Properties

Label 2912.2.a.t.1.3
Level $2912$
Weight $2$
Character 2912.1
Self dual yes
Analytic conductor $23.252$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,-3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1025428.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} + 13x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.156184\) of defining polynomial
Character \(\chi\) \(=\) 2912.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.15618 q^{3} +2.52637 q^{5} -1.00000 q^{7} -1.66324 q^{9} +0.379076 q^{11} -1.00000 q^{13} +2.92094 q^{15} +3.35468 q^{17} +6.08058 q^{19} -1.15618 q^{21} +1.80392 q^{23} +1.38253 q^{25} -5.39156 q^{27} -7.00153 q^{29} +7.84534 q^{31} +0.438281 q^{33} -2.52637 q^{35} +8.22787 q^{37} -1.15618 q^{39} +1.40935 q^{41} +8.46716 q^{43} -4.20195 q^{45} +7.03723 q^{47} +1.00000 q^{49} +3.87863 q^{51} -9.20753 q^{53} +0.957685 q^{55} +7.03027 q^{57} +4.15237 q^{59} +1.40935 q^{61} +1.66324 q^{63} -2.52637 q^{65} -8.21934 q^{67} +2.08566 q^{69} +2.92094 q^{71} +8.18871 q^{73} +1.59846 q^{75} -0.379076 q^{77} +3.61293 q^{79} -1.24391 q^{81} +9.04474 q^{83} +8.47516 q^{85} -8.09505 q^{87} +5.58484 q^{89} +1.00000 q^{91} +9.07066 q^{93} +15.3618 q^{95} +1.18961 q^{97} -0.630494 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} - 3 q^{5} - 5 q^{7} + 6 q^{9} + 5 q^{11} - 5 q^{13} + 4 q^{17} + 7 q^{19} - 5 q^{21} - 4 q^{23} + 2 q^{25} + 23 q^{27} + 3 q^{29} + 2 q^{31} + 17 q^{33} + 3 q^{35} - q^{37} - 5 q^{39} - 7 q^{41}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.15618 0.667523 0.333761 0.942658i \(-0.391682\pi\)
0.333761 + 0.942658i \(0.391682\pi\)
\(4\) 0 0
\(5\) 2.52637 1.12983 0.564913 0.825151i \(-0.308910\pi\)
0.564913 + 0.825151i \(0.308910\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.66324 −0.554413
\(10\) 0 0
\(11\) 0.379076 0.114296 0.0571478 0.998366i \(-0.481799\pi\)
0.0571478 + 0.998366i \(0.481799\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 2.92094 0.754185
\(16\) 0 0
\(17\) 3.35468 0.813630 0.406815 0.913511i \(-0.366639\pi\)
0.406815 + 0.913511i \(0.366639\pi\)
\(18\) 0 0
\(19\) 6.08058 1.39498 0.697491 0.716594i \(-0.254300\pi\)
0.697491 + 0.716594i \(0.254300\pi\)
\(20\) 0 0
\(21\) −1.15618 −0.252300
\(22\) 0 0
\(23\) 1.80392 0.376144 0.188072 0.982155i \(-0.439776\pi\)
0.188072 + 0.982155i \(0.439776\pi\)
\(24\) 0 0
\(25\) 1.38253 0.276506
\(26\) 0 0
\(27\) −5.39156 −1.03761
\(28\) 0 0
\(29\) −7.00153 −1.30015 −0.650075 0.759870i \(-0.725263\pi\)
−0.650075 + 0.759870i \(0.725263\pi\)
\(30\) 0 0
\(31\) 7.84534 1.40907 0.704533 0.709672i \(-0.251157\pi\)
0.704533 + 0.709672i \(0.251157\pi\)
\(32\) 0 0
\(33\) 0.438281 0.0762950
\(34\) 0 0
\(35\) −2.52637 −0.427034
\(36\) 0 0
\(37\) 8.22787 1.35265 0.676327 0.736601i \(-0.263571\pi\)
0.676327 + 0.736601i \(0.263571\pi\)
\(38\) 0 0
\(39\) −1.15618 −0.185138
\(40\) 0 0
\(41\) 1.40935 0.220103 0.110051 0.993926i \(-0.464898\pi\)
0.110051 + 0.993926i \(0.464898\pi\)
\(42\) 0 0
\(43\) 8.46716 1.29123 0.645615 0.763663i \(-0.276601\pi\)
0.645615 + 0.763663i \(0.276601\pi\)
\(44\) 0 0
\(45\) −4.20195 −0.626390
\(46\) 0 0
\(47\) 7.03723 1.02649 0.513243 0.858243i \(-0.328444\pi\)
0.513243 + 0.858243i \(0.328444\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 3.87863 0.543117
\(52\) 0 0
\(53\) −9.20753 −1.26475 −0.632376 0.774662i \(-0.717920\pi\)
−0.632376 + 0.774662i \(0.717920\pi\)
\(54\) 0 0
\(55\) 0.957685 0.129134
\(56\) 0 0
\(57\) 7.03027 0.931182
\(58\) 0 0
\(59\) 4.15237 0.540593 0.270297 0.962777i \(-0.412878\pi\)
0.270297 + 0.962777i \(0.412878\pi\)
\(60\) 0 0
\(61\) 1.40935 0.180448 0.0902241 0.995921i \(-0.471242\pi\)
0.0902241 + 0.995921i \(0.471242\pi\)
\(62\) 0 0
\(63\) 1.66324 0.209549
\(64\) 0 0
\(65\) −2.52637 −0.313357
\(66\) 0 0
\(67\) −8.21934 −1.00415 −0.502076 0.864824i \(-0.667430\pi\)
−0.502076 + 0.864824i \(0.667430\pi\)
\(68\) 0 0
\(69\) 2.08566 0.251085
\(70\) 0 0
\(71\) 2.92094 0.346652 0.173326 0.984864i \(-0.444549\pi\)
0.173326 + 0.984864i \(0.444549\pi\)
\(72\) 0 0
\(73\) 8.18871 0.958416 0.479208 0.877701i \(-0.340924\pi\)
0.479208 + 0.877701i \(0.340924\pi\)
\(74\) 0 0
