Properties

Label 2912.2.a.s.1.5
Level $2912$
Weight $2$
Character 2912.1
Self dual yes
Analytic conductor $23.252$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,3,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.6329476.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 13x^{3} - 2x^{2} + 40x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.86011\) of defining polynomial
Character \(\chi\) \(=\) 2912.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.86011 q^{3} +2.19539 q^{5} +1.00000 q^{7} +5.18025 q^{9} -0.804606 q^{11} +1.00000 q^{13} +6.27907 q^{15} +5.37564 q^{17} -6.55589 q^{19} +2.86011 q^{21} -0.238713 q^{23} -0.180247 q^{25} +6.23575 q^{27} -4.08368 q^{29} +9.70508 q^{31} -2.30127 q^{33} +2.19539 q^{35} +7.76355 q^{37} +2.86011 q^{39} +0.155033 q^{41} -3.18025 q^{43} +11.3727 q^{45} -1.55885 q^{47} +1.00000 q^{49} +15.3749 q^{51} +4.53998 q^{53} -1.76643 q^{55} -18.7506 q^{57} -7.29422 q^{59} -6.60625 q^{61} +5.18025 q^{63} +2.19539 q^{65} +0.636546 q^{67} -0.682747 q^{69} +7.80165 q^{71} -9.97485 q^{73} -0.515528 q^{75} -0.804606 q^{77} -11.4160 q^{79} +2.29422 q^{81} +9.85011 q^{83} +11.8016 q^{85} -11.6798 q^{87} +5.26167 q^{89} +1.00000 q^{91} +27.7576 q^{93} -14.3928 q^{95} +1.02591 q^{97} -4.16806 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{5} + 5 q^{7} + 11 q^{9} - 12 q^{11} + 5 q^{13} + 2 q^{15} + 4 q^{17} + 5 q^{19} - q^{23} + 14 q^{25} - 6 q^{27} + q^{29} + 13 q^{31} + 2 q^{33} + 3 q^{35} + 18 q^{37} + 22 q^{41} - q^{43}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.86011 1.65129 0.825644 0.564192i \(-0.190812\pi\)
0.825644 + 0.564192i \(0.190812\pi\)
\(4\) 0 0
\(5\) 2.19539 0.981810 0.490905 0.871213i \(-0.336666\pi\)
0.490905 + 0.871213i \(0.336666\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 5.18025 1.72675
\(10\) 0 0
\(11\) −0.804606 −0.242598 −0.121299 0.992616i \(-0.538706\pi\)
−0.121299 + 0.992616i \(0.538706\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 6.27907 1.62125
\(16\) 0 0
\(17\) 5.37564 1.30378 0.651892 0.758312i \(-0.273975\pi\)
0.651892 + 0.758312i \(0.273975\pi\)
\(18\) 0 0
\(19\) −6.55589 −1.50402 −0.752012 0.659149i \(-0.770916\pi\)
−0.752012 + 0.659149i \(0.770916\pi\)
\(20\) 0 0
\(21\) 2.86011 0.624128
\(22\) 0 0
\(23\) −0.238713 −0.0497752 −0.0248876 0.999690i \(-0.507923\pi\)
−0.0248876 + 0.999690i \(0.507923\pi\)
\(24\) 0 0
\(25\) −0.180247 −0.0360495
\(26\) 0 0
\(27\) 6.23575 1.20007
\(28\) 0 0
\(29\) −4.08368 −0.758320 −0.379160 0.925331i \(-0.623787\pi\)
−0.379160 + 0.925331i \(0.623787\pi\)
\(30\) 0 0
\(31\) 9.70508 1.74308 0.871542 0.490321i \(-0.163120\pi\)
0.871542 + 0.490321i \(0.163120\pi\)
\(32\) 0 0
\(33\) −2.30127 −0.400599
\(34\) 0 0
\(35\) 2.19539 0.371089
\(36\) 0 0
\(37\) 7.76355 1.27632 0.638160 0.769904i \(-0.279696\pi\)
0.638160 + 0.769904i \(0.279696\pi\)
\(38\) 0 0
\(39\) 2.86011 0.457985
\(40\) 0 0
\(41\) 0.155033 0.0242121 0.0121060 0.999927i \(-0.496146\pi\)
0.0121060 + 0.999927i \(0.496146\pi\)
\(42\) 0 0
\(43\) −3.18025 −0.484983 −0.242492 0.970154i \(-0.577965\pi\)
−0.242492 + 0.970154i \(0.577965\pi\)
\(44\) 0 0
\(45\) 11.3727 1.69534
\(46\) 0 0
\(47\) −1.55885 −0.227381 −0.113691 0.993516i \(-0.536267\pi\)
−0.113691 + 0.993516i \(0.536267\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 15.3749 2.15292
\(52\) 0 0
\(53\) 4.53998 0.623614 0.311807 0.950145i \(-0.399066\pi\)
0.311807 + 0.950145i \(0.399066\pi\)
\(54\) 0 0
\(55\) −1.76643 −0.238185
\(56\) 0 0
\(57\) −18.7506 −2.48358
\(58\) 0 0
\(59\) −7.29422 −0.949627 −0.474813 0.880087i \(-0.657484\pi\)
−0.474813 + 0.880087i \(0.657484\pi\)
\(60\) 0 0
\(61\) −6.60625 −0.845844 −0.422922 0.906166i \(-0.638996\pi\)
−0.422922 + 0.906166i \(0.638996\pi\)
\(62\) 0 0
\(63\) 5.18025 0.652650
\(64\) 0 0
\(65\) 2.19539 0.272305
\(66\) 0 0
\(67\) 0.636546 0.0777665 0.0388832 0.999244i \(-0.487620\pi\)
0.0388832 + 0.999244i \(0.487620\pi\)
\(68\) 0 0
\(69\) −0.682747 −0.0821931
\(70\) 0 0
\(71\) 7.80165 0.925885 0.462943 0.886388i \(-0.346794\pi\)
0.462943 + 0.886388i \(0.346794\pi\)
\(72\) 0 0
\(73\) −9.97485 −1.16747 −0.583734 0.811945i \(-0.698409\pi\)
