294239\pi\)
0.602330 + 0.798247i \(0.294239\pi\)
\(230\) 0 0
\(231\) 2.29119 0.150750
\(232\) 0 0
\(233\) −11.6407 −0.762610 −0.381305 0.924449i \(-0.624525\pi\)
−0.381305 + 0.924449i \(0.624525\pi\)
\(234\) 0 0
\(235\) 3.30376 0.215514
\(236\) 0 0
\(237\) 13.7695 0.894423
\(238\) 0 0
\(239\) −1.55361 −0.100495 −0.0502474 0.998737i \(-0.516001\pi\)
−0.0502474 + 0.998737i \(0.516001\pi\)
\(240\) 0 0
\(241\) −25.7010 −1.65554 −0.827772 0.561064i \(-0.810392\pi\)
−0.827772 + 0.561064i \(0.810392\pi\)
\(242\) 0 0
\(243\) −18.8949 −1.21211
\(244\) 0 0
\(245\) 3.76699 0.240664
\(246\) 0 0
\(247\) −1.76699 −0.112431
\(248\) 0 0
\(249\) −15.0881 −0.956171
\(250\) 0 0
\(251\) 2.57009 0.162222 0.0811112 0.996705i \(-0.474153\pi\)
0.0811112 + 0.996705i \(0.474153\pi\)
\(252\) 0 0
\(253\) −6.61681 −0.415995
\(254\) 0 0
\(255\) 29.9085 1.87294
\(256\) 0 0
\(257\) −4.21939 −0.263198 −0.131599 0.991303i \(-0.542011\pi\)
−0.131599 + 0.991303i \(0.542011\pi\)
\(258\) 0 0
\(259\) −4.41797 −0.274519
\(260\) 0 0
\(261\) 13.9212 0.861702
\(262\) 0 0
\(263\) −12.3359 −0.760664 −0.380332 0.924850i \(-0.624190\pi\)
−0.380332 + 0.924850i \(0.624190\pi\)
\(264\) 0 0
\(265\) 38.6958 2.37706
\(266\) 0 0
\(267\) 22.2564 1.36207
\(268\) 0 0
\(269\) −14.2305 −0.867652 −0.433826 0.900997i \(-0.642837\pi\)
−0.433826 + 0.900997i \(0.642837\pi\)
\(270\) 0 0
\(271\) 22.8284 1.38672 0.693362 0.720589i \(-0.256129\pi\)
0.693362 + 0.720589i \(0.256129\pi\)
\(272\) 0 0
\(273\) 2.27366 0.137608
\(274\) 0 0
\(275\) −9.26104 −0.558462
\(276\) 0 0
\(277\) 27.7305 1.66617 0.833083 0.553148i \(-0.186574\pi\)
0.833083 + 0.553148i \(0.186574\pi\)
\(278\) 0 0
\(279\) −21.4028 −1.28135
\(280\) 0 0
\(281\) 24.0603 1.43531 0.717657 0.696396i \(-0.245214\pi\)
0.717657 + 0.696396i \(0.245214\pi\)
\(282\) 0 0
\(283\) −17.2902 −1.02780 −0.513899 0.857851i \(-0.671799\pi\)
−0.513899 + 0.857851i \(0.671799\pi\)
\(284\) 0 0
\(285\) 15.1340 0.896460
\(286\) 0 0
\(287\) 10.3507 0.610982
\(288\) 0 0
\(289\) −4.80593 −0.282702
\(290\) 0 0
\(291\) −32.4560 −1.90261
\(292\) 0 0
\(293\) 23.6689 1.38275 0.691376 0.722495i \(-0.257005\pi\)
0.691376 + 0.722495i \(0.257005\pi\)
\(294\) 0 0
\(295\) 44.9665 2.61805
\(296\) 0 0
\(297\) 1.90273 0.110408
\(298\) 0 0
\(299\) −6.56618 −0.379732
\(300\) 0 0
\(301\) 4.31005 0.248427
\(302\) 0 0
\(303\) 16.8495 0.967979
\(304\) 0 0
\(305\) −2.42600 −0.138912
\(306\) 0 0
\(307\) −28.1383 −1.60594 −0.802969 0.596021i \(-0.796748\pi\)
−0.802969 + 0.596021i \(0.796748\pi\)
\(308\) 0 0
\(309\) −34.8793 −1.98422
\(310\) 0 0
\(311\) 6.69873 0.379850 0.189925 0.981799i \(-0.439175\pi\)
0.189925 + 0.981799i \(0.439175\pi\)
\(312\) 0 0
\(313\) 7.00220 0.395788 0.197894 0.980223i \(-0.436590\pi\)
0.197894 + 0.980223i \(0.436590\pi\)
\(314\) 0 0
\(315\) −8.17265 −0.460477
\(316\) 0 0
\(317\) −15.7125 −0.882504 −0.441252 0.897383i \(-0.645466\pi\)
−0.441252 + 0.897383i \(0.645466\pi\)
\(318\) 0 0
\(319\) −6.46612 −0.362033
\(320\) 0 0
