Properties

Label 2890.2.u
Level $2890$
Weight $2$
Character orbit 2890.u
Rep. character $\chi_{2890}(69,\cdot)$
Character field $\Q(\zeta_{34})$
Dimension $2432$
Sturm bound $918$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.u (of order \(34\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1445 \)
Character field: \(\Q(\zeta_{34})\)
Sturm bound: \(918\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2890, [\chi])\).

Total New Old
Modular forms 7424 2432 4992
Cusp forms 7296 2432 4864
Eisenstein series 128 0 128

Trace form

\( 2432 q + 152 q^{4} - 4 q^{5} + 156 q^{9} + 4 q^{10} - 12 q^{15} - 152 q^{16} - 4 q^{19} + 4 q^{20} + 24 q^{21} - 42 q^{25} + 4 q^{26} + 24 q^{29} - 20 q^{30} - 16 q^{31} + 4 q^{34} - 24 q^{35} - 156 q^{36}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2890, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2890, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2890, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(1445, [\chi])\)\(^{\oplus 2}\)