−0.583734 + 0.811945i \(0.698409\pi\)
\(74\) 0 0
\(75\) −0.515528 −0.0595280
\(76\) 0 0
\(77\) −0.804606 −0.0916934
\(78\) 0 0
\(79\) −11.4160 −1.28440 −0.642200 0.766537i \(-0.721978\pi\)
−0.642200 + 0.766537i \(0.721978\pi\)
\(80\) 0 0
\(81\) 2.29422 0.254913
\(82\) 0 0
\(83\) 9.85011 1.08119 0.540595 0.841283i \(-0.318199\pi\)
0.540595 + 0.841283i \(0.318199\pi\)
\(84\) 0 0
\(85\) 11.8016 1.28007
\(86\) 0 0
\(87\) −11.6798 −1.25220
\(88\) 0 0
\(89\) 5.26167 0.557736 0.278868 0.960329i \(-0.410041\pi\)
0.278868 + 0.960329i \(0.410041\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 27.7576 2.87833
\(94\) 0 0
\(95\) −14.3928 −1.47667
\(96\) 0 0
\(97\) 1.02591 0.104166 0.0520829 0.998643i \(-0.483414\pi\)
0.0520829 + 0.998643i \(0.483414\pi\)
\(98\) 0 0
\(99\) −4.16806 −0.418906
\(100\) 0 0
\(101\) 4.09883 0.407848 0.203924 0.978987i \(-0.434630\pi\)
0.203924 + 0.978987i \(0.434630\pi\)
\(102\) 0 0
\(103\) 10.5581 1.04033 0.520163 0.854067i \(-0.325871\pi\)
0.520163 + 0.854067i \(0.325871\pi\)
\(104\) 0 0
\(105\) 6.27907 0.612775
\(106\) 0 0
\(107\) −13.5681 −1.31168 −0.655838 0.754902i \(-0.727684\pi\)
−0.655838 + 0.754902i \(0.727684\pi\)
\(108\) 0 0
\(109\) 7.88829 0.755561 0.377780 0.925895i \(-0.376687\pi\)
0.377780 + 0.925895i \(0.376687\pi\)
\(110\) 0 0
\(111\) 22.2046 2.10757
\(112\) 0 0
\(113\) −9.14623 −0.860405 −0.430203 0.902732i \(-0.641558\pi\)
−0.430203 + 0.902732i \(0.641558\pi\)
\(114\) 0 0
\(115\) −0.524070 −0.0488698
\(116\) 0 0
\(117\) 5.18025 0.478914
\(118\) 0 0
\(119\) 5.37564 0.492784
\(120\) 0 0
\(121\) −10.3526 −0.941146
\(122\) 0 0
\(123\) 0.443412 0.0399811
\(124\) 0 0
\(125\) −11.3727 −1.01720
\(126\) 0 0
\(127\) −10.4686 −0.928940 −0.464470 0.885589i \(-0.653755\pi\)
−0.464470 + 0.885589i \(0.653755\pi\)
\(128\) 0 0
\(129\) −9.09587 −0.800846
\(130\) 0 0
\(131\) −13.0800 −1.14280 −0.571401 0.820671i \(-0.693600\pi\)
−0.571401 + 0.820671i \(0.693600\pi\)
\(132\) 0 0
\(133\) −6.55589 −0.568468
\(134\) 0 0
\(135\) 13.6899 1.17824
\(136\) 0 0
\(137\) 16.5529 1.41421 0.707106 0.707107i \(-0.250000\pi\)
0.707106 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 6.04620 0.512832 0.256416 0.966567i \(-0.417458\pi\)
0.256416 + 0.966567i \(0.417458\pi\)
\(140\) 0 0
\(141\) −4.45848 −0.375472
\(142\) 0 0
\(143\) −0.804606 −0.0672846
\(144\) 0 0
\(145\) −8.96529 −0.744526
\(146\) 0 0
\(147\) 2.86011 0.235898
\(148\) 0 0
\(149\) 7.76355 0.636014 0.318007 0.948088i \(-0.396986\pi\)
0.318007 + 0.948088i \(0.396986\pi\)
\(150\) 0 0
\(151\) −9.88829 −0.804697 −0.402349 0.915487i \(-0.631806\pi\)
−0.402349 + 0.915487i \(0.631806\pi\)
\(152\) 0 0
\(153\) 27.8471 2.25131
\(154\) 0 0
\(155\) 21.3065 1.71138
\(156\) 0 0
\(157\) −0.0988266 −0.00788722 −0.00394361 0.999992i \(-0.501255\pi\)
−0.00394361 + 0.999992i \(0.501255\pi\)
\(158\) 0 0
\(159\) 12.9849 1.02977
\(160\) 0 0
\(161\) −0.238713 −0.0188133
\(162\) 0 0
\(163\) −15.8312 −1.24000 −0.619999 0.784602i \(-0.712867\pi\)
−0.619999 + 0.784602i \(0.712867\pi\)
\(164\) 0 0
\(165\) −5.05218 −0.393312
\(166\) 0 0
\(167\) −19.7166 −1.52571 −0.762857 0.646567i \(-0.776204\pi\)
−0.762857 + 0.646567i \(0.776204\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −33.9611 −2.59707
\(172\) 0 0
\(173\) −13.6843 −1.04040 −0.520199 0.854045i \(-0.674142\pi\)
−0.520199 + 0.854045i \(0.674142\pi\)
\(174\) 0 0
\(175\) −0.180247 −0.0136254
\(176\) 0 0
\(177\) −20.8623 −1.56811
\(178\) 0 0
\(179\) −7.37790 −0.551450 −0.275725 0.961237i \(-0.588918\pi\)
−0.275725 + 0.961237i \(0.588918\pi\)
\(180\) 0 0
\(181\) 22.4534 1.66895 0.834474 0.551047i \(-0.185772\pi\)
0.834474 + 0.551047i \(0.185772\pi\)
\(182\) 0 0
\(183\) −18.8946 −1.39673
\(184\) 0 0
\(185\) 17.0440 1.25310
\(186\) 0 0
\(187\) −4.32528 −0.316295
\(188\) 0 0
\(189\) 6.23575 0.453584
\(190\) 0 0
\(191\) 7.48735 0.541766 0.270883 0.962612i \(-0.412684\pi\)
0.270883 + 0.962612i \(0.412684\pi\)
\(192\) 0 0
\(193\) 5.24280 0.377385 0.188692 0.982036i \(-0.439575\pi\)
0.188692 + 0.982036i \(0.439575\pi\)
\(194\) 0 0
\(195\) 6.27907 0.449654
\(196\) 0 0
\(197\) 25.4645 1.81427 0.907134 0.420842i \(-0.138265\pi\)
0.907134 + 0.420842i \(0.138265\pi\)