\(321\) −26.4905 −1.47856
\(322\) 0 0
\(323\) 6.17032 0.343326
\(324\) 0 0
\(325\) −9.19018 −0.509780
\(326\) 0 0
\(327\) −16.1767 −0.894575
\(328\) 0 0
\(329\) −0.877031 −0.0483523
\(330\) 0 0
\(331\) 7.19399 0.395417 0.197709 0.980261i \(-0.436650\pi\)
0.197709 + 0.980261i \(0.436650\pi\)
\(332\) 0 0
\(333\) 9.58499 0.525254
\(334\) 0 0
\(335\) 27.2317 1.48783
\(336\) 0 0
\(337\) 2.72206 0.148280 0.0741399 0.997248i \(-0.476379\pi\)
0.0741399 + 0.997248i \(0.476379\pi\)
\(338\) 0 0
\(339\) 36.7679 1.99696
\(340\) 0 0
\(341\) 9.94115 0.538343
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 56.2384 3.02777
\(346\) 0 0
\(347\) 9.85711 0.529157 0.264579 0.964364i \(-0.414767\pi\)
0.264579 + 0.964364i \(0.414767\pi\)
\(348\) 0 0
\(349\) 6.22724 0.333336 0.166668 0.986013i \(-0.446699\pi\)
0.166668 + 0.986013i \(0.446699\pi\)
\(350\) 0 0
\(351\) 1.88817 0.100783
\(352\) 0 0
\(353\) 10.9175 0.581080 0.290540 0.956863i \(-0.406165\pi\)
0.290540 + 0.956863i \(0.406165\pi\)
\(354\) 0 0
\(355\) 1.31194 0.0696305
\(356\) 0 0
\(357\) −7.93964 −0.420210
\(358\) 0 0
\(359\) 1.38097 0.0728850 0.0364425 0.999336i \(-0.488397\pi\)
0.0364425 + 0.999336i \(0.488397\pi\)
\(360\) 0 0
\(361\) −15.8778 −0.835672
\(362\) 0 0
\(363\) −22.7014 −1.19152
\(364\) 0 0
\(365\) −8.99904 −0.471031
\(366\) 0 0
\(367\) 0.328800 0.0171632 0.00858161 0.999963i \(-0.497268\pi\)
0.00858161 + 0.999963i \(0.497268\pi\)
\(368\) 0 0
\(369\) −22.4563 −1.16903
\(370\) 0 0
\(371\) −10.2723 −0.533313
\(372\) 0 0
\(373\) −5.18848 −0.268649 −0.134325 0.990937i \(-0.542886\pi\)
−0.134325 + 0.990937i \(0.542886\pi\)
\(374\) 0 0
\(375\) 35.8883 1.85326
\(376\) 0 0
\(377\) −6.41665 −0.330474
\(378\) 0 0
\(379\) −9.27332 −0.476339 −0.238169 0.971224i \(-0.576547\pi\)
−0.238169 + 0.971224i \(0.576547\pi\)
\(380\) 0 0
\(381\) 6.18928 0.317086
\(382\) 0 0
\(383\) −7.15628 −0.365669 −0.182834 0.983144i \(-0.558527\pi\)
−0.182834 + 0.983144i \(0.558527\pi\)
\(384\) 0 0
\(385\) 3.79603 0.193464
\(386\) 0 0
\(387\) −9.35085 −0.475330
\(388\) 0 0
\(389\) −24.6952 −1.25210 −0.626048 0.779784i \(-0.715329\pi\)
−0.626048 + 0.779784i \(0.715329\pi\)
\(390\) 0 0
\(391\) 22.9291 1.15957
\(392\) 0 0
\(393\) −31.6385 −1.59595
\(394\) 0 0
\(395\) 22.8131 1.14785
\(396\) 0 0
\(397\) 9.29544 0.466525 0.233262 0.972414i \(-0.425060\pi\)
0.233262 + 0.972414i \(0.425060\pi\)
\(398\) 0 0
\(399\) −4.01753 −0.201128
\(400\) 0 0
\(401\) 9.46459 0.472639 0.236320 0.971675i \(-0.424059\pi\)
0.236320 + 0.971675i \(0.424059\pi\)
\(402\) 0 0
\(403\) 9.86509 0.491415
\(404\) 0 0
\(405\) −40.6899 −2.02190
\(406\) 0 0
\(407\) −4.45203 −0.220679
\(408\) 0 0
\(409\) −4.66688 −0.230762 −0.115381 0.993321i \(-0.536809\pi\)
−0.115381 + 0.993321i \(0.536809\pi\)
\(410\) 0 0
\(411\) −33.6080 −1.65776
\(412\) 0 0
\(413\) −11.9370 −0.587381
\(414\) 0 0
\(415\) −24.9979 −1.22710
\(416\) 0 0
\(417\) −46.0261 −2.25391
\(418\) 0 0
\(419\) −12.8304 −0.626805 −0.313403 0.949620i \(-0.601469\pi\)
