Learn more

Refine search


Results (1-50 of 64 matches)

Next   displayed columns for results
Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 17
28900.2.a.a 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{7}+q^{9}+5q^{11}-6q^{13}+\cdots\)
28900.2.a.b 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}-2q^{13}-4q^{19}+\cdots\)
28900.2.a.c 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-1\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{7}-2q^{9}-q^{13}-4q^{19}+\cdots\)
28900.2.a.d 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-1\) \(0\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}-2q^{9}-6q^{11}-6q^{13}+\cdots\)
28900.2.a.e 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(-1\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}-2q^{9}+6q^{11}+6q^{13}+\cdots\)
28900.2.a.f 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{7}-3q^{9}-2q^{11}+6q^{13}+6q^{29}+\cdots\)
28900.2.a.g 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}-3q^{9}-q^{11}+3q^{19}-3q^{29}+\cdots\)
28900.2.a.h 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(0\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{7}-3q^{9}+q^{11}+3q^{19}+3q^{29}+\cdots\)
28900.2.a.i 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(1\) \(0\) \(-3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{7}-2q^{9}-6q^{11}+6q^{13}+\cdots\)
28900.2.a.j 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(1\) \(0\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{7}-2q^{9}+6q^{11}-6q^{13}+\cdots\)
28900.2.a.k 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(1\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{7}-2q^{9}+q^{13}-4q^{19}+\cdots\)
28900.2.a.l 28900.a 1.a $1$ $230.768$ \(\Q\) None \(0\) \(2\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{7}+q^{9}-5q^{11}-6q^{13}+\cdots\)
28900.2.a.m 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.n 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{21}) \) None \(0\) \(-1\) \(0\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.o 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.p 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.q 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.r 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{21}) \) None \(0\) \(1\) \(0\) \(5\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.s 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{3}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.t 28900.a 1.a $2$ $230.768$ \(\Q(\sqrt{2}) \) None \(0\) \(2\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.u 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-3\) \(0\) \(1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.v 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-3\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.w 28900.a 1.a $3$ $230.768$ \(\Q(\zeta_{18})^+\) None \(0\) \(-3\) \(0\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.x 28900.a 1.a $3$ $230.768$ 3.3.1524.1 None \(0\) \(-2\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.y 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-1\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.z 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(-1\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.ba 28900.a 1.a $3$ $230.768$ 3.3.404.1 None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bb 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bc 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(1\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bd 28900.a 1.a $3$ $230.768$ 3.3.1524.1 None \(0\) \(2\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.be 28900.a 1.a $3$ $230.768$ \(\Q(\zeta_{18})^+\) None \(0\) \(3\) \(0\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bf 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(3\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bg 28900.a 1.a $3$ $230.768$ 3.3.785.1 None \(0\) \(3\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.bh 28900.a 1.a $4$ $230.768$ 4.4.11344.1 None \(0\) \(-2\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bi 28900.a 1.a $4$ $230.768$ \(\Q(\zeta_{16})^+\) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bj 28900.a 1.a $4$ $230.768$ \(\Q(\sqrt{2}, \sqrt{13})\) None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bk 28900.a 1.a $4$ $230.768$ 4.4.11344.1 None \(0\) \(2\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bl 28900.a 1.a $5$ $230.768$ 5.5.27977168.1 None \(0\) \(-1\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bm 28900.a 1.a $5$ $230.768$ 5.5.27977168.1 None \(0\) \(1\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bn 28900.a 1.a $6$ $230.768$ 6.6.14414517.1 None \(0\) \(-3\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bo 28900.a 1.a $6$ $230.768$ 6.6.9521152.1 None \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bp 28900.a 1.a $6$ $230.768$ 6.6.336208896.1 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bq 28900.a 1.a $6$ $230.768$ 6.6.336208896.1 None \(0\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.br 28900.a 1.a $6$ $230.768$ 6.6.3031603600.1 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
28900.2.a.bs 28900.a 1.a $6$ $230.768$ 6.6.3031603600.1 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bt 28900.a 1.a $6$ $230.768$ 6.6.9521152.1 None \(0\) \(0\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bu 28900.a 1.a $6$ $230.768$ 6.6.14414517.1 None \(0\) \(3\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$
28900.2.a.bv 28900.a 1.a $8$ $230.768$ 8.8.\(\cdots\).2 None \(0\) \(0\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$
28900.2.a.bw 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-3\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
28900.2.a.bx 28900.a 1.a $12$ $230.768$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(-8\) $-$ $+$ $-$ $\mathrm{SU}(2)$
Next   displayed columns for results