\(75\) 1.59846 0.184574
\(76\) 0 0
\(77\) −0.379076 −0.0431997
\(78\) 0 0
\(79\) 3.61293 0.406486 0.203243 0.979128i \(-0.434852\pi\)
0.203243 + 0.979128i \(0.434852\pi\)
\(80\) 0 0
\(81\) −1.24391 −0.138213
\(82\) 0 0
\(83\) 9.04474 0.992789 0.496394 0.868097i \(-0.334657\pi\)
0.496394 + 0.868097i \(0.334657\pi\)
\(84\) 0 0
\(85\) 8.47516 0.919260
\(86\) 0 0
\(87\) −8.09505 −0.867880
\(88\) 0 0
\(89\) 5.58484 0.591992 0.295996 0.955189i \(-0.404349\pi\)
0.295996 + 0.955189i \(0.404349\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 9.07066 0.940583
\(94\) 0 0
\(95\) 15.3618 1.57609
\(96\) 0 0
\(97\) 1.18961 0.120786 0.0603931 0.998175i \(-0.480765\pi\)
0.0603931 + 0.998175i \(0.480765\pi\)
\(98\) 0 0
\(99\) −0.630494 −0.0633670
\(100\) 0 0
\(101\) 16.2448 1.61641 0.808207 0.588898i \(-0.200438\pi\)
0.808207 + 0.588898i \(0.200438\pi\)
\(102\) 0 0
\(103\) −6.37921 −0.628563 −0.314281 0.949330i \(-0.601764\pi\)
−0.314281 + 0.949330i \(0.601764\pi\)
\(104\) 0 0
\(105\) −2.92094 −0.285055
\(106\) 0 0
\(107\) 7.25389 0.701260 0.350630 0.936514i \(-0.385967\pi\)
0.350630 + 0.936514i \(0.385967\pi\)
\(108\) 0 0
\(109\) −18.2373 −1.74681 −0.873406 0.486992i \(-0.838094\pi\)
−0.873406 + 0.486992i \(0.838094\pi\)
\(110\) 0 0
\(111\) 9.51293 0.902928
\(112\) 0 0
\(113\) −0.307285 −0.0289069 −0.0144535 0.999896i \(-0.504601\pi\)
−0.0144535 + 0.999896i \(0.504601\pi\)
\(114\) 0 0
\(115\) 4.55737 0.424977
\(116\) 0 0
\(117\) 1.66324 0.153767
\(118\) 0 0
\(119\) −3.35468 −0.307523
\(120\) 0 0
\(121\) −10.8563 −0.986937
\(122\) 0 0
\(123\) 1.62946 0.146924
\(124\) 0 0
\(125\) −9.13906 −0.817422
\(126\) 0 0
\(127\) −17.9618 −1.59385 −0.796925 0.604079i \(-0.793541\pi\)
−0.796925 + 0.604079i \(0.793541\pi\)
\(128\) 0 0
\(129\) 9.78959 0.861926
\(130\) 0 0
\(131\) 7.21085 0.630015 0.315007 0.949089i \(-0.397993\pi\)
0.315007 + 0.949089i \(0.397993\pi\)
\(132\) 0 0
\(133\) −6.08058 −0.527253
\(134\) 0 0
\(135\) −13.6211 −1.17231
\(136\) 0 0
\(137\) 2.21158 0.188948 0.0944740 0.995527i \(-0.469883\pi\)
0.0944740 + 0.995527i \(0.469883\pi\)
\(138\) 0 0
\(139\) 6.61432 0.561019 0.280509 0.959851i \(-0.409497\pi\)
0.280509 + 0.959851i \(0.409497\pi\)
\(140\) 0 0
\(141\) 8.13633 0.685203
\(142\) 0 0
\(143\) −0.379076 −0.0316999
\(144\) 0 0
\(145\) −17.6884 −1.46894
\(146\) 0 0
\(147\) 1.15618 0.0953604
\(148\) 0 0
\(149\) −13.0239 −1.06696 −0.533481 0.845812i \(-0.679117\pi\)
−0.533481 + 0.845812i \(0.679117\pi\)
\(150\) 0 0
\(151\) −8.84116 −0.719483 −0.359742 0.933052i \(-0.617135\pi\)
−0.359742 + 0.933052i \(0.617135\pi\)
\(152\) 0 0
\(153\) −5.57964 −0.451087
\(154\) 0 0
\(155\) 19.8202 1.59200
\(156\) 0 0
\(157\) 2.00588 0.160086 0.0800432 0.996791i \(-0.474494\pi\)
0.0800432 + 0.996791i \(0.474494\pi\)
\(158\) 0 0
\(159\) −10.6456 −0.844250
\(160\) 0 0
\(161\) −1.80392 −0.142169
\(162\) 0 0
\(163\) 0.768316 0.0601792 0.0300896 0.999547i \(-0.490421\pi\)
0.0300896 + 0.999547i \(0.490421\pi\)
\(164\) 0 0
\(165\) 1.10726 0.0862000
\(166\) 0 0
\(167\) −10.8847 −0.842287 −0.421143 0.906994i \(-0.638371\pi\)
−0.421143 + 0.906994i \(0.638371\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −10.1135 −0.773396
\(172\) 0 0
\(173\) −11.2213 −0.853137 −0.426568 0.904455i \(-0.640278\pi\)
−0.426568 + 0.904455i \(0.640278\pi\)
\(174\) 0 0
\(175\) −1.38253 −0.104510
\(176\) 0 0
\(177\) 4.80091 0.360858
\(178\) 0 0
\(179\) 10.2940 0.769413 0.384706 0.923039i \(-0.374303\pi\)
0.384706 + 0.923039i \(0.374303\pi\)
\(180\) 0 0
\(181\) −23.6259 −1.75610 −0.878048 0.478572i \(-0.841154\pi\)
−0.878048 + 0.478572i \(0.841154\pi\)
\(182\) 0 0
\(183\) 1.62946 0.120453
\(184\) 0 0
\(185\) 20.7866 1.52826
\(186\) 0 0
\(187\) 1.27168 0.0929944
\(188\) 0 0
\(189\) 5.39156 0.392178
\(190\) 0 0
\(191\) −18.7332 −1.35548 −0.677742 0.735300i \(-0.737041\pi\)
−0.677742 + 0.735300i \(0.737041\pi\)
\(192\) 0 0
\(193\) −3.20215 −0.230496 −0.115248 0.993337i \(-0.536766\pi\)
−0.115248 + 0.993337i \(0.536766\pi\)
\(194\) 0 0
\(195\) −2.92094 −0.209173
\(196\) 0 0
\(197\) 1.40450 0.100067 0.0500334 0.998748i \(-0.484067\pi\)
0.0500334 + 0.998748i \(0.484067\pi\)
\(198\) 0 0
