Properties

Label 290.6.a.b
Level $290$
Weight $6$
Character orbit 290.a
Self dual yes
Analytic conductor $46.511$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [290,6,Mod(1,290)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("290.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(290, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 290 = 2 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 290.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,12,-6,48,75] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.5113077458\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.325780.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 91x - 35 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 q^{2} + (\beta_{2} - 2) q^{3} + 16 q^{4} + 25 q^{5} + (4 \beta_{2} - 8) q^{6} + ( - \beta_{2} - 10 \beta_1 - 30) q^{7} + 64 q^{8} + ( - 14 \beta_{2} + 7 \beta_1 - 18) q^{9} + 100 q^{10} + (5 \beta_{2} + 25 \beta_1 - 243) q^{11}+ \cdots + (5797 \beta_{2} - 6141 \beta_1 + 8119) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12 q^{2} - 6 q^{3} + 48 q^{4} + 75 q^{5} - 24 q^{6} - 80 q^{7} + 192 q^{8} - 61 q^{9} + 300 q^{10} - 754 q^{11} - 96 q^{12} - 1426 q^{13} - 320 q^{14} - 150 q^{15} + 768 q^{16} - 3524 q^{17} - 244 q^{18}+ \cdots + 30498 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 91x - 35 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 61 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} + 61 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.386897
−8.84302
10.2299
4.00000 −22.2834 16.0000 25.0000 −89.1337 8.02137 64.0000 253.552 100.000
1.2 4.00000 3.73302 16.0000 25.0000 14.9321 151.127 64.0000 −229.065 100.000
1.3 4.00000 12.5504 16.0000 25.0000 50.2017 −239.149 64.0000 −85.4870 100.000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 290.6.a.b 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
290.6.a.b 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 6T_{3}^{2} - 316T_{3} + 1044 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(290))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 6 T^{2} + \cdots + 1044 \) Copy content Toggle raw display
$5$ \( (T - 25)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 80 T^{2} + \cdots + 289908 \) Copy content Toggle raw display
$11$ \( T^{3} + 754 T^{2} + \cdots - 83785468 \) Copy content Toggle raw display
$13$ \( T^{3} + 1426 T^{2} + \cdots - 280671976 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 1616214852 \) Copy content Toggle raw display
$19$ \( T^{3} + 1034 T^{2} + \cdots + 501767500 \) Copy content Toggle raw display
$23$ \( T^{3} - 3944 T^{2} + \cdots + 756014724 \) Copy content Toggle raw display
$29$ \( (T + 841)^{3} \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 91546448772 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 511614707660 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 2102107687992 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 4667435629596 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 1435898276172 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 3821105696136 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 105573034800 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 8304976890840 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 2311335487860 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 42936307890768 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 338877553698996 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 51017475234620 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 56299963584636 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 190646318175240 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 31502257543692 \) Copy content Toggle raw display
show more
show less