−0.313403 + 0.949620i \(0.601469\pi\)
\(420\) 0 0
\(421\) −19.8843 −0.969104 −0.484552 0.874763i \(-0.661017\pi\)
−0.484552 + 0.874763i \(0.661017\pi\)
\(422\) 0 0
\(423\) 1.90276 0.0925153
\(424\) 0 0
\(425\) 32.0921 1.55670
\(426\) 0 0
\(427\) 0.644016 0.0311661
\(428\) 0 0
\(429\) 2.29119 0.110620
\(430\) 0 0
\(431\) 21.2340 1.02281 0.511404 0.859340i \(-0.329126\pi\)
0.511404 + 0.859340i \(0.329126\pi\)
\(432\) 0 0
\(433\) 38.9601 1.87230 0.936152 0.351596i \(-0.114361\pi\)
0.936152 + 0.351596i \(0.114361\pi\)
\(434\) 0 0
\(435\) 54.9577 2.63502
\(436\) 0 0
\(437\) 11.6023 0.555015
\(438\) 0 0
\(439\) −36.3152 −1.73323 −0.866615 0.498977i \(-0.833709\pi\)
−0.866615 + 0.498977i \(0.833709\pi\)
\(440\) 0 0
\(441\) 2.16955 0.103312
\(442\) 0 0
\(443\) 21.0388 0.999584 0.499792 0.866145i \(-0.333410\pi\)
0.499792 + 0.866145i \(0.333410\pi\)
\(444\) 0 0
\(445\) 36.8742 1.74801
\(446\) 0 0
\(447\) 36.9433 1.74736
\(448\) 0 0
\(449\) 21.4527 1.01242 0.506209 0.862411i \(-0.331047\pi\)
0.506209 + 0.862411i \(0.331047\pi\)
\(450\) 0 0
\(451\) 10.4305 0.491153
\(452\) 0 0
\(453\) −0.610333 −0.0286759
\(454\) 0 0
\(455\) 3.76699 0.176599
\(456\) 0 0
\(457\) 4.51702 0.211297 0.105649 0.994404i \(-0.466308\pi\)
0.105649 + 0.994404i \(0.466308\pi\)
\(458\) 0 0
\(459\) −6.59350 −0.307758
\(460\) 0 0
\(461\) −36.3599 −1.69345 −0.846726 0.532029i \(-0.821430\pi\)
−0.846726 + 0.532029i \(0.821430\pi\)
\(462\) 0 0
\(463\) −26.5410 −1.23346 −0.616732 0.787173i \(-0.711544\pi\)
−0.616732 + 0.787173i \(0.711544\pi\)
\(464\) 0 0
\(465\) −84.4931 −3.91827
\(466\) 0 0
\(467\) −35.2094 −1.62930 −0.814648 0.579955i \(-0.803070\pi\)
−0.814648 + 0.579955i \(0.803070\pi\)
\(468\) 0 0
\(469\) −7.22905 −0.333806
\(470\) 0 0
\(471\) −23.8250 −1.09780
\(472\) 0 0
\(473\) 4.34328 0.199704
\(474\) 0 0
\(475\) 16.2389 0.745093
\(476\) 0 0
\(477\) 22.2863 1.02042
\(478\) 0 0
\(479\) 3.58141 0.163639 0.0818194 0.996647i \(-0.473927\pi\)
0.0818194 + 0.996647i \(0.473927\pi\)
\(480\) 0 0
\(481\) −4.41797 −0.201442
\(482\) 0 0
\(483\) −14.9293 −0.679306
\(484\) 0 0
\(485\) −53.7728 −2.44170
\(486\) 0 0
\(487\) −2.44618 −0.110847 −0.0554235 0.998463i \(-0.517651\pi\)
−0.0554235 + 0.998463i \(0.517651\pi\)
\(488\) 0 0
\(489\) −21.7378 −0.983016
\(490\) 0 0
\(491\) 4.49882 0.203029 0.101514 0.994834i \(-0.467631\pi\)
0.101514 + 0.994834i \(0.467631\pi\)
\(492\) 0 0
\(493\) 22.4069 1.00916
\(494\) 0 0
\(495\) −8.23567 −0.370166
\(496\) 0 0
\(497\) −0.348273 −0.0156222
\(498\) 0 0
\(499\) 16.8909 0.756141 0.378071 0.925777i \(-0.376588\pi\)
0.378071 + 0.925777i \(0.376588\pi\)
\(500\) 0 0
\(501\) −12.5417 −0.560322
\(502\) 0 0
\(503\) 28.1487 1.25509 0.627543 0.778582i \(-0.284060\pi\)
0.627543 + 0.778582i \(0.284060\pi\)
\(504\) 0 0
\(505\) 27.9161 1.24225
\(506\) 0 0
\(507\) 2.27366 0.100977
\(508\) 0 0
\(509\) −26.8484 −1.19003 −0.595017 0.803713i \(-0.702855\pi\)
−0.595017 + 0.803713i \(0.702855\pi\)
\(510\) 0 0
\(511\) 2.38892 0.105680
\(512\) 0 0