\(199\) 10.8044 0.765905 0.382952 0.923768i \(-0.374907\pi\)
0.382952 + 0.923768i \(0.374907\pi\)
\(200\) 0 0
\(201\) −9.50306 −0.670294
\(202\) 0 0
\(203\) 7.00153 0.491411
\(204\) 0 0
\(205\) 3.56052 0.248678
\(206\) 0 0
\(207\) −3.00035 −0.208539
\(208\) 0 0
\(209\) 2.30500 0.159440
\(210\) 0 0
\(211\) 14.9009 1.02582 0.512910 0.858442i \(-0.328567\pi\)
0.512910 + 0.858442i \(0.328567\pi\)
\(212\) 0 0
\(213\) 3.37715 0.231398
\(214\) 0 0
\(215\) 21.3912 1.45886
\(216\) 0 0
\(217\) −7.84534 −0.532577
\(218\) 0 0
\(219\) 9.46765 0.639765
\(220\) 0 0
\(221\) −3.35468 −0.225660
\(222\) 0 0
\(223\) 17.9369 1.20114 0.600571 0.799571i \(-0.294940\pi\)
0.600571 + 0.799571i \(0.294940\pi\)
\(224\) 0 0
\(225\) −2.29948 −0.153299
\(226\) 0 0
\(227\) 3.23978 0.215032 0.107516 0.994203i \(-0.465710\pi\)
0.107516 + 0.994203i \(0.465710\pi\)
\(228\) 0 0
\(229\) −13.7292 −0.907252 −0.453626 0.891192i \(-0.649870\pi\)
−0.453626 + 0.891192i \(0.649870\pi\)
\(230\) 0 0
\(231\) −0.438281 −0.0288368
\(232\) 0 0
\(233\) −10.2187 −0.669450 −0.334725 0.942316i \(-0.608643\pi\)
−0.334725 + 0.942316i \(0.608643\pi\)
\(234\) 0 0
\(235\) 17.7786 1.15975
\(236\) 0 0
\(237\) 4.17721 0.271339
\(238\) 0 0
\(239\) −8.67983 −0.561451 −0.280726 0.959788i \(-0.590575\pi\)
−0.280726 + 0.959788i \(0.590575\pi\)
\(240\) 0 0
\(241\) 3.33053 0.214538 0.107269 0.994230i \(-0.465789\pi\)
0.107269 + 0.994230i \(0.465789\pi\)
\(242\) 0 0
\(243\) 14.7365 0.945346
\(244\) 0 0
\(245\) 2.52637 0.161404
\(246\) 0 0
\(247\) −6.08058 −0.386898
\(248\) 0 0
\(249\) 10.4574 0.662709
\(250\) 0 0
\(251\) 28.3764 1.79110 0.895551 0.444959i \(-0.146782\pi\)
0.895551 + 0.444959i \(0.146782\pi\)
\(252\) 0 0
\(253\) 0.683823 0.0429916
\(254\) 0 0
\(255\) 9.79884 0.613627
\(256\) 0 0
\(257\) −5.43931 −0.339295 −0.169648 0.985505i \(-0.554263\pi\)
−0.169648 + 0.985505i \(0.554263\pi\)
\(258\) 0 0
\(259\) −8.22787 −0.511255
\(260\) 0 0
\(261\) 11.6452 0.720821
\(262\) 0 0
\(263\) −29.0772 −1.79297 −0.896487 0.443069i \(-0.853890\pi\)
−0.896487 + 0.443069i \(0.853890\pi\)
\(264\) 0 0
\(265\) −23.2616 −1.42895
\(266\) 0 0
\(267\) 6.45710 0.395168
\(268\) 0 0
\(269\) 16.9618 1.03418 0.517089 0.855932i \(-0.327016\pi\)
0.517089 + 0.855932i \(0.327016\pi\)
\(270\) 0 0
\(271\) 25.3079 1.53735 0.768673 0.639642i \(-0.220917\pi\)
0.768673 + 0.639642i \(0.220917\pi\)
\(272\) 0 0
\(273\) 1.15618 0.0699754
\(274\) 0 0
\(275\) 0.524084 0.0316035
\(276\) 0 0
\(277\) 26.7705 1.60849 0.804243 0.594301i \(-0.202571\pi\)
0.804243 + 0.594301i \(0.202571\pi\)
\(278\) 0 0
\(279\) −13.0487 −0.781204
\(280\) 0 0
\(281\) −16.2828 −0.971350 −0.485675 0.874139i \(-0.661426\pi\)
−0.485675 + 0.874139i \(0.661426\pi\)
\(282\) 0 0
\(283\) −31.8908 −1.89571 −0.947855 0.318702i \(-0.896753\pi\)
−0.947855 + 0.318702i \(0.896753\pi\)
\(284\) 0 0
\(285\) 17.7610 1.05207
\(286\) 0 0
\(287\) −1.40935 −0.0831910
\(288\) 0 0
\(289\) −5.74611 −0.338006
\(290\) 0 0
\(291\) 1.37540 0.0806276
\(292\) 0 0
\(293\) −7.84989 −0.458595 −0.229298 0.973356i \(-0.573643\pi\)
−0.229298 + 0.973356i \(0.573643\pi\)
\(294\) 0 0
\(295\) 10.4904 0.610776
\(296\) 0 0
\(297\) −2.04381 −0.118594
\(298\) 0 0
\(299\) −1.80392 −0.104324
\(300\) 0 0
\(301\) −8.46716 −0.488039
\(302\) 0 0
\(303\) 18.7819 1.07899
\(304\) 0 0
\(305\) 3.56052 0.203875
\(306\) 0 0
\(307\) 23.5081 1.34168 0.670839 0.741603i \(-0.265934\pi\)
0.670839 + 0.741603i \(0.265934\pi\)
\(308\) 0 0
\(309\) −7.37554 −0.419580
\(310\) 0 0
\(311\) −21.2731 −1.20629 −0.603144 0.797633i \(-0.706085\pi\)
−0.603144 + 0.797633i \(0.706085\pi\)
\(312\) 0 0
\(313\) 0.901988 0.0509834 0.0254917 0.999675i \(-0.491885\pi\)
0.0254917 + 0.999675i \(0.491885\pi\)
\(314\) 0 0
\(315\) 4.20195 0.236753
\(316\) 0 0
\(317\) 2.30091 0.129232 0.0646161 0.997910i \(-0.479418\pi\)
0.0646161 + 0.997910i \(0.479418\pi\)
\(318\) 0 0
\(319\) −2.65411 −0.148602
\(320\) 0 0
\(321\) 8.38683 0.468107
\(322\) 0 0
\(323\) 20.3984 1.13500
\(324\) 0 0
\(325\) −1.38253 −0.0766890
\(326\) 0 0
\(327\) −21.0856 −1.16604
\(328\) 0 0
\(329\) −7.03723 −0.387975
\(330\) 0 0
\(331\) 4.90024 0.269342 0.134671 0.990890i \(-0.457002\pi\)