\(198\) 0 0
\(199\) 12.8679 0.912183 0.456091 0.889933i \(-0.349249\pi\)
0.456091 + 0.889933i \(0.349249\pi\)
\(200\) 0 0
\(201\) 1.82059 0.128415
\(202\) 0 0
\(203\) −4.08368 −0.286618
\(204\) 0 0
\(205\) 0.340359 0.0237717
\(206\) 0 0
\(207\) −1.23659 −0.0859493
\(208\) 0 0
\(209\) 5.27491 0.364873
\(210\) 0 0
\(211\) −12.0534 −0.829789 −0.414895 0.909869i \(-0.636182\pi\)
−0.414895 + 0.909869i \(0.636182\pi\)
\(212\) 0 0
\(213\) 22.3136 1.52890
\(214\) 0 0
\(215\) −6.98189 −0.476161
\(216\) 0 0
\(217\) 9.70508 0.658824
\(218\) 0 0
\(219\) −28.5292 −1.92782
\(220\) 0 0
\(221\) 5.37564 0.361605
\(222\) 0 0
\(223\) −19.8968 −1.33239 −0.666195 0.745778i \(-0.732078\pi\)
−0.666195 + 0.745778i \(0.732078\pi\)
\(224\) 0 0
\(225\) −0.933726 −0.0622484
\(226\) 0 0
\(227\) −24.8926 −1.65218 −0.826090 0.563539i \(-0.809439\pi\)
−0.826090 + 0.563539i \(0.809439\pi\)
\(228\) 0 0
\(229\) −26.7044 −1.76468 −0.882338 0.470617i \(-0.844031\pi\)
−0.882338 + 0.470617i \(0.844031\pi\)
\(230\) 0 0
\(231\) −2.30127 −0.151412
\(232\) 0 0
\(233\) 25.8809 1.69551 0.847757 0.530384i \(-0.177952\pi\)
0.847757 + 0.530384i \(0.177952\pi\)
\(234\) 0 0
\(235\) −3.42228 −0.223245
\(236\) 0 0
\(237\) −32.6511 −2.12091
\(238\) 0 0
\(239\) −1.60329 −0.103708 −0.0518542 0.998655i \(-0.516513\pi\)
−0.0518542 + 0.998655i \(0.516513\pi\)
\(240\) 0 0
\(241\) 10.0023 0.644302 0.322151 0.946688i \(-0.395594\pi\)
0.322151 + 0.946688i \(0.395594\pi\)
\(242\) 0 0
\(243\) −12.1455 −0.779136
\(244\) 0 0
\(245\) 2.19539 0.140259
\(246\) 0 0
\(247\) −6.55589 −0.417141
\(248\) 0 0
\(249\) 28.1724 1.78535
\(250\) 0 0
\(251\) −6.31225 −0.398426 −0.199213 0.979956i \(-0.563838\pi\)
−0.199213 + 0.979956i \(0.563838\pi\)
\(252\) 0 0
\(253\) 0.192070 0.0120754
\(254\) 0 0
\(255\) 33.7540 2.11376
\(256\) 0 0
\(257\) −30.0952 −1.87729 −0.938644 0.344886i \(-0.887917\pi\)
−0.938644 + 0.344886i \(0.887917\pi\)
\(258\) 0 0
\(259\) 7.76355 0.482403
\(260\) 0 0
\(261\) −21.1545 −1.30943
\(262\) 0 0
\(263\) 15.2121 0.938016 0.469008 0.883194i \(-0.344612\pi\)
0.469008 + 0.883194i \(0.344612\pi\)
\(264\) 0 0
\(265\) 9.96704 0.612270
\(266\) 0 0
\(267\) 15.0490 0.920982
\(268\) 0 0
\(269\) 8.83420 0.538631 0.269315 0.963052i \(-0.413203\pi\)
0.269315 + 0.963052i \(0.413203\pi\)
\(270\) 0 0
\(271\) 14.3945 0.874404 0.437202 0.899363i \(-0.355969\pi\)
0.437202 + 0.899363i \(0.355969\pi\)
\(272\) 0 0
\(273\) 2.86011 0.173102
\(274\) 0 0
\(275\) 0.145028 0.00874553
\(276\) 0 0
\(277\) 22.6359 1.36006 0.680030 0.733184i \(-0.261967\pi\)
0.680030 + 0.733184i \(0.261967\pi\)
\(278\) 0 0
\(279\) 50.2747 3.00987
\(280\) 0 0
\(281\) 2.39009 0.142581 0.0712903 0.997456i \(-0.477288\pi\)
0.0712903 + 0.997456i \(0.477288\pi\)
\(282\) 0 0
\(283\) −33.2795 −1.97826 −0.989130 0.147040i \(-0.953025\pi\)
−0.989130 + 0.147040i \(0.953025\pi\)
\(284\) 0 0
\(285\) −41.1649 −2.43840
\(286\) 0 0
\(287\) 0.155033 0.00915131
\(288\) 0 0
\(289\) 11.8975 0.699854
\(290\) 0 0
\(291\) 2.93423 0.172008
\(292\) 0 0
\(293\) −21.6570 −1.26521 −0.632607 0.774473i \(-0.718015\pi\)
−0.632607 + 0.774473i \(0.718015\pi\)
\(294\) 0 0
\(295\) −16.0137 −0.932353
\(296\) 0 0
\(297\) −5.01733 −0.291135
\(298\) 0 0
\(299\) −0.238713 −0.0138052
\(300\) 0 0
\(301\) −3.18025 −0.183306
\(302\) 0 0
\(303\) 11.7231 0.673475
\(304\) 0 0
\(305\) −14.5033 −0.830458
\(306\) 0 0
\(307\) 30.0721 1.71631 0.858154 0.513393i \(-0.171612\pi\)
0.858154 + 0.513393i \(0.171612\pi\)
\(308\) 0 0
\(309\) 30.1975 1.71788
\(310\) 0 0
\(311\) −9.71753 −0.551030 −0.275515 0.961297i \(-0.588848\pi\)
−0.275515 + 0.961297i \(0.588848\pi\)
\(312\) 0 0
\(313\) −5.18251 −0.292933 −0.146466 0.989216i \(-0.546790\pi\)
−0.146466 + 0.989216i \(0.546790\pi\)
\(314\) 0 0
\(315\) 11.3727 0.640778
\(316\) 0 0
\(317\) 20.7376 1.16474 0.582369 0.812925i \(-0.302126\pi\)
0.582369 + 0.812925i \(0.302126\pi\)
\(318\) 0 0
\(319\) 3.28576 0.183967
\(320\) 0 0
\(321\) −38.8062 −2.16595
\(322\) 0 0
\(323\) −35.2421 −1.96092
\(324\) 0 0
\(325\) −0.180247 −0.00999832
\(326\) 0 0
\(327\) 22.5614 1.24765
\(328\) 0 0
\(329\) −1.55885 −0.0859420
\(330\) 0 0