\(513\) −3.33637 −0.147304
\(514\) 0 0
\(515\) −57.7878 −2.54643
\(516\) 0 0
\(517\) −0.883793 −0.0388692
\(518\) 0 0
\(519\) 45.0973 1.97955
\(520\) 0 0
\(521\) 9.61803 0.421373 0.210687 0.977554i \(-0.432430\pi\)
0.210687 + 0.977554i \(0.432430\pi\)
\(522\) 0 0
\(523\) 32.7593 1.43246 0.716231 0.697863i \(-0.245866\pi\)
0.716231 + 0.697863i \(0.245866\pi\)
\(524\) 0 0
\(525\) −20.8954 −0.911949
\(526\) 0 0
\(527\) −34.4489 −1.50062
\(528\) 0 0
\(529\) 20.1147 0.874553
\(530\) 0 0
\(531\) 25.8979 1.12387
\(532\) 0 0
\(533\) 10.3507 0.448338
\(534\) 0 0
\(535\) −43.8893 −1.89750
\(536\) 0 0
\(537\) −4.40157 −0.189942
\(538\) 0 0
\(539\) −1.00771 −0.0434052
\(540\) 0 0
\(541\) −35.8058 −1.53941 −0.769705 0.638400i \(-0.779597\pi\)
−0.769705 + 0.638400i \(0.779597\pi\)
\(542\) 0 0
\(543\) 17.5057 0.751242
\(544\) 0 0
\(545\) −26.8015 −1.14805
\(546\) 0 0
\(547\) 33.5087 1.43273 0.716363 0.697727i \(-0.245805\pi\)
0.716363 + 0.697727i \(0.245805\pi\)
\(548\) 0 0
\(549\) −1.39722 −0.0596320
\(550\) 0 0
\(551\) 11.3381 0.483020
\(552\) 0 0
\(553\) −6.05607 −0.257530
\(554\) 0 0
\(555\) 37.8393 1.60619
\(556\) 0 0
\(557\) −19.5302 −0.827520 −0.413760 0.910386i \(-0.635785\pi\)
−0.413760 + 0.910386i \(0.635785\pi\)
\(558\) 0 0
\(559\) 4.31005 0.182296
\(560\) 0 0
\(561\) −8.00086 −0.337796
\(562\) 0 0
\(563\) 33.9566 1.43110 0.715549 0.698562i \(-0.246176\pi\)
0.715549 + 0.698562i \(0.246176\pi\)
\(564\) 0 0
\(565\) 60.9168 2.56279
\(566\) 0 0
\(567\) 10.8017 0.453629
\(568\) 0 0
\(569\) −25.2262 −1.05754 −0.528769 0.848766i \(-0.677346\pi\)
−0.528769 + 0.848766i \(0.677346\pi\)
\(570\) 0 0
\(571\) 42.1175 1.76256 0.881281 0.472594i \(-0.156682\pi\)
0.881281 + 0.472594i \(0.156682\pi\)
\(572\) 0 0
\(573\) 43.9041 1.83412
\(574\) 0 0
\(575\) 60.3444 2.51653
\(576\) 0 0
\(577\) −10.5544 −0.439385 −0.219693 0.975569i \(-0.570505\pi\)
−0.219693 + 0.975569i \(0.570505\pi\)
\(578\) 0 0
\(579\) −7.78820 −0.323667
\(580\) 0 0
\(581\) 6.63604 0.275309
\(582\) 0 0
\(583\) −10.3515 −0.428717
\(584\) 0 0
\(585\) −8.17265 −0.337898
\(586\) 0 0
\(587\) 35.1600 1.45121 0.725604 0.688112i \(-0.241560\pi\)
0.725604 + 0.688112i \(0.241560\pi\)
\(588\) 0 0
\(589\) −17.4315 −0.718251
\(590\) 0 0
\(591\) −46.9559 −1.93151
\(592\) 0 0
\(593\) −24.7392 −1.01592 −0.507958 0.861382i \(-0.669599\pi\)
−0.507958 + 0.861382i \(0.669599\pi\)
\(594\) 0 0
\(595\) −13.1543 −0.539274
\(596\) 0 0
\(597\) −5.08115 −0.207957
\(598\) 0 0
\(599\) 14.2816 0.583530 0.291765 0.956490i \(-0.405757\pi\)
0.291765 + 0.956490i \(0.405757\pi\)
\(600\) 0 0
\(601\) −10.0470 −0.409825 −0.204912 0.978780i \(-0.565691\pi\)
−0.204912 + 0.978780i \(0.565691\pi\)
\(602\) 0 0
\(603\) 15.6838 0.638692
\(604\) 0 0
\(605\) −37.6115 −1.52913
\(606\) 0 0
\(607\) 21.5221 0.873554 0.436777 0.899570i \(-0.356120\pi\)
0.436777 + 0.899570i \(0.356120\pi\)
\(608\) 0 0
\(609\) −14.5893 −0.591188
\(610\) 0 0
\(611\) −0.877031 −0.0354809
\(612\) 0 0
\(613\) −40.7770 −1.64697 −0.823483 0.567340i \(-0.807972\pi\)