0.134671 + 0.990890i \(0.457002\pi\)
\(332\) 0 0
\(333\) −13.6849 −0.749929
\(334\) 0 0
\(335\) −20.7651 −1.13452
\(336\) 0 0
\(337\) −7.92204 −0.431541 −0.215770 0.976444i \(-0.569226\pi\)
−0.215770 + 0.976444i \(0.569226\pi\)
\(338\) 0 0
\(339\) −0.355278 −0.0192960
\(340\) 0 0
\(341\) 2.97398 0.161050
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 5.26916 0.283682
\(346\) 0 0
\(347\) 18.3241 0.983690 0.491845 0.870683i \(-0.336323\pi\)
0.491845 + 0.870683i \(0.336323\pi\)
\(348\) 0 0
\(349\) −16.4231 −0.879106 −0.439553 0.898217i \(-0.644863\pi\)
−0.439553 + 0.898217i \(0.644863\pi\)
\(350\) 0 0
\(351\) 5.39156 0.287780
\(352\) 0 0
\(353\) −12.3862 −0.659253 −0.329627 0.944111i \(-0.606923\pi\)
−0.329627 + 0.944111i \(0.606923\pi\)
\(354\) 0 0
\(355\) 7.37938 0.391657
\(356\) 0 0
\(357\) −3.87863 −0.205279
\(358\) 0 0
\(359\) −18.6782 −0.985798 −0.492899 0.870087i \(-0.664063\pi\)
−0.492899 + 0.870087i \(0.664063\pi\)
\(360\) 0 0
\(361\) 17.9735 0.945973
\(362\) 0 0
\(363\) −12.5519 −0.658803
\(364\) 0 0
\(365\) 20.6877 1.08284
\(366\) 0 0
\(367\) 3.13179 0.163478 0.0817391 0.996654i \(-0.473953\pi\)
0.0817391 + 0.996654i \(0.473953\pi\)
\(368\) 0 0
\(369\) −2.34408 −0.122028
\(370\) 0 0
\(371\) 9.20753 0.478031
\(372\) 0 0
\(373\) 34.1369 1.76754 0.883770 0.467921i \(-0.154997\pi\)
0.883770 + 0.467921i \(0.154997\pi\)
\(374\) 0 0
\(375\) −10.5664 −0.545648
\(376\) 0 0
\(377\) 7.00153 0.360597
\(378\) 0 0
\(379\) −17.4384 −0.895751 −0.447876 0.894096i \(-0.647819\pi\)
−0.447876 + 0.894096i \(0.647819\pi\)
\(380\) 0 0
\(381\) −20.7671 −1.06393
\(382\) 0 0
\(383\) 33.4022 1.70677 0.853387 0.521278i \(-0.174544\pi\)
0.853387 + 0.521278i \(0.174544\pi\)
\(384\) 0 0
\(385\) −0.957685 −0.0488081
\(386\) 0 0
\(387\) −14.0829 −0.715875
\(388\) 0 0
\(389\) −15.5630 −0.789076 −0.394538 0.918880i \(-0.629095\pi\)
−0.394538 + 0.918880i \(0.629095\pi\)
\(390\) 0 0
\(391\) 6.05159 0.306042
\(392\) 0 0
\(393\) 8.33706 0.420549
\(394\) 0 0
\(395\) 9.12758 0.459258
\(396\) 0 0
\(397\) −22.8330 −1.14596 −0.572978 0.819571i \(-0.694212\pi\)
−0.572978 + 0.819571i \(0.694212\pi\)
\(398\) 0 0
\(399\) −7.03027 −0.351954
\(400\) 0 0
\(401\) −17.0500 −0.851434 −0.425717 0.904856i \(-0.639978\pi\)
−0.425717 + 0.904856i \(0.639978\pi\)
\(402\) 0 0
\(403\) −7.84534 −0.390804
\(404\) 0 0
\(405\) −3.14259 −0.156156
\(406\) 0 0
\(407\) 3.11899 0.154602
\(408\) 0 0
\(409\) 17.9104 0.885614 0.442807 0.896617i \(-0.353983\pi\)
0.442807 + 0.896617i \(0.353983\pi\)
\(410\) 0 0
\(411\) 2.55699 0.126127
\(412\) 0 0
\(413\) −4.15237 −0.204325
\(414\) 0 0
\(415\) 22.8503 1.12168
\(416\) 0 0
\(417\) 7.64736 0.374493
\(418\) 0 0
\(419\) −1.29444 −0.0632377 −0.0316188 0.999500i \(-0.510066\pi\)
−0.0316188 + 0.999500i \(0.510066\pi\)
\(420\) 0 0
\(421\) 27.3342 1.33219 0.666095 0.745867i \(-0.267965\pi\)
0.666095 + 0.745867i \(0.267965\pi\)
\(422\) 0 0
\(423\) −11.7046 −0.569097
\(424\) 0 0
\(425\) 4.63795 0.224974
\(426\) 0 0
\(427\) −1.40935 −0.0682030
\(428\) 0 0
\(429\) −0.438281 −0.0211604
\(430\) 0 0
\(431\) −38.9603 −1.87665 −0.938325 0.345753i \(-0.887623\pi\)
−0.938325 + 0.345753i \(0.887623\pi\)
\(432\) 0 0
\(433\) 26.5744 1.27709 0.638543 0.769586i \(-0.279537\pi\)
0.638543 + 0.769586i \(0.279537\pi\)
\(434\) 0 0
\(435\) −20.4511 −0.980554
\(436\) 0 0
\(437\) 10.9689 0.524714
\(438\) 0 0
\(439\) 7.16511 0.341972 0.170986 0.985273i \(-0.445305\pi\)
0.170986 + 0.985273i \(0.445305\pi\)
\(440\) 0 0
\(441\) −1.66324 −0.0792019
\(442\) 0 0
\(443\) −39.7320 −1.88772 −0.943862 0.330339i \(-0.892837\pi\)
−0.943862 + 0.330339i \(0.892837\pi\)
\(444\) 0 0
\(445\) 14.1094 0.668848
\(446\) 0 0
\(447\) −15.0581 −0.712222
\(448\) 0 0
\(449\) 12.7473 0.601581 0.300791 0.953690i \(-0.402749\pi\)
0.300791 + 0.953690i \(0.402749\pi\)
\(450\) 0 0
\(451\) 0.534249 0.0251568
\(452\) 0 0
\(453\) −10.2220 −0.480271
\(454\) 0 0
\(455\) 2.52637 0.118438
\(456\) 0 0
\(457\) −9.54084 −0.446301 −0.223151 0.974784i \(-0.571634\pi\)
−0.223151 + 0.974784i \(0.571634\pi\)
\(458\) 0 0
\(459\) −18.0870 −0.844228
\(460\) 0 0
\(461\) 6.57416 0.306189 0.153095 0.988212i \(-0.451076\pi\)