\(331\) 25.7424 1.41493 0.707465 0.706748i \(-0.249839\pi\)
0.707465 + 0.706748i \(0.249839\pi\)
\(332\) 0 0
\(333\) 40.2171 2.20388
\(334\) 0 0
\(335\) 1.39747 0.0763519
\(336\) 0 0
\(337\) −1.23864 −0.0674728 −0.0337364 0.999431i \(-0.510741\pi\)
−0.0337364 + 0.999431i \(0.510741\pi\)
\(338\) 0 0
\(339\) −26.1593 −1.42078
\(340\) 0 0
\(341\) −7.80877 −0.422869
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −1.49890 −0.0806980
\(346\) 0 0
\(347\) −15.4405 −0.828887 −0.414443 0.910075i \(-0.636024\pi\)
−0.414443 + 0.910075i \(0.636024\pi\)
\(348\) 0 0
\(349\) −19.6813 −1.05352 −0.526759 0.850015i \(-0.676593\pi\)
−0.526759 + 0.850015i \(0.676593\pi\)
\(350\) 0 0
\(351\) 6.23575 0.332840
\(352\) 0 0
\(353\) −15.2763 −0.813073 −0.406537 0.913635i \(-0.633264\pi\)
−0.406537 + 0.913635i \(0.633264\pi\)
\(354\) 0 0
\(355\) 17.1277 0.909043
\(356\) 0 0
\(357\) 15.3749 0.813728
\(358\) 0 0
\(359\) 12.6641 0.668386 0.334193 0.942505i \(-0.391536\pi\)
0.334193 + 0.942505i \(0.391536\pi\)
\(360\) 0 0
\(361\) 23.9797 1.26209
\(362\) 0 0
\(363\) −29.6096 −1.55410
\(364\) 0 0
\(365\) −21.8987 −1.14623
\(366\) 0 0
\(367\) 8.14553 0.425193 0.212597 0.977140i \(-0.431808\pi\)
0.212597 + 0.977140i \(0.431808\pi\)
\(368\) 0 0
\(369\) 0.803110 0.0418082
\(370\) 0 0
\(371\) 4.53998 0.235704
\(372\) 0 0
\(373\) 4.07003 0.210738 0.105369 0.994433i \(-0.466398\pi\)
0.105369 + 0.994433i \(0.466398\pi\)
\(374\) 0 0
\(375\) −32.5272 −1.67970
\(376\) 0 0
\(377\) −4.08368 −0.210320
\(378\) 0 0
\(379\) −0.421779 −0.0216653 −0.0108327 0.999941i \(-0.503448\pi\)
−0.0108327 + 0.999941i \(0.503448\pi\)
\(380\) 0 0
\(381\) −29.9415 −1.53395
\(382\) 0 0
\(383\) 8.55583 0.437182 0.218591 0.975817i \(-0.429854\pi\)
0.218591 + 0.975817i \(0.429854\pi\)
\(384\) 0 0
\(385\) −1.76643 −0.0900255
\(386\) 0 0
\(387\) −16.4745 −0.837444
\(388\) 0 0
\(389\) −29.5622 −1.49886 −0.749430 0.662083i \(-0.769673\pi\)
−0.749430 + 0.662083i \(0.769673\pi\)
\(390\) 0 0
\(391\) −1.28324 −0.0648961
\(392\) 0 0
\(393\) −37.4102 −1.88709
\(394\) 0 0
\(395\) −25.0626 −1.26104
\(396\) 0 0
\(397\) −2.76271 −0.138656 −0.0693281 0.997594i \(-0.522086\pi\)
−0.0693281 + 0.997594i \(0.522086\pi\)
\(398\) 0 0
\(399\) −18.7506 −0.938703
\(400\) 0 0
\(401\) 21.2414 1.06074 0.530372 0.847765i \(-0.322052\pi\)
0.530372 + 0.847765i \(0.322052\pi\)
\(402\) 0 0
\(403\) 9.70508 0.483444
\(404\) 0 0
\(405\) 5.03672 0.250276
\(406\) 0 0
\(407\) −6.24660 −0.309632
\(408\) 0 0
\(409\) 31.7459 1.56973 0.784866 0.619665i \(-0.212732\pi\)
0.784866 + 0.619665i \(0.212732\pi\)
\(410\) 0 0
\(411\) 47.3432 2.33527
\(412\) 0 0
\(413\) −7.29422 −0.358925
\(414\) 0 0
\(415\) 21.6249 1.06152
\(416\) 0 0
\(417\) 17.2928 0.846833
\(418\) 0 0
\(419\) 3.94007 0.192485 0.0962425 0.995358i \(-0.469318\pi\)
0.0962425 + 0.995358i \(0.469318\pi\)
\(420\) 0 0
\(421\) −15.0730 −0.734612 −0.367306 0.930100i \(-0.619720\pi\)
−0.367306 + 0.930100i \(0.619720\pi\)
\(422\) 0 0
\(423\) −8.07522 −0.392630
\(424\) 0 0
\(425\) −0.968945 −0.0470007
\(426\) 0 0
\(427\) −6.60625 −0.319699
\(428\) 0 0
\(429\) −2.30127 −0.111106
\(430\) 0 0
\(431\) 32.4715 1.56410 0.782049 0.623217i \(-0.214175\pi\)
0.782049 + 0.623217i \(0.214175\pi\)
\(432\) 0 0
\(433\) 36.0001 1.73006 0.865028 0.501724i \(-0.167301\pi\)
0.865028 + 0.501724i \(0.167301\pi\)
\(434\) 0 0
\(435\) −25.6417 −1.22943
\(436\) 0 0
\(437\) 1.56498 0.0748631
\(438\) 0 0
\(439\) 0.491518 0.0234589 0.0117294 0.999931i \(-0.496266\pi\)
0.0117294 + 0.999931i \(0.496266\pi\)
\(440\) 0 0
\(441\) 5.18025 0.246678
\(442\) 0 0
\(443\) −34.1067 −1.62046 −0.810228 0.586115i \(-0.800657\pi\)
−0.810228 + 0.586115i \(0.800657\pi\)
\(444\) 0 0
\(445\) 11.5514 0.547590
\(446\) 0 0
\(447\) 22.2046 1.05024
\(448\) 0 0
\(449\) −33.7749 −1.59394 −0.796968 0.604022i \(-0.793564\pi\)
−0.796968 + 0.604022i \(0.793564\pi\)
\(450\) 0 0
\(451\) −0.124741 −0.00587381
\(452\) 0 0
\(453\) −28.2816 −1.32879
\(454\) 0 0
\(455\) 2.19539 0.102922
\(456\) 0 0
\(457\) 25.5019 1.19293 0.596463 0.802640i \(-0.296572\pi\)
0.596463 + 0.802640i \(0.296572\pi\)
\(458\) 0 0
\(459\) 33.5212 1.56463
\(460\) 0 0
\(461\) −42.1963 −1.96528 −0.982638 0.185535i \(-0.940598\pi\)