−0.823483 + 0.567340i \(0.807972\pi\)
\(614\) 0 0
\(615\) −88.6523 −3.57480
\(616\) 0 0
\(617\) 44.6706 1.79837 0.899186 0.437566i \(-0.144159\pi\)
0.899186 + 0.437566i \(0.144159\pi\)
\(618\) 0 0
\(619\) −0.537823 −0.0216169 −0.0108085 0.999942i \(-0.503441\pi\)
−0.0108085 + 0.999942i \(0.503441\pi\)
\(620\) 0 0
\(621\) −12.3981 −0.497518
\(622\) 0 0
\(623\) −9.78878 −0.392179
\(624\) 0 0
\(625\) 13.5085 0.540341
\(626\) 0 0
\(627\) −4.04851 −0.161682
\(628\) 0 0
\(629\) 15.4276 0.615137
\(630\) 0 0
\(631\) 10.4583 0.416339 0.208169 0.978093i \(-0.433250\pi\)
0.208169 + 0.978093i \(0.433250\pi\)
\(632\) 0 0
\(633\) −17.3411 −0.689247
\(634\) 0 0
\(635\) 10.2543 0.406931
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0.755595 0.0298909
\(640\) 0 0
\(641\) 31.0787 1.22753 0.613767 0.789487i \(-0.289653\pi\)
0.613767 + 0.789487i \(0.289653\pi\)
\(642\) 0 0
\(643\) −20.7212 −0.817165 −0.408582 0.912721i \(-0.633977\pi\)
−0.408582 + 0.912721i \(0.633977\pi\)
\(644\) 0 0
\(645\) −36.9149 −1.45352
\(646\) 0 0
\(647\) 39.2883 1.54458 0.772290 0.635270i \(-0.219111\pi\)
0.772290 + 0.635270i \(0.219111\pi\)
\(648\) 0 0
\(649\) −12.0290 −0.472181
\(650\) 0 0
\(651\) 22.4299 0.879097
\(652\) 0 0
\(653\) −48.3671 −1.89275 −0.946376 0.323066i \(-0.895286\pi\)
−0.946376 + 0.323066i \(0.895286\pi\)
\(654\) 0 0
\(655\) −52.4183 −2.04815
\(656\) 0 0
\(657\) −5.18288 −0.202203
\(658\) 0 0
\(659\) −3.93287 −0.153203 −0.0766015 0.997062i \(-0.524407\pi\)
−0.0766015 + 0.997062i \(0.524407\pi\)
\(660\) 0 0
\(661\) 1.22198 0.0475296 0.0237648 0.999718i \(-0.492435\pi\)
0.0237648 + 0.999718i \(0.492435\pi\)
\(662\) 0 0
\(663\) −7.93964 −0.308350
\(664\) 0 0
\(665\) −6.65621 −0.258117
\(666\) 0 0
\(667\) 42.1329 1.63139
\(668\) 0 0
\(669\) −52.6215 −2.03446
\(670\) 0 0
\(671\) 0.648982 0.0250537
\(672\) 0 0
\(673\) −7.41799 −0.285942 −0.142971 0.989727i \(-0.545666\pi\)
−0.142971 + 0.989727i \(0.545666\pi\)
\(674\) 0 0
\(675\) −17.3526 −0.667904
\(676\) 0 0
\(677\) −34.2053 −1.31461 −0.657307 0.753623i \(-0.728305\pi\)
−0.657307 + 0.753623i \(0.728305\pi\)
\(678\) 0 0
\(679\) 14.2748 0.547815
\(680\) 0 0
\(681\) 1.76384 0.0675903
\(682\) 0 0
\(683\) −26.2853 −1.00578 −0.502889 0.864351i \(-0.667729\pi\)
−0.502889 + 0.864351i \(0.667729\pi\)
\(684\) 0 0
\(685\) −55.6815 −2.12748
\(686\) 0 0
\(687\) 41.4485 1.58136
\(688\) 0 0
\(689\) −10.2723 −0.391345
\(690\) 0 0
\(691\) 33.3052 1.26699 0.633496 0.773746i \(-0.281620\pi\)
0.633496 + 0.773746i \(0.281620\pi\)
\(692\) 0 0
\(693\) 2.18627 0.0830497
\(694\) 0 0
\(695\) −76.2556 −2.89254
\(696\) 0 0
\(697\) −36.1446 −1.36908
\(698\) 0 0
\(699\) −26.4671 −1.00108
\(700\) 0 0
\(701\) 10.7139 0.404659 0.202329 0.979318i \(-0.435149\pi\)
0.202329 + 0.979318i \(0.435149\pi\)
\(702\) 0 0
\(703\) 7.80649 0.294427
\(704\) 0 0
\(705\) 7.51164 0.282905
\(706\) 0 0
\(707\) −7.41073 −0.278709
\(708\) 0 0
\(709\) 11.0894 0.416470 0.208235 0.978079i \(-0.433228\pi\)