0.153095 + 0.988212i \(0.451076\pi\)
\(462\) 0 0
\(463\) −9.93180 −0.461570 −0.230785 0.973005i \(-0.574129\pi\)
−0.230785 + 0.973005i \(0.574129\pi\)
\(464\) 0 0
\(465\) 22.9158 1.06270
\(466\) 0 0
\(467\) −9.25918 −0.428464 −0.214232 0.976783i \(-0.568725\pi\)
−0.214232 + 0.976783i \(0.568725\pi\)
\(468\) 0 0
\(469\) 8.21934 0.379534
\(470\) 0 0
\(471\) 2.31916 0.106861
\(472\) 0 0
\(473\) 3.20970 0.147582
\(474\) 0 0
\(475\) 8.40659 0.385721
\(476\) 0 0
\(477\) 15.3143 0.701195
\(478\) 0 0
\(479\) −16.8996 −0.772161 −0.386080 0.922465i \(-0.626171\pi\)
−0.386080 + 0.922465i \(0.626171\pi\)
\(480\) 0 0
\(481\) −8.22787 −0.375159
\(482\) 0 0
\(483\) −2.08566 −0.0949010
\(484\) 0 0
\(485\) 3.00538 0.136467
\(486\) 0 0
\(487\) 21.4625 0.972557 0.486279 0.873804i \(-0.338354\pi\)
0.486279 + 0.873804i \(0.338354\pi\)
\(488\) 0 0
\(489\) 0.888315 0.0401710
\(490\) 0 0
\(491\) −24.4322 −1.10261 −0.551305 0.834303i \(-0.685870\pi\)
−0.551305 + 0.834303i \(0.685870\pi\)
\(492\) 0 0
\(493\) −23.4879 −1.05784
\(494\) 0 0
\(495\) −1.59286 −0.0715937
\(496\) 0 0
\(497\) −2.92094 −0.131022
\(498\) 0 0
\(499\) −38.3086 −1.71493 −0.857465 0.514542i \(-0.827962\pi\)
−0.857465 + 0.514542i \(0.827962\pi\)
\(500\) 0 0
\(501\) −12.5848 −0.562246
\(502\) 0 0
\(503\) −38.9983 −1.73885 −0.869424 0.494066i \(-0.835510\pi\)
−0.869424 + 0.494066i \(0.835510\pi\)
\(504\) 0 0
\(505\) 41.0402 1.82627
\(506\) 0 0
\(507\) 1.15618 0.0513479
\(508\) 0 0
\(509\) 21.3114 0.944610 0.472305 0.881435i \(-0.343422\pi\)
0.472305 + 0.881435i \(0.343422\pi\)
\(510\) 0 0
\(511\) −8.18871 −0.362247
\(512\) 0 0
\(513\) −32.7838 −1.44744
\(514\) 0 0
\(515\) −16.1162 −0.710166
\(516\) 0 0
\(517\) 2.66764 0.117323
\(518\) 0 0
\(519\) −12.9738 −0.569488
\(520\) 0 0
\(521\) 42.7173 1.87148 0.935739 0.352694i \(-0.114734\pi\)
0.935739 + 0.352694i \(0.114734\pi\)
\(522\) 0 0
\(523\) 41.3229 1.80693 0.903463 0.428667i \(-0.141017\pi\)
0.903463 + 0.428667i \(0.141017\pi\)
\(524\) 0 0
\(525\) −1.59846 −0.0697625
\(526\) 0 0
\(527\) 26.3186 1.14646
\(528\) 0 0
\(529\) −19.7459 −0.858516
\(530\) 0 0
\(531\) −6.90639 −0.299712
\(532\) 0 0
\(533\) −1.40935 −0.0610455
\(534\) 0 0
\(535\) 18.3260 0.792302
\(536\) 0 0
\(537\) 11.9018 0.513601
\(538\) 0 0
\(539\) 0.379076 0.0163279
\(540\) 0 0
\(541\) −5.81736 −0.250108 −0.125054 0.992150i \(-0.539910\pi\)
−0.125054 + 0.992150i \(0.539910\pi\)
\(542\) 0 0
\(543\) −27.3158 −1.17223
\(544\) 0 0
\(545\) −46.0740 −1.97359
\(546\) 0 0
\(547\) −13.1777 −0.563438 −0.281719 0.959497i \(-0.590905\pi\)
−0.281719 + 0.959497i \(0.590905\pi\)
\(548\) 0 0
\(549\) −2.34408 −0.100043
\(550\) 0 0
\(551\) −42.5734 −1.81369
\(552\) 0 0
\(553\) −3.61293 −0.153637
\(554\) 0 0
\(555\) 24.0332 1.02015
\(556\) 0 0
\(557\) 25.9250 1.09848 0.549239 0.835665i \(-0.314918\pi\)
0.549239 + 0.835665i \(0.314918\pi\)
\(558\) 0 0
\(559\) −8.46716 −0.358123
\(560\) 0 0
\(561\) 1.47029 0.0620759
\(562\) 0 0
\(563\) −9.72655 −0.409925 −0.204963 0.978770i \(-0.565707\pi\)
−0.204963 + 0.978770i \(0.565707\pi\)
\(564\) 0 0
\(565\) −0.776314 −0.0326598
\(566\) 0 0
\(567\) 1.24391 0.0522395
\(568\) 0 0
\(569\) −29.3247 −1.22936 −0.614679 0.788778i \(-0.710714\pi\)
−0.614679 + 0.788778i \(0.710714\pi\)
\(570\) 0 0
\(571\) 5.90207 0.246994 0.123497 0.992345i \(-0.460589\pi\)
0.123497 + 0.992345i \(0.460589\pi\)
\(572\) 0 0
\(573\) −21.6590 −0.904817
\(574\) 0 0
\(575\) 2.49398 0.104006
\(576\) 0 0
\(577\) −17.2365 −0.717566 −0.358783 0.933421i \(-0.616808\pi\)
−0.358783 + 0.933421i \(0.616808\pi\)
\(578\) 0 0
\(579\) −3.70227 −0.153861
\(580\) 0 0
\(581\) −9.04474 −0.375239
\(582\) 0 0
\(583\) −3.49035 −0.144556
\(584\) 0 0
\(585\) 4.20195 0.173729
\(586\) 0 0
\(587\) −1.13540 −0.0468630 −0.0234315 0.999725i \(-0.507459\pi\)
−0.0234315 + 0.999725i \(0.507459\pi\)
\(588\) 0 0
\(589\) 47.7043 1.96562
\(590\) 0 0
\(591\) 1.62386 0.0667968
\(592\) 0 0
\(593\) −38.5958 −1.58494 −0.792470 0.609911i \(-0.791205\pi\)
−0.792470 + 0.609911i \(0.791205\pi\)
\(594\) 0 0
\(595\) −8.47516 −0.347448
\(596\) 0 0
\(597\) 12.4919 0.511259
\(598\) 0 0
\(599\) −2.38561 −0.0974733 −0.0487366 0.998812i \(-0.515520\pi\)