−0.982638 + 0.185535i \(0.940598\pi\)
\(462\) 0 0
\(463\) −28.4722 −1.32322 −0.661608 0.749850i \(-0.730126\pi\)
−0.661608 + 0.749850i \(0.730126\pi\)
\(464\) 0 0
\(465\) 60.9389 2.82597
\(466\) 0 0
\(467\) 19.9782 0.924480 0.462240 0.886755i \(-0.347046\pi\)
0.462240 + 0.886755i \(0.347046\pi\)
\(468\) 0 0
\(469\) 0.636546 0.0293930
\(470\) 0 0
\(471\) −0.282655 −0.0130241
\(472\) 0 0
\(473\) 2.55885 0.117656
\(474\) 0 0
\(475\) 1.18168 0.0542192
\(476\) 0 0
\(477\) 23.5182 1.07683
\(478\) 0 0
\(479\) 20.2624 0.925814 0.462907 0.886407i \(-0.346806\pi\)
0.462907 + 0.886407i \(0.346806\pi\)
\(480\) 0 0
\(481\) 7.76355 0.353987
\(482\) 0 0
\(483\) −0.682747 −0.0310661
\(484\) 0 0
\(485\) 2.25228 0.102271
\(486\) 0 0
\(487\) 4.80763 0.217854 0.108927 0.994050i \(-0.465258\pi\)
0.108927 + 0.994050i \(0.465258\pi\)
\(488\) 0 0
\(489\) −45.2791 −2.04759
\(490\) 0 0
\(491\) 34.6844 1.56528 0.782642 0.622472i \(-0.213872\pi\)
0.782642 + 0.622472i \(0.213872\pi\)
\(492\) 0 0
\(493\) −21.9524 −0.988686
\(494\) 0 0
\(495\) −9.15053 −0.411286
\(496\) 0 0
\(497\) 7.80165 0.349952
\(498\) 0 0
\(499\) 15.3871 0.688822 0.344411 0.938819i \(-0.388079\pi\)
0.344411 + 0.938819i \(0.388079\pi\)
\(500\) 0 0
\(501\) −56.3916 −2.51939
\(502\) 0 0
\(503\) −21.1910 −0.944859 −0.472429 0.881369i \(-0.656623\pi\)
−0.472429 + 0.881369i \(0.656623\pi\)
\(504\) 0 0
\(505\) 8.99854 0.400430
\(506\) 0 0
\(507\) 2.86011 0.127022
\(508\) 0 0
\(509\) 19.0626 0.844936 0.422468 0.906378i \(-0.361164\pi\)
0.422468 + 0.906378i \(0.361164\pi\)
\(510\) 0 0
\(511\) −9.97485 −0.441261
\(512\) 0 0
\(513\) −40.8809 −1.80494
\(514\) 0 0
\(515\) 23.1793 1.02140
\(516\) 0 0
\(517\) 1.25426 0.0551622
\(518\) 0 0
\(519\) −39.1387 −1.71800
\(520\) 0 0
\(521\) 18.5663 0.813405 0.406703 0.913561i \(-0.366679\pi\)
0.406703 + 0.913561i \(0.366679\pi\)
\(522\) 0 0
\(523\) 8.96690 0.392095 0.196048 0.980594i \(-0.437189\pi\)
0.196048 + 0.980594i \(0.437189\pi\)
\(524\) 0 0
\(525\) −0.515528 −0.0224995
\(526\) 0 0
\(527\) 52.1710 2.27261
\(528\) 0 0
\(529\) −22.9430 −0.997522
\(530\) 0 0
\(531\) −37.7859 −1.63977
\(532\) 0 0
\(533\) 0.155033 0.00671523
\(534\) 0 0
\(535\) −29.7873 −1.28782
\(536\) 0 0
\(537\) −21.1016 −0.910603
\(538\) 0 0
\(539\) −0.804606 −0.0346569
\(540\) 0 0
\(541\) 5.36043 0.230463 0.115231 0.993339i \(-0.463239\pi\)
0.115231 + 0.993339i \(0.463239\pi\)
\(542\) 0 0
\(543\) 64.2193 2.75591
\(544\) 0 0
\(545\) 17.3179 0.741817
\(546\) 0 0
\(547\) −2.62169 −0.112095 −0.0560477 0.998428i \(-0.517850\pi\)
−0.0560477 + 0.998428i \(0.517850\pi\)
\(548\) 0 0
\(549\) −34.2220 −1.46056
\(550\) 0 0
\(551\) 26.7722 1.14053
\(552\) 0 0
\(553\) −11.4160 −0.485458
\(554\) 0 0
\(555\) 48.7479 2.06923
\(556\) 0 0
\(557\) −22.2949 −0.944667 −0.472333 0.881420i \(-0.656588\pi\)
−0.472333 + 0.881420i \(0.656588\pi\)
\(558\) 0 0
\(559\) −3.18025 −0.134510
\(560\) 0 0
\(561\) −12.3708 −0.522295
\(562\) 0 0
\(563\) −20.3957 −0.859575 −0.429788 0.902930i \(-0.641412\pi\)
−0.429788 + 0.902930i \(0.641412\pi\)
\(564\) 0 0
\(565\) −20.0796 −0.844754
\(566\) 0 0
\(567\) 2.29422 0.0963482
\(568\) 0 0
\(569\) −15.4832 −0.649089 −0.324545 0.945870i \(-0.605211\pi\)
−0.324545 + 0.945870i \(0.605211\pi\)
\(570\) 0 0
\(571\) 42.8075 1.79144 0.895719 0.444620i \(-0.146661\pi\)
0.895719 + 0.444620i \(0.146661\pi\)
\(572\) 0 0
\(573\) 21.4147 0.894611
\(574\) 0 0
\(575\) 0.0430275 0.00179437
\(576\) 0 0
\(577\) 19.2287 0.800502 0.400251 0.916406i \(-0.368923\pi\)
0.400251 + 0.916406i \(0.368923\pi\)
\(578\) 0 0
\(579\) 14.9950 0.623171
\(580\) 0 0
\(581\) 9.85011 0.408651
\(582\) 0 0
\(583\) −3.65290 −0.151288
\(584\) 0 0
\(585\) 11.3727 0.470203
\(586\) 0 0
\(587\) 40.1383 1.65669 0.828343 0.560221i \(-0.189284\pi\)
0.828343 + 0.560221i \(0.189284\pi\)
\(588\) 0 0
\(589\) −63.6254 −2.62164
\(590\) 0 0
\(591\) 72.8312 2.99588
\(592\) 0 0
\(593\) 18.2014 0.747443 0.373722 0.927541i \(-0.378081\pi\)
0.373722 + 0.927541i \(0.378081\pi\)
\(594\) 0 0
\(595\) 11.8016 0.483820
\(596\) 0 0
\(597\) 36.8037 1.50628
\(598\) 0 0
\(599\) −28.2568 −1.15454 −0.577270 0.816553i \(-0.695882\pi\)