0.208235 + 0.978079i \(0.433228\pi\)
\(710\) 0 0
\(711\) 13.1389 0.492748
\(712\) 0 0
\(713\) −64.7759 −2.42588
\(714\) 0 0
\(715\) 3.79603 0.141964
\(716\) 0 0
\(717\) −3.53239 −0.131920
\(718\) 0 0
\(719\) 14.7869 0.551458 0.275729 0.961235i \(-0.411081\pi\)
0.275729 + 0.961235i \(0.411081\pi\)
\(720\) 0 0
\(721\) 15.3406 0.571314
\(722\) 0 0
\(723\) −58.4353 −2.17323
\(724\) 0 0
\(725\) 58.9702 2.19010
\(726\) 0 0
\(727\) −26.2320 −0.972891 −0.486446 0.873711i \(-0.661707\pi\)
−0.486446 + 0.873711i \(0.661707\pi\)
\(728\) 0 0
\(729\) −10.5556 −0.390948
\(730\) 0 0
\(731\) −15.0507 −0.556670
\(732\) 0 0
\(733\) −49.7996 −1.83939 −0.919695 0.392634i \(-0.871564\pi\)
−0.919695 + 0.392634i \(0.871564\pi\)
\(734\) 0 0
\(735\) 8.56486 0.315920
\(736\) 0 0
\(737\) −7.28479 −0.268339
\(738\) 0 0
\(739\) −19.2289 −0.707345 −0.353673 0.935369i \(-0.615067\pi\)
−0.353673 + 0.935369i \(0.615067\pi\)
\(740\) 0 0
\(741\) −4.01753 −0.147588
\(742\) 0 0
\(743\) −1.43628 −0.0526920 −0.0263460 0.999653i \(-0.508387\pi\)
−0.0263460 + 0.999653i \(0.508387\pi\)
\(744\) 0 0
\(745\) 61.2073 2.24246
\(746\) 0 0
\(747\) −14.3972 −0.526766
\(748\) 0 0
\(749\) 11.6510 0.425719
\(750\) 0 0
\(751\) −22.7155 −0.828902 −0.414451 0.910072i \(-0.636026\pi\)
−0.414451 + 0.910072i \(0.636026\pi\)
\(752\) 0 0
\(753\) 5.84351 0.212949
\(754\) 0 0
\(755\) −1.01119 −0.0368011
\(756\) 0 0
\(757\) 44.2660 1.60888 0.804438 0.594037i \(-0.202467\pi\)
0.804438 + 0.594037i \(0.202467\pi\)
\(758\) 0 0
\(759\) −15.0444 −0.546077
\(760\) 0 0
\(761\) 30.8439 1.11809 0.559046 0.829137i \(-0.311168\pi\)
0.559046 + 0.829137i \(0.311168\pi\)
\(762\) 0 0
\(763\) 7.11483 0.257574
\(764\) 0 0
\(765\) 28.5389 1.03183
\(766\) 0 0
\(767\) −11.9370 −0.431020
\(768\) 0 0
\(769\) 21.0441 0.758871 0.379435 0.925218i \(-0.376118\pi\)
0.379435 + 0.925218i \(0.376118\pi\)
\(770\) 0 0
\(771\) −9.59347 −0.345500
\(772\) 0 0
\(773\) 38.2194 1.37466 0.687328 0.726347i \(-0.258783\pi\)
0.687328 + 0.726347i \(0.258783\pi\)
\(774\) 0 0
\(775\) −90.6619 −3.25667
\(776\) 0 0
\(777\) −10.0450 −0.360361
\(778\) 0 0
\(779\) −18.2895 −0.655291
\(780\) 0 0
\(781\) −0.350959 −0.0125583
\(782\) 0 0
\(783\) −12.1157 −0.432981
\(784\) 0 0
\(785\) −39.4730 −1.40885
\(786\) 0 0
\(787\) −45.2105 −1.61158 −0.805790 0.592201i \(-0.798259\pi\)
−0.805790 + 0.592201i \(0.798259\pi\)
\(788\) 0 0
\(789\) −28.0477 −0.998524
\(790\) 0 0
\(791\) −16.1712 −0.574983
\(792\) 0 0
\(793\) 0.644016 0.0228697
\(794\) 0 0
\(795\) 87.9812 3.12037
\(796\) 0 0
\(797\) 14.0273 0.496872 0.248436 0.968648i \(-0.420083\pi\)
0.248436 + 0.968648i \(0.420083\pi\)
\(798\) 0 0
\(799\) 3.06259 0.108347
\(800\) 0 0
\(801\) 21.2372 0.750380
\(802\) 0 0
\(803\) 2.40734 0.0849533
\(804\) 0 0
\(805\) −24.7347 −0.871784
\(806\) 0 0
\(807\) −32.3555 −1.13897
\(808\) 0 0
\(809\) −17.5529 −0.617128 −0.308564 0.951204i \(-0.599848\pi\)
−0.308564 + 0.951204i \(0.599848\pi\)
\(810\) 0 0
\(811\) −13.4770 −0.473243 −0.236621 0.971602i \(-0.576040\pi\)