−0.0487366 + 0.998812i \(0.515520\pi\)
\(600\) 0 0
\(601\) −30.1337 −1.22918 −0.614589 0.788847i \(-0.710678\pi\)
−0.614589 + 0.788847i \(0.710678\pi\)
\(602\) 0 0
\(603\) 13.6707 0.556715
\(604\) 0 0
\(605\) −27.4270 −1.11507
\(606\) 0 0
\(607\) −25.7888 −1.04673 −0.523367 0.852107i \(-0.675324\pi\)
−0.523367 + 0.852107i \(0.675324\pi\)
\(608\) 0 0
\(609\) 8.09505 0.328028
\(610\) 0 0
\(611\) −7.03723 −0.284696
\(612\) 0 0
\(613\) 5.25885 0.212403 0.106202 0.994345i \(-0.466131\pi\)
0.106202 + 0.994345i \(0.466131\pi\)
\(614\) 0 0
\(615\) 4.11662 0.165998
\(616\) 0 0
\(617\) −2.59401 −0.104431 −0.0522154 0.998636i \(-0.516628\pi\)
−0.0522154 + 0.998636i \(0.516628\pi\)
\(618\) 0 0
\(619\) 9.43016 0.379030 0.189515 0.981878i \(-0.439308\pi\)
0.189515 + 0.981878i \(0.439308\pi\)
\(620\) 0 0
\(621\) −9.72596 −0.390289
\(622\) 0 0
\(623\) −5.58484 −0.223752
\(624\) 0 0
\(625\) −30.0013 −1.20005
\(626\) 0 0
\(627\) 2.66500 0.106430
\(628\) 0 0
\(629\) 27.6019 1.10056
\(630\) 0 0
\(631\) 3.59402 0.143076 0.0715379 0.997438i \(-0.477209\pi\)
0.0715379 + 0.997438i \(0.477209\pi\)
\(632\) 0 0
\(633\) 17.2282 0.684758
\(634\) 0 0
\(635\) −45.3780 −1.80077
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) −4.85823 −0.192189
\(640\) 0 0
\(641\) 44.6709 1.76439 0.882197 0.470881i \(-0.156064\pi\)
0.882197 + 0.470881i \(0.156064\pi\)
\(642\) 0 0
\(643\) −29.4073 −1.15971 −0.579854 0.814720i \(-0.696891\pi\)
−0.579854 + 0.814720i \(0.696891\pi\)
\(644\) 0 0
\(645\) 24.7321 0.973826
\(646\) 0 0
\(647\) −21.8712 −0.859844 −0.429922 0.902866i \(-0.641459\pi\)
−0.429922 + 0.902866i \(0.641459\pi\)
\(648\) 0 0
\(649\) 1.57406 0.0617874
\(650\) 0 0
\(651\) −9.07066 −0.355507
\(652\) 0 0
\(653\) −26.2583 −1.02757 −0.513783 0.857920i \(-0.671756\pi\)
−0.513783 + 0.857920i \(0.671756\pi\)
\(654\) 0 0
\(655\) 18.2172 0.711807
\(656\) 0 0
\(657\) −13.6198 −0.531359
\(658\) 0 0
\(659\) −9.21534 −0.358978 −0.179489 0.983760i \(-0.557445\pi\)
−0.179489 + 0.983760i \(0.557445\pi\)
\(660\) 0 0
\(661\) 20.5617 0.799759 0.399879 0.916568i \(-0.369052\pi\)
0.399879 + 0.916568i \(0.369052\pi\)
\(662\) 0 0
\(663\) −3.87863 −0.150633
\(664\) 0 0
\(665\) −15.3618 −0.595704
\(666\) 0 0
\(667\) −12.6302 −0.489044
\(668\) 0 0
\(669\) 20.7383 0.801790
\(670\) 0 0
\(671\) 0.534249 0.0206244
\(672\) 0 0
\(673\) 17.6236 0.679340 0.339670 0.940545i \(-0.389685\pi\)
0.339670 + 0.940545i \(0.389685\pi\)
\(674\) 0 0
\(675\) −7.45400 −0.286905
\(676\) 0 0
\(677\) −24.3920 −0.937461 −0.468730 0.883341i \(-0.655288\pi\)
−0.468730 + 0.883341i \(0.655288\pi\)
\(678\) 0 0
\(679\) −1.18961 −0.0456529
\(680\) 0 0
\(681\) 3.74578 0.143539
\(682\) 0 0
\(683\) 36.0699 1.38018 0.690089 0.723725i \(-0.257572\pi\)
0.690089 + 0.723725i \(0.257572\pi\)
\(684\) 0 0
\(685\) 5.58726 0.213478
\(686\) 0 0
\(687\) −15.8735 −0.605612
\(688\) 0 0
\(689\) 9.20753 0.350779
\(690\) 0 0
\(691\) −44.9086 −1.70840 −0.854202 0.519941i \(-0.825954\pi\)
−0.854202 + 0.519941i \(0.825954\pi\)
\(692\) 0 0
\(693\) 0.630494 0.0239505
\(694\) 0 0
\(695\) 16.7102 0.633854
\(696\) 0 0
\(697\) 4.72791 0.179082
\(698\) 0 0
\(699\) −11.8147 −0.446873
\(700\) 0 0
\(701\) 42.3171 1.59830 0.799148 0.601134i \(-0.205284\pi\)
0.799148 + 0.601134i \(0.205284\pi\)
\(702\) 0 0
\(703\) 50.0303 1.88693
\(704\) 0 0
\(705\) 20.5554 0.774160
\(706\) 0 0
\(707\) −16.2448 −0.610947
\(708\) 0 0
\(709\) 15.2915 0.574284 0.287142 0.957888i \(-0.407295\pi\)
0.287142 + 0.957888i \(0.407295\pi\)
\(710\) 0 0
\(711\) −6.00916 −0.225361
\(712\) 0 0
\(713\) 14.1524 0.530011
\(714\) 0 0
\(715\) −0.957685 −0.0358154
\(716\) 0 0
\(717\) −10.0355 −0.374782
\(718\) 0 0
\(719\) −7.84648 −0.292624 −0.146312 0.989238i \(-0.546740\pi\)
−0.146312 + 0.989238i \(0.546740\pi\)
\(720\) 0 0
\(721\) 6.37921 0.237574
\(722\) 0 0
\(723\) 3.85070 0.143209
\(724\) 0 0
\(725\) −9.67983 −0.359500
\(726\) 0 0
\(727\) 9.52806 0.353376 0.176688 0.984267i \(-0.443462\pi\)
0.176688 + 0.984267i \(0.443462\pi\)
\(728\) 0 0
\(729\) 20.7698 0.769253
\(730\) 0 0
\(731\) 28.4046 1.05058
\(732\) 0 0
\(733\) −45.6515 −1.68618 −0.843088 0.537775i \(-0.819265\pi\)