−0.577270 + 0.816553i \(0.695882\pi\)
\(600\) 0 0
\(601\) 16.1399 0.658361 0.329180 0.944267i \(-0.393228\pi\)
0.329180 + 0.944267i \(0.393228\pi\)
\(602\) 0 0
\(603\) 3.29747 0.134283
\(604\) 0 0
\(605\) −22.7280 −0.924027
\(606\) 0 0
\(607\) −17.2690 −0.700927 −0.350463 0.936576i \(-0.613976\pi\)
−0.350463 + 0.936576i \(0.613976\pi\)
\(608\) 0 0
\(609\) −11.6798 −0.473289
\(610\) 0 0
\(611\) −1.55885 −0.0630642
\(612\) 0 0
\(613\) 5.04762 0.203871 0.101936 0.994791i \(-0.467496\pi\)
0.101936 + 0.994791i \(0.467496\pi\)
\(614\) 0 0
\(615\) 0.973464 0.0392539
\(616\) 0 0
\(617\) 15.8009 0.636122 0.318061 0.948070i \(-0.396968\pi\)
0.318061 + 0.948070i \(0.396968\pi\)
\(618\) 0 0
\(619\) 45.1221 1.81361 0.906804 0.421552i \(-0.138514\pi\)
0.906804 + 0.421552i \(0.138514\pi\)
\(620\) 0 0
\(621\) −1.48856 −0.0597338
\(622\) 0 0
\(623\) 5.26167 0.210804
\(624\) 0 0
\(625\) −24.0663 −0.962651
\(626\) 0 0
\(627\) 15.0868 0.602510
\(628\) 0 0
\(629\) 41.7340 1.66404
\(630\) 0 0
\(631\) −28.2436 −1.12436 −0.562179 0.827015i \(-0.690037\pi\)
−0.562179 + 0.827015i \(0.690037\pi\)
\(632\) 0 0
\(633\) −34.4741 −1.37022
\(634\) 0 0
\(635\) −22.9828 −0.912043
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) 40.4145 1.59877
\(640\) 0 0
\(641\) −24.3049 −0.959986 −0.479993 0.877272i \(-0.659361\pi\)
−0.479993 + 0.877272i \(0.659361\pi\)
\(642\) 0 0
\(643\) −36.8320 −1.45251 −0.726256 0.687424i \(-0.758741\pi\)
−0.726256 + 0.687424i \(0.758741\pi\)
\(644\) 0 0
\(645\) −19.9690 −0.786279
\(646\) 0 0
\(647\) −24.7569 −0.973294 −0.486647 0.873599i \(-0.661780\pi\)
−0.486647 + 0.873599i \(0.661780\pi\)
\(648\) 0 0
\(649\) 5.86898 0.230377
\(650\) 0 0
\(651\) 27.7576 1.08791
\(652\) 0 0
\(653\) −25.4648 −0.996516 −0.498258 0.867029i \(-0.666027\pi\)
−0.498258 + 0.867029i \(0.666027\pi\)
\(654\) 0 0
\(655\) −28.7157 −1.12201
\(656\) 0 0
\(657\) −51.6722 −2.01592
\(658\) 0 0
\(659\) −28.2207 −1.09932 −0.549662 0.835387i \(-0.685244\pi\)
−0.549662 + 0.835387i \(0.685244\pi\)
\(660\) 0 0
\(661\) −12.1133 −0.471152 −0.235576 0.971856i \(-0.575698\pi\)
−0.235576 + 0.971856i \(0.575698\pi\)
\(662\) 0 0
\(663\) 15.3749 0.597113
\(664\) 0 0
\(665\) −14.3928 −0.558127
\(666\) 0 0
\(667\) 0.974829 0.0377455
\(668\) 0 0
\(669\) −56.9071 −2.20016
\(670\) 0 0
\(671\) 5.31543 0.205200
\(672\) 0 0
\(673\) 6.25941 0.241282 0.120641 0.992696i \(-0.461505\pi\)
0.120641 + 0.992696i \(0.461505\pi\)
\(674\) 0 0
\(675\) −1.12398 −0.0432619
\(676\) 0 0
\(677\) 6.45340 0.248024 0.124012 0.992281i \(-0.460424\pi\)
0.124012 + 0.992281i \(0.460424\pi\)
\(678\) 0 0
\(679\) 1.02591 0.0393710
\(680\) 0 0
\(681\) −71.1956 −2.72822
\(682\) 0 0
\(683\) −26.0066 −0.995113 −0.497557 0.867431i \(-0.665769\pi\)
−0.497557 + 0.867431i \(0.665769\pi\)
\(684\) 0 0
\(685\) 36.3402 1.38849
\(686\) 0 0
\(687\) −76.3775 −2.91399
\(688\) 0 0
\(689\) 4.53998 0.172959
\(690\) 0 0
\(691\) −31.7625 −1.20830 −0.604151 0.796870i \(-0.706488\pi\)
−0.604151 + 0.796870i \(0.706488\pi\)
\(692\) 0 0
\(693\) −4.16806 −0.158332
\(694\) 0 0
\(695\) 13.2738 0.503504
\(696\) 0 0
\(697\) 0.833402 0.0315674
\(698\) 0 0
\(699\) 74.0223 2.79978
\(700\) 0 0
\(701\) −18.8595 −0.712313 −0.356157 0.934426i \(-0.615913\pi\)
−0.356157 + 0.934426i \(0.615913\pi\)
\(702\) 0 0
\(703\) −50.8969 −1.91961
\(704\) 0 0
\(705\) −9.78812 −0.368642
\(706\) 0 0
\(707\) 4.09883 0.154152
\(708\) 0 0
\(709\) 33.0211 1.24014 0.620068 0.784548i \(-0.287105\pi\)
0.620068 + 0.784548i \(0.287105\pi\)
\(710\) 0 0
\(711\) −59.1377 −2.21784
\(712\) 0 0
\(713\) −2.31673 −0.0867623
\(714\) 0 0
\(715\) −1.76643 −0.0660607
\(716\) 0 0
\(717\) −4.58560 −0.171252
\(718\) 0 0
\(719\) −8.84215 −0.329756 −0.164878 0.986314i \(-0.552723\pi\)
−0.164878 + 0.986314i \(0.552723\pi\)
\(720\) 0 0
\(721\) 10.5581 0.393206
\(722\) 0 0
\(723\) 28.6076 1.06393
\(724\) 0 0
\(725\) 0.736072 0.0273370
\(726\) 0 0
\(727\) 19.6885 0.730207 0.365104 0.930967i \(-0.381034\pi\)
0.365104 + 0.930967i \(0.381034\pi\)
\(728\) 0 0
\(729\) −41.6203 −1.54149
\(730\) 0 0
\(731\) −17.0959 −0.632313
\(732\) 0 0
\(733\) 4.57590 0.169015 0.0845073 0.996423i \(-0.473068\pi\)