−0.236621 + 0.971602i \(0.576040\pi\)
\(812\) 0 0
\(813\) 51.9040 1.82035
\(814\) 0 0
\(815\) −36.0150 −1.26155
\(816\) 0 0
\(817\) −7.61579 −0.266443
\(818\) 0 0
\(819\) 2.16955 0.0758101
\(820\) 0 0
\(821\) −34.3848 −1.20004 −0.600019 0.799986i \(-0.704840\pi\)
−0.600019 + 0.799986i \(0.704840\pi\)
\(822\) 0 0
\(823\) 52.2121 1.82000 0.910000 0.414608i \(-0.136081\pi\)
0.910000 + 0.414608i \(0.136081\pi\)
\(824\) 0 0
\(825\) −21.0565 −0.733093
\(826\) 0 0
\(827\) −0.628626 −0.0218595 −0.0109297 0.999940i \(-0.503479\pi\)
−0.0109297 + 0.999940i \(0.503479\pi\)
\(828\) 0 0
\(829\) 43.4741 1.50992 0.754959 0.655772i \(-0.227657\pi\)
0.754959 + 0.655772i \(0.227657\pi\)
\(830\) 0 0
\(831\) 63.0499 2.18718
\(832\) 0 0
\(833\) 3.49200 0.120991
\(834\) 0 0
\(835\) −20.7790 −0.719087
\(836\) 0 0
\(837\) 18.6270 0.643843
\(838\) 0 0
\(839\) 12.2311 0.422265 0.211132 0.977457i \(-0.432285\pi\)
0.211132 + 0.977457i \(0.432285\pi\)
\(840\) 0 0
\(841\) 12.1734 0.419771
\(842\) 0 0
\(843\) 54.7049 1.88414
\(844\) 0 0
\(845\) 3.76699 0.129588
\(846\) 0 0
\(847\) 9.98452 0.343072
\(848\) 0 0
\(849\) −39.3122 −1.34919
\(850\) 0 0
\(851\) 29.0092 0.994422
\(852\) 0 0
\(853\) 23.7523 0.813263 0.406631 0.913592i \(-0.366703\pi\)
0.406631 + 0.913592i \(0.366703\pi\)
\(854\) 0 0
\(855\) 14.4410 0.493870
\(856\) 0 0
\(857\) −35.3466 −1.20742 −0.603708 0.797205i \(-0.706311\pi\)
−0.603708 + 0.797205i \(0.706311\pi\)
\(858\) 0 0
\(859\) −23.0835 −0.787598 −0.393799 0.919197i \(-0.628839\pi\)
−0.393799 + 0.919197i \(0.628839\pi\)
\(860\) 0 0
\(861\) 23.5340 0.802037
\(862\) 0 0
\(863\) −50.1962 −1.70870 −0.854350 0.519698i \(-0.826044\pi\)
−0.854350 + 0.519698i \(0.826044\pi\)
\(864\) 0 0
\(865\) 74.7169 2.54045
\(866\) 0 0
\(867\) −10.9271 −0.371103
\(868\) 0 0
\(869\) −6.10277 −0.207022
\(870\) 0 0
\(871\) −7.22905 −0.244947
\(872\) 0 0
\(873\) −30.9698 −1.04817
\(874\) 0 0
\(875\) −15.7844 −0.533609
\(876\) 0 0
\(877\) 9.66080 0.326222 0.163111 0.986608i \(-0.447847\pi\)
0.163111 + 0.986608i \(0.447847\pi\)
\(878\) 0 0
\(879\) 53.8152 1.81514
\(880\) 0 0
\(881\) 53.5130 1.80290 0.901450 0.432883i \(-0.142504\pi\)
0.901450 + 0.432883i \(0.142504\pi\)
\(882\) 0 0
\(883\) −1.94035 −0.0652981 −0.0326490 0.999467i \(-0.510394\pi\)
−0.0326490 + 0.999467i \(0.510394\pi\)
\(884\) 0 0
\(885\) 102.239 3.43672
\(886\) 0 0
\(887\) −20.4933 −0.688099 −0.344049 0.938952i \(-0.611799\pi\)
−0.344049 + 0.938952i \(0.611799\pi\)
\(888\) 0 0
\(889\) −2.72216 −0.0912983
\(890\) 0 0
\(891\) 10.8850 0.364661
\(892\) 0 0
\(893\) 1.54970 0.0518587
\(894\) 0 0
\(895\) −7.29248 −0.243761
\(896\) 0 0
\(897\) −14.9293 −0.498474
\(898\) 0 0
\(899\) −63.3008 −2.11120
\(900\) 0 0
\(901\) 35.8710 1.19504
\(902\) 0 0
\(903\) 9.79960 0.326110
\(904\) 0 0
\(905\) 29.0033 0.964103
\(906\) 0 0
\(907\) 24.5229 0.814269 0.407135 0.913368i \(-0.366528\pi\)
0.407135 + 0.913368i \(0.366528\pi\)
\(908\) 0 0
\(909\) 16.0779 0.533271
\(910\) 0 0