−0.843088 + 0.537775i \(0.819265\pi\)
\(734\) 0 0
\(735\) 2.92094 0.107741
\(736\) 0 0
\(737\) −3.11575 −0.114770
\(738\) 0 0
\(739\) −48.2845 −1.77618 −0.888088 0.459674i \(-0.847966\pi\)
−0.888088 + 0.459674i \(0.847966\pi\)
\(740\) 0 0
\(741\) −7.03027 −0.258263
\(742\) 0 0
\(743\) −10.5289 −0.386270 −0.193135 0.981172i \(-0.561865\pi\)
−0.193135 + 0.981172i \(0.561865\pi\)
\(744\) 0 0
\(745\) −32.9032 −1.20548
\(746\) 0 0
\(747\) −15.0436 −0.550415
\(748\) 0 0
\(749\) −7.25389 −0.265052
\(750\) 0 0
\(751\) −46.3573 −1.69160 −0.845802 0.533498i \(-0.820877\pi\)
−0.845802 + 0.533498i \(0.820877\pi\)
\(752\) 0 0
\(753\) 32.8083 1.19560
\(754\) 0 0
\(755\) −22.3360 −0.812890
\(756\) 0 0
\(757\) −6.63021 −0.240979 −0.120490 0.992715i \(-0.538446\pi\)
−0.120490 + 0.992715i \(0.538446\pi\)
\(758\) 0 0
\(759\) 0.790625 0.0286979
\(760\) 0 0
\(761\) −14.2846 −0.517818 −0.258909 0.965902i \(-0.583363\pi\)
−0.258909 + 0.965902i \(0.583363\pi\)
\(762\) 0 0
\(763\) 18.2373 0.660233
\(764\) 0 0
\(765\) −14.0962 −0.509650
\(766\) 0 0
\(767\) −4.15237 −0.149934
\(768\) 0 0
\(769\) −36.2588 −1.30752 −0.653762 0.756700i \(-0.726810\pi\)
−0.653762 + 0.756700i \(0.726810\pi\)
\(770\) 0 0
\(771\) −6.28884 −0.226487
\(772\) 0 0
\(773\) −23.8145 −0.856550 −0.428275 0.903649i \(-0.640878\pi\)
−0.428275 + 0.903649i \(0.640878\pi\)
\(774\) 0 0
\(775\) 10.8464 0.389615
\(776\) 0 0
\(777\) −9.51293 −0.341275
\(778\) 0 0
\(779\) 8.56964 0.307039
\(780\) 0 0
\(781\) 1.10726 0.0396208
\(782\) 0 0
\(783\) 37.7492 1.34904
\(784\) 0 0
\(785\) 5.06758 0.180870
\(786\) 0 0
\(787\) 14.5618 0.519072 0.259536 0.965733i \(-0.416430\pi\)
0.259536 + 0.965733i \(0.416430\pi\)
\(788\) 0 0
\(789\) −33.6185 −1.19685
\(790\) 0 0
\(791\) 0.307285 0.0109258
\(792\) 0 0
\(793\) −1.40935 −0.0500473
\(794\) 0 0
\(795\) −26.8947 −0.953856
\(796\) 0 0
\(797\) −44.8286 −1.58791 −0.793956 0.607976i \(-0.791982\pi\)
−0.793956 + 0.607976i \(0.791982\pi\)
\(798\) 0 0
\(799\) 23.6077 0.835180
\(800\) 0 0
\(801\) −9.28893 −0.328208
\(802\) 0 0
\(803\) 3.10414 0.109543
\(804\) 0 0
\(805\) −4.55737 −0.160626
\(806\) 0 0
\(807\) 19.6109 0.690337
\(808\) 0 0
\(809\) 0.0588273 0.00206826 0.00103413 0.999999i \(-0.499671\pi\)
0.00103413 + 0.999999i \(0.499671\pi\)
\(810\) 0 0
\(811\) 16.3293 0.573401 0.286700 0.958020i \(-0.407442\pi\)
0.286700 + 0.958020i \(0.407442\pi\)
\(812\) 0 0
\(813\) 29.2606 1.02621
\(814\) 0 0
\(815\) 1.94105 0.0679920
\(816\) 0 0
\(817\) 51.4853 1.80124
\(818\) 0 0
\(819\) −1.66324 −0.0581183
\(820\) 0 0
\(821\) 33.2365 1.15996 0.579981 0.814630i \(-0.303060\pi\)
0.579981 + 0.814630i \(0.303060\pi\)
\(822\) 0 0
\(823\) 40.5997 1.41522 0.707609 0.706605i \(-0.249774\pi\)
0.707609 + 0.706605i \(0.249774\pi\)
\(824\) 0 0
\(825\) 0.605937 0.0210960
\(826\) 0 0
\(827\) 24.8197 0.863065 0.431532 0.902097i \(-0.357973\pi\)
0.431532 + 0.902097i \(0.357973\pi\)
\(828\) 0 0
\(829\) −19.6000 −0.680736 −0.340368 0.940292i \(-0.610552\pi\)
−0.340368 + 0.940292i \(0.610552\pi\)
\(830\) 0 0
\(831\) 30.9517 1.07370
\(832\) 0 0
\(833\) 3.35468 0.116233
\(834\) 0 0
\(835\) −27.4989 −0.951637
\(836\) 0 0
\(837\) −42.2986 −1.46206
\(838\) 0 0
\(839\) 10.1625 0.350847 0.175423 0.984493i \(-0.443871\pi\)
0.175423 + 0.984493i \(0.443871\pi\)
\(840\) 0 0
\(841\) 20.0214 0.690392
\(842\) 0 0
\(843\) −18.8259 −0.648398
\(844\) 0 0
\(845\) 2.52637 0.0869097
\(846\) 0 0
\(847\) 10.8563 0.373027
\(848\) 0 0
\(849\) −36.8716 −1.26543
\(850\) 0 0
\(851\) 14.8424 0.508792
\(852\) 0 0
\(853\) 28.7239 0.983486 0.491743 0.870740i \(-0.336360\pi\)
0.491743 + 0.870740i \(0.336360\pi\)
\(854\) 0 0
\(855\) −25.5503 −0.873803
\(856\) 0 0
\(857\) −10.4133 −0.355710 −0.177855 0.984057i \(-0.556916\pi\)
−0.177855 + 0.984057i \(0.556916\pi\)
\(858\) 0 0
\(859\) 26.3154 0.897870 0.448935 0.893564i \(-0.351804\pi\)
0.448935 + 0.893564i \(0.351804\pi\)
\(860\) 0 0
\(861\) −1.62946 −0.0555319
\(862\) 0 0
\(863\) −7.96335 −0.271076 −0.135538 0.990772i \(-0.543276\pi\)
−0.135538 + 0.990772i \(0.543276\pi\)
\(864\) 0 0
\(865\) −28.3490 −0.963896
\(866\) 0 0
\(867\) −6.64355 −0.225627
\(868\) 0 0
\(869\) 1.36957 0.0464596
\(870\) 0 0
