Defining parameters
Level: | \( N \) | \(=\) | \( 29 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 29.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(29))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 7 | 2 |
Cusp forms | 7 | 7 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(29\) | Dim |
---|---|
\(+\) | \(5\) |
\(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(29))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 29 | |||||||
29.4.a.a | $2$ | $1.711$ | \(\Q(\sqrt{2}) \) | None | \(-2\) | \(-10\) | \(-10\) | \(-16\) | $-$ | \(q+(-1+\beta )q^{2}+(-5-3\beta )q^{3}+(-5+\cdots)q^{4}+\cdots\) | |
29.4.a.b | $5$ | $1.711$ | 5.5.13458092.1 | None | \(0\) | \(8\) | \(10\) | \(40\) | $+$ | \(q-\beta _{1}q^{2}+(1-\beta _{1}-\beta _{3}-\beta _{4})q^{3}+(6+\cdots)q^{4}+\cdots\) |