0.0845073 + 0.996423i \(0.473068\pi\)
\(734\) 0 0
\(735\) 6.27907 0.231607
\(736\) 0 0
\(737\) −0.512169 −0.0188660
\(738\) 0 0
\(739\) −13.2783 −0.488451 −0.244225 0.969719i \(-0.578534\pi\)
−0.244225 + 0.969719i \(0.578534\pi\)
\(740\) 0 0
\(741\) −18.7506 −0.688820
\(742\) 0 0
\(743\) −12.6373 −0.463619 −0.231810 0.972761i \(-0.574465\pi\)
−0.231810 + 0.972761i \(0.574465\pi\)
\(744\) 0 0
\(745\) 17.0440 0.624445
\(746\) 0 0
\(747\) 51.0260 1.86694
\(748\) 0 0
\(749\) −13.5681 −0.495767
\(750\) 0 0
\(751\) −34.2435 −1.24956 −0.624781 0.780800i \(-0.714812\pi\)
−0.624781 + 0.780800i \(0.714812\pi\)
\(752\) 0 0
\(753\) −18.0537 −0.657915
\(754\) 0 0
\(755\) −21.7087 −0.790060
\(756\) 0 0
\(757\) −24.6011 −0.894142 −0.447071 0.894498i \(-0.647533\pi\)
−0.447071 + 0.894498i \(0.647533\pi\)
\(758\) 0 0
\(759\) 0.549343 0.0199399
\(760\) 0 0
\(761\) −38.8019 −1.40657 −0.703284 0.710909i \(-0.748284\pi\)
−0.703284 + 0.710909i \(0.748284\pi\)
\(762\) 0 0
\(763\) 7.88829 0.285575
\(764\) 0 0
\(765\) 61.1354 2.21036
\(766\) 0 0
\(767\) −7.29422 −0.263379
\(768\) 0 0
\(769\) −17.5918 −0.634377 −0.317189 0.948362i \(-0.602739\pi\)
−0.317189 + 0.948362i \(0.602739\pi\)
\(770\) 0 0
\(771\) −86.0758 −3.09994
\(772\) 0 0
\(773\) −34.8320 −1.25282 −0.626410 0.779494i \(-0.715476\pi\)
−0.626410 + 0.779494i \(0.715476\pi\)
\(774\) 0 0
\(775\) −1.74931 −0.0628372
\(776\) 0 0
\(777\) 22.2046 0.796586
\(778\) 0 0
\(779\) −1.01638 −0.0364156
\(780\) 0 0
\(781\) −6.27726 −0.224618
\(782\) 0 0
\(783\) −25.4648 −0.910039
\(784\) 0 0
\(785\) −0.216963 −0.00774375
\(786\) 0 0
\(787\) 10.9115 0.388951 0.194476 0.980907i \(-0.437699\pi\)
0.194476 + 0.980907i \(0.437699\pi\)
\(788\) 0 0
\(789\) 43.5082 1.54893
\(790\) 0 0
\(791\) −9.14623 −0.325203
\(792\) 0 0
\(793\) −6.60625 −0.234595
\(794\) 0 0
\(795\) 28.5069 1.01103
\(796\) 0 0
\(797\) −22.0119 −0.779701 −0.389851 0.920878i \(-0.627473\pi\)
−0.389851 + 0.920878i \(0.627473\pi\)
\(798\) 0 0
\(799\) −8.37980 −0.296456
\(800\) 0 0
\(801\) 27.2567 0.963070
\(802\) 0 0
\(803\) 8.02583 0.283225
\(804\) 0 0
\(805\) −0.524070 −0.0184710
\(806\) 0 0
\(807\) 25.2668 0.889434
\(808\) 0 0
\(809\) 40.8981 1.43790 0.718950 0.695062i \(-0.244623\pi\)
0.718950 + 0.695062i \(0.244623\pi\)
\(810\) 0 0
\(811\) −9.90912 −0.347956 −0.173978 0.984750i \(-0.555662\pi\)
−0.173978 + 0.984750i \(0.555662\pi\)
\(812\) 0 0
\(813\) 41.1699 1.44389
\(814\) 0 0
\(815\) −34.7558 −1.21744
\(816\) 0 0
\(817\) 20.8493 0.729426
\(818\) 0 0
\(819\) 5.18025 0.181012
\(820\) 0 0
\(821\) 4.38502 0.153038 0.0765192 0.997068i \(-0.475619\pi\)
0.0765192 + 0.997068i \(0.475619\pi\)
\(822\) 0 0
\(823\) −20.3459 −0.709215 −0.354607 0.935015i \(-0.615385\pi\)
−0.354607 + 0.935015i \(0.615385\pi\)
\(824\) 0 0
\(825\) 0.414797 0.0144414
\(826\) 0 0
\(827\) −0.168760 −0.00586837 −0.00293419 0.999996i \(-0.500934\pi\)
−0.00293419 + 0.999996i \(0.500934\pi\)
\(828\) 0 0
\(829\) 39.3179 1.36557 0.682783 0.730621i \(-0.260769\pi\)
0.682783 + 0.730621i \(0.260769\pi\)
\(830\) 0 0
\(831\) 64.7413 2.24585
\(832\) 0 0
\(833\) 5.37564 0.186255
\(834\) 0 0
\(835\) −43.2856 −1.49796
\(836\) 0 0
\(837\) 60.5185 2.09183
\(838\) 0 0
\(839\) −15.1889 −0.524380 −0.262190 0.965016i \(-0.584445\pi\)
−0.262190 + 0.965016i \(0.584445\pi\)
\(840\) 0 0
\(841\) −12.3236 −0.424950
\(842\) 0 0
\(843\) 6.83592 0.235442
\(844\) 0 0
\(845\) 2.19539 0.0755238
\(846\) 0 0
\(847\) −10.3526 −0.355720
\(848\) 0 0
\(849\) −95.1831 −3.26668
\(850\) 0 0
\(851\) −1.85326 −0.0635290
\(852\) 0 0
\(853\) 43.7180 1.49687 0.748437 0.663206i \(-0.230804\pi\)
0.748437 + 0.663206i \(0.230804\pi\)
\(854\) 0 0
\(855\) −74.5580 −2.54983
\(856\) 0 0
\(857\) −13.6884 −0.467587 −0.233794 0.972286i \(-0.575114\pi\)
−0.233794 + 0.972286i \(0.575114\pi\)
\(858\) 0 0
\(859\) −19.5697 −0.667710 −0.333855 0.942624i \(-0.608350\pi\)
−0.333855 + 0.942624i \(0.608350\pi\)
\(860\) 0 0
\(861\) 0.443412 0.0151114
\(862\) 0 0
\(863\) 11.8126 0.402107 0.201053 0.979580i \(-0.435564\pi\)
0.201053 + 0.979580i \(0.435564\pi\)
\(864\) 0 0
\(865\) −30.0424 −1.02147
\(866\) 0 0
\(867\) 34.0282 1.15566
\(868\) 0 0
\(869\) 9.18539 0.311593