\(871\) 8.21934 0.278502
\(872\) 0 0
\(873\) −1.97860 −0.0669655
\(874\) 0 0
\(875\) 9.13906 0.308956
\(876\) 0 0
\(877\) 3.97446 0.134208 0.0671040 0.997746i \(-0.478624\pi\)
0.0671040 + 0.997746i \(0.478624\pi\)
\(878\) 0 0
\(879\) −9.07591 −0.306123
\(880\) 0 0
\(881\) 24.1022 0.812024 0.406012 0.913868i \(-0.366919\pi\)
0.406012 + 0.913868i \(0.366919\pi\)
\(882\) 0 0
\(883\) 36.5212 1.22904 0.614518 0.788902i \(-0.289350\pi\)
0.614518 + 0.788902i \(0.289350\pi\)
\(884\) 0 0
\(885\) 12.1289 0.407707
\(886\) 0 0
\(887\) −13.7431 −0.461449 −0.230725 0.973019i \(-0.574110\pi\)
−0.230725 + 0.973019i \(0.574110\pi\)
\(888\) 0 0
\(889\) 17.9618 0.602418
\(890\) 0 0
\(891\) −0.471538 −0.0157971
\(892\) 0 0
\(893\) 42.7905 1.43193
\(894\) 0 0
\(895\) 26.0065 0.869302
\(896\) 0 0
\(897\) −2.08566 −0.0696383
\(898\) 0 0
\(899\) −54.9294 −1.83200
\(900\) 0 0
\(901\) −30.8883 −1.02904
\(902\) 0 0
\(903\) −9.78959 −0.325777
\(904\) 0 0
\(905\) −59.6876 −1.98408
\(906\) 0 0
\(907\) 51.9137 1.72377 0.861884 0.507106i \(-0.169285\pi\)
0.861884 + 0.507106i \(0.169285\pi\)
\(908\) 0 0
\(909\) −27.0189 −0.896161
\(910\) 0 0
\(911\) 41.7238 1.38237 0.691186 0.722677i \(-0.257089\pi\)
0.691186 + 0.722677i \(0.257089\pi\)
\(912\) 0 0
\(913\) 3.42864 0.113471
\(914\) 0 0
\(915\) 4.11662 0.136091
\(916\) 0 0
\(917\) −7.21085 −0.238123
\(918\) 0 0
\(919\) 2.14840 0.0708692 0.0354346 0.999372i \(-0.488718\pi\)
0.0354346 + 0.999372i \(0.488718\pi\)
\(920\) 0 0
\(921\) 27.1797 0.895601
\(922\) 0 0
\(923\) −2.92094 −0.0961440
\(924\) 0 0
\(925\) 11.3753 0.374017
\(926\) 0 0
\(927\) 10.6102 0.348483
\(928\) 0 0
\(929\) −18.9288 −0.621033 −0.310517 0.950568i \(-0.600502\pi\)
−0.310517 + 0.950568i \(0.600502\pi\)
\(930\) 0 0
\(931\) 6.08058 0.199283
\(932\) 0 0
\(933\) −24.5956 −0.805224
\(934\) 0 0
\(935\) 3.21273 0.105067
\(936\) 0 0
\(937\) 17.9584 0.586675 0.293337 0.956009i \(-0.405234\pi\)
0.293337 + 0.956009i \(0.405234\pi\)
\(938\) 0 0
\(939\) 1.04286 0.0340326
\(940\) 0 0
\(941\) 9.60380 0.313075 0.156537 0.987672i \(-0.449967\pi\)
0.156537 + 0.987672i \(0.449967\pi\)
\(942\) 0 0
\(943\) 2.54235 0.0827903
\(944\) 0 0
\(945\) 13.6211 0.443093
\(946\) 0 0
\(947\) −13.1503 −0.427328 −0.213664 0.976907i \(-0.568540\pi\)
−0.213664 + 0.976907i \(0.568540\pi\)
\(948\) 0 0
\(949\) −8.18871 −0.265817
\(950\) 0 0
\(951\) 2.66028 0.0862655
\(952\) 0 0
\(953\) −17.4224 −0.564367 −0.282184 0.959360i \(-0.591059\pi\)
−0.282184 + 0.959360i \(0.591059\pi\)
\(954\) 0 0
\(955\) −47.3268 −1.53146
\(956\) 0 0
\(957\) −3.06864 −0.0991950
\(958\) 0 0
\(959\) −2.21158 −0.0714156
\(960\) 0 0
\(961\) 30.5494 0.985465
\(962\) 0 0
\(963\) −12.0650 −0.388788
\(964\) 0 0
\(965\) −8.08980 −0.260420
\(966\) 0 0
\(967\) −27.2914 −0.877631 −0.438815 0.898577i \(-0.644602\pi\)
−0.438815 + 0.898577i \(0.644602\pi\)
\(968\) 0 0
\(969\) 23.5843 0.757638
\(970\) 0 0
\(971\) 15.2896 0.490667 0.245334 0.969439i \(-0.421102\pi\)
0.245334 + 0.969439i \(0.421102\pi\)
\(972\) 0 0
\(973\) −6.61432 −0.212045
\(974\) 0 0
\(975\) −1.59846 −0.0511917
\(976\) 0 0
\(977\) 47.1962 1.50994 0.754970 0.655760i \(-0.227651\pi\)
0.754970 + 0.655760i \(0.227651\pi\)
\(978\) 0 0
\(979\) 2.11708 0.0676621
\(980\) 0 0
\(981\) 30.3329 0.968456
\(982\) 0 0
\(983\) −21.2367 −0.677346 −0.338673 0.940904i \(-0.609978\pi\)
−0.338673 + 0.940904i \(0.609978\pi\)
\(984\) 0 0
\(985\) 3.54829 0.113058
\(986\) 0 0
\(987\) −8.13633 −0.258982
\(988\) 0 0
\(989\) 15.2741 0.485688
\(990\) 0 0
\(991\) 31.0244 0.985522 0.492761 0.870165i \(-0.335988\pi\)
0.492761 + 0.870165i \(0.335988\pi\)
\(992\) 0 0
\(993\) 5.66558 0.179792
\(994\) 0 0
\(995\) 27.2959 0.865339
\(996\) 0 0
\(997\) −46.1666 −1.46211 −0.731055 0.682318i \(-0.760972\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(998\) 0 0
\(999\) −44.3611 −1.40352
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.a.t.1.3 yes 5
4.3 odd 2 2912.2.a.q.1.3 5
8.3 odd 2 5824.2.a.cl.1.3 5
8.5 even 2 5824.2.a.ci.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.q.1.3 5 4.3 odd 2
2912.2.a.t.1.3 yes 5 1.1 even 1 trivial
5824.2.a.ci.1.3 5 8.5 even 2
5824.2.a.cl.1.3 5 8.3 odd 2