\(911\) 52.8441 1.75080 0.875402 0.483395i \(-0.160597\pi\)
0.875402 + 0.483395i \(0.160597\pi\)
\(912\) 0 0
\(913\) 6.68720 0.221314
\(914\) 0 0
\(915\) −5.51591 −0.182350
\(916\) 0 0
\(917\) 13.9152 0.459520
\(918\) 0 0
\(919\) 10.1225 0.333911 0.166955 0.985964i \(-0.446606\pi\)
0.166955 + 0.985964i \(0.446606\pi\)
\(920\) 0 0
\(921\) −63.9770 −2.10812
\(922\) 0 0
\(923\) −0.348273 −0.0114635
\(924\) 0 0
\(925\) 40.6019 1.33498
\(926\) 0 0
\(927\) −33.2821 −1.09313
\(928\) 0 0
\(929\) −33.3120 −1.09293 −0.546466 0.837482i \(-0.684027\pi\)
−0.546466 + 0.837482i \(0.684027\pi\)
\(930\) 0 0
\(931\) 1.76699 0.0579106
\(932\) 0 0
\(933\) 15.2307 0.498630
\(934\) 0 0
\(935\) −13.2557 −0.433509
\(936\) 0 0
\(937\) 35.2254 1.15076 0.575381 0.817885i \(-0.304854\pi\)
0.575381 + 0.817885i \(0.304854\pi\)
\(938\) 0 0
\(939\) 15.9206 0.519551
\(940\) 0 0
\(941\) −39.1903 −1.27757 −0.638784 0.769386i \(-0.720562\pi\)
−0.638784 + 0.769386i \(0.720562\pi\)
\(942\) 0 0
\(943\) −67.9645 −2.21323
\(944\) 0 0
\(945\) 7.11272 0.231377
\(946\) 0 0
\(947\) −17.6716 −0.574249 −0.287125 0.957893i \(-0.592699\pi\)
−0.287125 + 0.957893i \(0.592699\pi\)
\(948\) 0 0
\(949\) 2.38892 0.0775477
\(950\) 0 0
\(951\) −35.7250 −1.15846
\(952\) 0 0
\(953\) −31.3877 −1.01675 −0.508374 0.861136i \(-0.669753\pi\)
−0.508374 + 0.861136i \(0.669753\pi\)
\(954\) 0 0
\(955\) 72.7399 2.35381
\(956\) 0 0
\(957\) −14.7018 −0.475241
\(958\) 0 0
\(959\) 14.7814 0.477318
\(960\) 0 0
\(961\) 66.3199 2.13935
\(962\) 0 0
\(963\) −25.2774 −0.814554
\(964\) 0 0
\(965\) −12.9034 −0.415376
\(966\) 0 0
\(967\) 53.5803 1.72303 0.861513 0.507735i \(-0.169517\pi\)
0.861513 + 0.507735i \(0.169517\pi\)
\(968\) 0 0
\(969\) 14.0292 0.450684
\(970\) 0 0
\(971\) −40.7993 −1.30931 −0.654655 0.755928i \(-0.727186\pi\)
−0.654655 + 0.755928i \(0.727186\pi\)
\(972\) 0 0
\(973\) 20.2431 0.648965
\(974\) 0 0
\(975\) −20.8954 −0.669188
\(976\) 0 0
\(977\) −26.3071 −0.841638 −0.420819 0.907145i \(-0.638257\pi\)
−0.420819 + 0.907145i \(0.638257\pi\)
\(978\) 0 0
\(979\) −9.86426 −0.315263
\(980\) 0 0
\(981\) −15.4359 −0.492832
\(982\) 0 0
\(983\) −3.60971 −0.115132 −0.0575659 0.998342i \(-0.518334\pi\)
−0.0575659 + 0.998342i \(0.518334\pi\)
\(984\) 0 0
\(985\) −77.7961 −2.47879
\(986\) 0 0
\(987\) −1.99407 −0.0634720
\(988\) 0 0
\(989\) −28.3005 −0.899905
\(990\) 0 0
\(991\) 37.2680 1.18386 0.591929 0.805990i \(-0.298367\pi\)
0.591929 + 0.805990i \(0.298367\pi\)
\(992\) 0 0
\(993\) 16.3567 0.519064
\(994\) 0 0
\(995\) −8.41840 −0.266881
\(996\) 0 0
\(997\) −4.41273 −0.139752 −0.0698762 0.997556i \(-0.522260\pi\)
−0.0698762 + 0.997556i \(0.522260\pi\)
\(998\) 0 0
\(999\) −8.34188 −0.263926
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.a.u.1.6 6
4.3 odd 2 2912.2.a.v.1.1 yes 6
8.3 odd 2 5824.2.a.cm.1.6 6
8.5 even 2 5824.2.a.cn.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.u.1.6 6 1.1 even 1 trivial
2912.2.a.v.1.1 yes 6 4.3 odd 2
5824.2.a.cm.1.6 6 8.3 odd 2
5824.2.a.cn.1.1 6 8.5 even 2