\(870\) 0 0
\(871\) 0.636546 0.0215685
\(872\) 0 0
\(873\) 5.31449 0.179868
\(874\) 0 0
\(875\) −11.3727 −0.384467
\(876\) 0 0
\(877\) 21.7449 0.734274 0.367137 0.930167i \(-0.380338\pi\)
0.367137 + 0.930167i \(0.380338\pi\)
\(878\) 0 0
\(879\) −61.9414 −2.08923
\(880\) 0 0
\(881\) 20.4760 0.689855 0.344927 0.938629i \(-0.387904\pi\)
0.344927 + 0.938629i \(0.387904\pi\)
\(882\) 0 0
\(883\) 8.03098 0.270264 0.135132 0.990828i \(-0.456854\pi\)
0.135132 + 0.990828i \(0.456854\pi\)
\(884\) 0 0
\(885\) −45.8009 −1.53958
\(886\) 0 0
\(887\) 5.03981 0.169220 0.0846102 0.996414i \(-0.473036\pi\)
0.0846102 + 0.996414i \(0.473036\pi\)
\(888\) 0 0
\(889\) −10.4686 −0.351106
\(890\) 0 0
\(891\) −1.84594 −0.0618415
\(892\) 0 0
\(893\) 10.2196 0.341987
\(894\) 0 0
\(895\) −16.1974 −0.541419
\(896\) 0 0
\(897\) −0.682747 −0.0227963
\(898\) 0 0
\(899\) −39.6324 −1.32182
\(900\) 0 0
\(901\) 24.4053 0.813058
\(902\) 0 0
\(903\) −9.09587 −0.302692
\(904\) 0 0
\(905\) 49.2941 1.63859
\(906\) 0 0
\(907\) −42.2437 −1.40268 −0.701340 0.712827i \(-0.747414\pi\)
−0.701340 + 0.712827i \(0.747414\pi\)
\(908\) 0 0
\(909\) 21.2329 0.704252
\(910\) 0 0
\(911\) 50.3587 1.66846 0.834228 0.551419i \(-0.185913\pi\)
0.834228 + 0.551419i \(0.185913\pi\)
\(912\) 0 0
\(913\) −7.92546 −0.262294
\(914\) 0 0
\(915\) −41.4812 −1.37132
\(916\) 0 0
\(917\) −13.0800 −0.431938
\(918\) 0 0
\(919\) −18.2660 −0.602541 −0.301271 0.953539i \(-0.597411\pi\)
−0.301271 + 0.953539i \(0.597411\pi\)
\(920\) 0 0
\(921\) 86.0097 2.83412
\(922\) 0 0
\(923\) 7.80165 0.256794
\(924\) 0 0
\(925\) −1.39936 −0.0460106
\(926\) 0 0
\(927\) 54.6938 1.79638
\(928\) 0 0
\(929\) 20.7281 0.680068 0.340034 0.940413i \(-0.389561\pi\)
0.340034 + 0.940413i \(0.389561\pi\)
\(930\) 0 0
\(931\) −6.55589 −0.214861
\(932\) 0 0
\(933\) −27.7932 −0.909909
\(934\) 0 0
\(935\) −9.49568 −0.310542
\(936\) 0 0
\(937\) −59.1752 −1.93317 −0.966585 0.256348i \(-0.917481\pi\)
−0.966585 + 0.256348i \(0.917481\pi\)
\(938\) 0 0
\(939\) −14.8226 −0.483716
\(940\) 0 0
\(941\) −50.7678 −1.65498 −0.827491 0.561479i \(-0.810232\pi\)
−0.827491 + 0.561479i \(0.810232\pi\)
\(942\) 0 0
\(943\) −0.0370085 −0.00120516
\(944\) 0 0
\(945\) 13.6899 0.445334
\(946\) 0 0
\(947\) 51.3353 1.66817 0.834087 0.551633i \(-0.185995\pi\)
0.834087 + 0.551633i \(0.185995\pi\)
\(948\) 0 0
\(949\) −9.97485 −0.323797
\(950\) 0 0
\(951\) 59.3118 1.92332
\(952\) 0 0
\(953\) −6.71227 −0.217432 −0.108716 0.994073i \(-0.534674\pi\)
−0.108716 + 0.994073i \(0.534674\pi\)
\(954\) 0 0
\(955\) 16.4377 0.531911
\(956\) 0 0
\(957\) 9.39763 0.303782
\(958\) 0 0
\(959\) 16.5529 0.534522
\(960\) 0 0
\(961\) 63.1886 2.03834
\(962\) 0 0
\(963\) −70.2860 −2.26493
\(964\) 0 0
\(965\) 11.5100 0.370520
\(966\) 0 0
\(967\) 41.2207 1.32557 0.662784 0.748811i \(-0.269375\pi\)
0.662784 + 0.748811i \(0.269375\pi\)
\(968\) 0 0
\(969\) −100.796 −3.23805
\(970\) 0 0
\(971\) 3.70790 0.118992 0.0594961 0.998229i \(-0.481051\pi\)
0.0594961 + 0.998229i \(0.481051\pi\)
\(972\) 0 0
\(973\) 6.04620 0.193832
\(974\) 0 0
\(975\) −0.515528 −0.0165101
\(976\) 0 0
\(977\) −16.3769 −0.523943 −0.261971 0.965076i \(-0.584373\pi\)
−0.261971 + 0.965076i \(0.584373\pi\)
\(978\) 0 0
\(979\) −4.23357 −0.135306
\(980\) 0 0
\(981\) 40.8633 1.30466
\(982\) 0 0
\(983\) 60.0468 1.91519 0.957597 0.288110i \(-0.0930270\pi\)
0.957597 + 0.288110i \(0.0930270\pi\)
\(984\) 0 0
\(985\) 55.9045 1.78127
\(986\) 0 0
\(987\) −4.45848 −0.141915
\(988\) 0 0
\(989\) 0.759168 0.0241401
\(990\) 0 0
\(991\) −10.7296 −0.340838 −0.170419 0.985372i \(-0.554512\pi\)
−0.170419 + 0.985372i \(0.554512\pi\)
\(992\) 0 0
\(993\) 73.6262 2.33646
\(994\) 0 0
\(995\) 28.2502 0.895590
\(996\) 0 0
\(997\) 55.4812 1.75711 0.878554 0.477643i \(-0.158509\pi\)
0.878554 + 0.477643i \(0.158509\pi\)
\(998\) 0 0
\(999\) 48.4116 1.53167
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.a.s.1.5 yes 5
4.3 odd 2 2912.2.a.r.1.1 5
8.3 odd 2 5824.2.a.cj.1.5 5
8.5 even 2 5824.2.a.ck.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.r.1.1 5 4.3 odd 2
2912.2.a.s.1.5 yes 5 1.1 even 1 trivial
5824.2.a.cj.1.5 5 8.3 odd 2
5824.2.a.ck.1.1 5 8.5 even 2